
Formalizing Mathematics
In A Proof Assistant
An Introduction

Assia Mahboubi

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 1

A formal language for mathematics

Formalizing mathematics requires at least:

• Defining a precise and unambiguous language representing
mathematical assertions and their proofs;

• Obtaining a small and simple set of well-formedness rules
which reduce proof checking to a mechanical task.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 2

Machine checking

Machines are better than humans for routine checking:

• If proof checking boils down to a mechanical task we can
use a computer to check mathematical proofs.

• If one trusts the correctness of the program which checks
proof, one trusts every proof validated by this program.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 3

(De)Motivations

• Reducing proof checking to a mechanical task is a very old
dream

e.g. Leibniz’ Calculus ratiocinator, 1666

• But it is often considered as either not realistic or too
boring a topic among mathematicians
e.g. “The architecture of mathematics”, N. Bourbaki, 1962

• This idea nonetheless gained a renewed interest, mostly
from computer scientists, after the late 60’s.

e.g. de Bruijn’s Automath project, circa 1967

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 4

(De)Motivations

Codifying this language, ordering its vocabulary and clarifying its
syntax is a useful work which is indeed one of the aspects of the
axiomatic method [...]. But - and we insist on this point - this is
only one of its aspects, and it is certainly the less interesting.

The essential motivation of the axiomatic method is precisely to
define what the logical formalism is alone unable to provide,
which is the profound intelligibility of mathematics.

N. Bourbaki “The architecture of mathematics” 1962.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 5

(De)Motivations

Codifying this language, ordering its vocabulary and clarifying its
syntax is a useful work which is indeed one of the aspects of the
axiomatic method [...]. But - and we insist on this point - this is
only one of its aspects, and it is certainly the less interesting.

The essential motivation of the axiomatic method is precisely to
define what the logical formalism is alone unable to provide,
which is the profound intelligibility of mathematics.

N. Bourbaki “The architecture of mathematics” 1962.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 5

Proofs and programs

Several reasons can explain why the interest was stronger from
computer science inclined people:

• These were more familiar with alternative presentations of
foundations, that are more tractable for a concrete use of
computers.

• Programmers themselves are exposed to the difficult task of
checking the properties of programs.

• They are conceiving, writing and using programs called
decision procedures.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 6

Programs and proofs

• SAT/SMT solvers: decision of propositional (modulo
theory) formulae

• Termination checkers: termination, liveness properties

• Constraint solving: operation research, scheduling,...

• ...

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 7

Programs and proofs

The Four Colour Theorem
K. Appel - W. Haken

G. Gonthier - B. Werner

The Kepler conjecture
Th. Hales - S. Ferguson

The Flyspeck project

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 8

Programs and proofs

Celestian
mechanics

Existence of the
Lorenz attractor
W. Tucker, 2002

Every odd
number n ≥ 7
is the sum of
three prime
numbers.

H. Helfgott, 2013

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 9

This is not only about large calculations

• Theory of programming languages
e.g. the Poplmark challenge

• Classification of finite simple groups
e.g. the formal proof of the Odd Order Theorem

• Homotopy theory
see V. Voevodsky’ recent talk at IAS, Pdf slides Video

In fact this is not (only) about finding bugs in proofs.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 10

http://www.seas.upenn.edu/~plclub/poplmark/
http://www.msr-inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2014_IAS.pdf
http://video.ias.edu/node/6395

Motivations

Indeed every mathematician knows that a proof has not been
“understood” if one has done nothing more than verifying step
by step the correctness of the deductions of which it is
composed, and has not tried to gain a clear insight into the ideas
which have led to the construction of this particular chain of
deductions in preference to every other one.

N. Bourbaki “The architecture of mathematics” 1962.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 11

The proof assistant zoo

• As of today, there exists many interactive proof assistants
that can be used for the purpose of formalizing
mathematics.

ACL2, Mizar, PVS, HOL, Isabelle, HOL-Light, Agda, Coq,...

• They differ by their choice of logical foundations, the scope of
their libraries, the size and/or interests of their community of
users.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 12

Crucial ingredients

• Appropriate logical foundations and a proof checker;

• Correct representations of mathematical concepts in the
formal language;

• Helper tools for bridging the gap between the machine
checker and the human writer.

• Well-designed, comprehensive and searchable libraries

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 13

The Coq proof assistant

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 14

The Coq proof assistant

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 15

The Coq proof assistant

• Calculus of (Inductive) Constructions
Th. Coquand (1985), Th. Coquand, Ch. Paulin (1989)

• Implemented in Ocaml
First prototype by Th. Coquand, G. Huet (1984)

• Includes:
- a proof checker
- a dedicated interface
- commands to build proofs (tactics)
- some libraries of formalized mathematics.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 16

Material for this week

• Coq v8.4pl3: Webpage and Downloads

• (Optional) Proof General interface: Download

• Ssreflect language of tactics: Download Reference Manual

• Slides, exercises:
http://specfun.inria.fr/mahboubi/cirm14.html

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 17

http://coq.inria.fr
http://proofgeneral.inf.ed.ac.uk/
http://ssr.msr-inria.inria.fr/FTP/ssreflect-1.5.tar.gz
http://hal.inria.fr/inria-00258384/

Coq kernel

The task of the Coq kernel is to check typing judgments:

x1 : T1, . . . , xn : Tn ` t : T

• x1, . . . , xn are variables;

• T1, . . . ,Tn, t,T are terms;

• x1 : T1, . . . , xn : Tn is a context.

