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ABSTRACT
Automated diversity is a promising mean of increasing the secu-
rity of software systems. However, current automated diversity
techniques operate at the bottom of the software stack (operat-
ing system and compiler), yielding a limited amount of diversity.
We present a novel Model-Driven Engineering approach to the
diversification of communicating systems, building on abstraction,
model transformations and code generation. This approach gen-
erates significant amounts of diversity with a low overhead, and
addresses a large number of communicating systems, including
small communicating devices.
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1 INTRODUCTION
In “mass-produced” software, e.g. the firmware of a connected de-
vice or a mobile/web application, diversity is automatically intro-
duced either a) in a generic way, typically at the OS level, oblivious
from the actual logic and semantics of the software, or b) in some
very specific places, typically low-level libraries reused across ap-
plications, in order to improve security. This left most of the actual
business logic unchanged, unaffected by the diversity [1].

A more holistic approach to diversity is challenging [2, 3]. Con-
sider a typical client-server application, where multiple clients
interact with a server, and where each client has a different imple-
mentation, and a different way of communicating with the server.
This would significantly reduce the observability, learnability and
predictability of the overall system [4, 5] i.e., reduce the capabil-
ity to generalize from one example. This would make large-scale
exploits, such as Mirai [6] or Petya [7], a time-consuming and
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costly endeavor for hackers. Yet, the engineering, e.g., the produc-
tion, maintenance and integration, of such levels of diversity raises
several challenges. How to ensure that each implementation still
behaves as specified? How to ensure that each client still can com-
municate with the server, without information loss or distortion?
How to ensure that different clients are fundamentally different,
and not merely cosmetically different? How to keep the develop-
ment and operation costs of a diversified system significantly lower
than the cost of mitigating large scale attacks?

In this work we introduce an original, model-driven approach
for engineering software diversity. We focus on the synthesis of
software diversity into the communications between different ma-
chines or processes, for example between a device and a gateway,
or a web/mobile app and a server. This specific scope is motivated
by the increasingly strategic role communications play in an al-
ways more connected world. For example, a number of attacks have
emerged to by-pass security, such as the Krack attack on WPA2
(securing WiFi) [8], calling for new counter-measures to reduce
the certainty that an attacker can have about interactions between
communicating entities.

Our approach to the diversification of communications follows
the principles of Model-Driven Engineering (MDE):

(1) we abstract communications into protocol models, composed
of a) a structural view describing the messages to be ex-
changed by two (or more) participants, and b) a behavioral
view describing how those messages are exchanged between
the participants, including sequencing and timing.

(2) we apply and combine together a number of atomic model
transformations onto this protocol model, aiming at deeply
changing the way the protocol operates, while still preserv-
ing its semantics. The precise description of these atomic
transformations and the detailed evaluation of their com-
bined impact is the main contribution of this paper.

(3) we automatically generate code implementing each of the
diversified protocol models

This MDE approach to the diversification of communications
addresses some of the key challenges to engineer software diversity.
First, it automatically generates fundamentally different commu-
nications, from a single specification. Our experiments with 200
protocols, diversified from a single base protocol confirm this huge
diversity. This can significantly reduce the predictability and harm-
ful exploitation of communication protocols. Second, it yields fully
operational code, which can run on a wide number of platforms and
communicate through a large number of transport protocols. Our
empirical assessment of the approach indicates that it implies a rea-
sonable overhead in terms of execution time, memory consumption
and bandwidth. On powerful nodes able to run JavaScript or Go,
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this overhead will be imperceptible in practice: less than +100 µs of
processing time per message, +3 bytes per message exchanged on
the network, and less than +300 kB of RAM to handle a diversified
protocol. On Arduino, a resource-constrained microcontroller (2kB
RAM, 32kB Flash, 16MHz MCU) representative of small Internet-
of-Things devices, this overhead is +1ms of processing time per
message, +3 bytes also per message exchanged on the network and
+150 bytes of RAM to handle a diversified protocol.

The remainder of this paper is organized as follows. Section 2
presents the overall model-driven process to diversity communi-
cations. Section 3 details the model-transformations we use to im-
plement the diversification. Section 4 evaluates our approach by
assessing the diversity and evaluating the overhead induced by our
approach. Section 5 discusses related work. Section 6 concludes and
presents future work.

2 MODEL-DRIVEN PROCESS TO DIVERSIFY
COMMUNICATIONS

This section gives an overview of the overall model-driven process
to diversify communications. First, we present how protocol models
are specified (Section 2.1). Next, we introduce the diversification
process itself (Section 2.2), based on the atomic model transforma-
tions further detailed in Section 3. Finally, we present how fully
operational code is generated from those diversified models (Sec-
tion 2.3).

2.1 Specifying Protocol Models
We rely on ThingML [9] for the specification of protocol models.
ThingML is a modeling