The judgment is read:

“In the context x1 : T1, . . . , xn : Tn, the term t has type T .”

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 18

Terms and Types

Terms include the usual terms of λ-calculus:

• Variables: x , A,...

• Functions: (fun x 7→ t)

• Applications: (t1 t2)

• Constants: c

The rules defining what a valid judgment explain how we can
assign a type to a term.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 19

Typing rules

A valid typing judgment

x1 : T1, . . . , xn : Tn ` t : T

can be derived from a typing derivation, which is a tree made
with rules like:

Γ ` (fun x 7→ t) : A→ B Γ ` u : A

Γ ` (fun x 7→ t) u : B

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 20

Our first types

We have a collection of constants (Ti)i∈N called universes. The
associated typing rules are:

` Ti : Tj , i < j

However in all what follows we will leave these index implicit and
use the same constant Type for any Ti .

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 21

Our first non-empty contexts

A valid typing judgment

x1 : T1, . . . , xn : Tn ` t : T

features a well-formed context Γ := (x1 : T1, . . . , xn : Tn).

Well-formed context are constructed as:

• ∅ is a well-formed context.

• Γ, x : A is well formed if Γ ` A : Type and x is fresh.

Valid judgments on variables follow from well-formed context:

Γ ` x : A if (x : A) ∈ Γ

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 22

First steps with the system

Let experiment a small demo illustrating:

• The interaction with the system through tactics;

• The structure of goals;

• The guidance of the system;

• The a posteriori, independent check.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 23

Propositions as Types

Formalizing mathematics in Coq consists in building correct
derivations establishing statements of the form:

x1 : T1, . . . , xn : Tn ` t : T

Certain such judgments can be interpreted as proofs of
statements:

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B

Γ, x : A ` t : B

Γ ` (fun x 7→ t) : A→ B

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 24

Propositions as Types

Formalizing mathematics in Coq consists in building correct
derivations establishing statements of the form:

x1 : T1, . . . , xn : Tn ` t : T

Certain such judgments can be interpreted as proofs of
statements:

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B

Γ, x : A ` t : B

Γ ` (fun x 7→ t) : A→ B

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 24

Equality

We have a family of equality predicates, which expresses a
comparison between two inhabitants of the same type:

A : Type, x : A, y : A ` x =A y : Type

Equality is reflexive:

A : Type, x : A ` eqrefl x : x =A x

Equality is substitutive, in a sense we will make precise later.

In all what follows, we write = for any instance of =A.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 25

Equality

We have a family of equality predicates, which expresses a
comparison between two inhabitants of the same type:

A : Type, x : A, y : A ` x =A y : Type

Equality is reflexive:

A : Type, x : A ` eqrefl x : x =A x

Equality is substitutive, in a sense we will make precise later.

In all what follows, we write = for any instance of =A.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 25

Equality

We have a family of equality predicates, which expresses a
comparison between two inhabitants of the same type:

A : Type, x : A, y : A ` x =A y : Type

Equality is reflexive:

A : Type, x : A ` eqrefl x : x =A x

Equality is substitutive, in a sense we will make precise later.

In all what follows, we write = for any instance of =A.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 25

Conversion Rule and Computation

The type system is parametrized by an equivalence relation ≡

Γ ` t : A

Γ ` t : B
if A ≡ B

This relation can be understood as:
“A and B are equal modulo computation”.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 26

Conversion Rule and Computation

For instance β-reduction, which models the evaluation of
functions:

(fun x 7→ t) u →β t[x ← u]

is included in the conversion relation:

(fun x 7→ t) u ≡ t[x ← u]

Hence these two types are convertible:

(fun x 7→ f (x)) u = f (u) ≡ f (u) = f (u)

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 27

Dependent Types

Types can depend on terms: in this case they are called
dependent types.

This was the case for the type of equality statements:
the type x = x depends on a type A and on a term x : A.

More generally, ∀x : A,B is:

• the type of functions f

• that take as argument a term a : A

• and output a term f a : B [x ← a] whose type depend on a.

Type ∀x : A,B can also be denoted Πx : A,B .

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 28

Dependent Types

Examples:

• The type of our constructor of equality:

eqrefl : ∀A : Type,∀x : A, x = x

• The substitutivity is expressed by a term of type:

∀A : Type,∀P : A→ Type, ∀x : A,Px → ∀y : A, x = y → Py

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 29

Dependent Types

Examples:

• The type of our constructor of equality:

eqrefl : ∀A : Type,∀x : A, x = x

• The substitutivity is expressed by a term of type:

∀A : Type,∀P : A→ Type, ∀x : A,Px → ∀y : A, x = y → Py

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 29

Dependent Types

Typing rules:

Γ ` A : Type Γ, x : A ` B : Type

Γ ` ∀x : A,B : Type

Γ, x : A ` t : B

Γ ` (fun x 7→ t) : ∀x : A,B

Γ ` t : ∀x : A,B Γ ` u : A

Γ ` t u : B[x ← u]

If x does not appear in B , ∀x : A,B is denoted A→ B

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 30

Dependent Types

Typing rules:

Γ ` A : Type Γ, x : A ` B : Type

Γ ` ∀x : A,B : Type

Γ, x : A ` t : B

Γ ` (fun x 7→ t) : ∀x : A,B

Γ ` t : ∀x : A,B Γ ` u : A

Γ ` t u : B[x ← u]

If x does not appear in B , ∀x : A,B is denoted A→ B

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 30

Dependent Types

Typing rules:

Γ ` A : Type Γ, x : A ` B : Type

Γ ` ∀x : A,B : Type

Γ, x : A ` t : B

Γ ` (fun x 7→ t) : ∀x : A,B

Γ ` t : ∀x : A,B Γ ` u : A

Γ ` t u : B[x ← u]

If x does not appear in B , ∀x : A,B is denoted A→ B

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 30

Dependent Types

Typing rules:

Γ ` A : Type Γ, x : A ` B : Type

Γ ` ∀x : A,B : Type

Γ, x : A ` t : B

Γ ` (fun x 7→ t) : ∀x : A,B

Γ ` t : ∀x : A,B Γ ` u : A

Γ ` t u : B[x ← u]

If x does not appear in B , ∀x : A,B is denoted A→ B

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 30

Description of mathematical objects

The type system of the Coq proof assistant allows the user to
define new types (and their inhabitants) with inductive
definitions.

This is a very powerful tool to describe mathematical objects at
a high level.

Disclaimer: in this course we will provide only an informal
account of Coq’s inductive types via examples of increasing
sophistication.

More material by Ch. Paulin: slides Habilitation memoir (in French)

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 31

https://www.lri.fr/~paulin/FOS/
http://www.lri.fr/~paulin/PUBLIS/habilitation.ps.gz

Enumerated Types

Enumerated types are defined by the exhaustive description of
their named inhabitants, which are all distinct:

Inductive color : Type :=

|blue : color

|green : color

|magenta : color

|yellow : color.

The terms blue, green, magenta, yellow are called the
constructors of the inductive type color.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 32

Enumerated Types

An arbitrary judgment Γ ` T : Type imposes a priori no special
property on the nature, number or properties of the inhabitants
of T. An inductively defined type does:

• We can program by case analysis on inhabitants of an
inductive type;

• We can reason by case analysis on inhabitants of an
inductive type;

• We can use the fact that two distinct labels refer to distinct
inhabitants.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 33

Enumerated Types

In practice:

• Program by (exhaustive) case analysis:

match x with

| blue => ... | green => ... | _ => ... end.

• Reason by (exhaustive) case analysis:
using the tactic case

• Derive absurdity from a hypothesis of the form
h : blue=magenta:

using the tactic discriminate

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 34

Conversion Rule

Remember the type system is parametrized by an equivalence
relation ≡

Γ ` t : A

Γ ` t : B
if A ≡ B

The conversion relation ≡ also includes the reduction of case
analysis:

(match x with |c1 ⇒ t1| . . . |cn ⇒ tn end) ci ≡ ti

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 35

Inductive Types

Inductive types can describe more than enumerations:

Inductive nat : Type := O : nat | S : nat -> nat.

• This type has two constructors: O and S.

• O is a constant of type nat.

• S is a constant of type nat -> nat..

• The inhabitants of nat are closed under function S.

Otherwise said, nat types the smallest collection of terms
including O and closed under S.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 36

Inductive Types

Inductive types can describe more than enumerations:

Inductive nat : Type := O : nat | S : nat -> nat.

• This type has two constructors: O and S.

• O is a constant of type nat.

• S is a constant of type nat -> nat..

• The inhabitants of nat are closed under function S.

Otherwise said, nat types the smallest collection of terms
including O and closed under S.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 36

Inductive Types

Just like in the case of enumerated types:

• We can program by case analysis on inhabitants of an
inductive type;

match x with ... end.

• We can reason by case analysis on inhabitants of an
inductive type;

using the case tactic.

• We can use the fact that two distinct head constructors
imply two distinct inhabitants.

using the discriminate tactic.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 37

Inductive Types

Moreover:

• We can use the fact that constructors are injective
functions.

using the tactic injection h (with h an equality).

• We can program by (well-founded) recursion.
using the Fixpoint (or fix) syntax.

• We can reason by (well-founded) induction.
using the elim tactic.

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 38

Conversion rule

Remember the type system is parametrized by an equivalence
relation ≡

Γ ` t : A

Γ ` t : B
if A ≡ B

The conversion relation ≡ also includes the reduction of
recursive definitions:

(match x with |c1 ⇒ t1| . . . |cn ⇒ tn end) ci ≡ ti

A. Mahboubi – Formalizing Mathematics In A Proof Assistant 39

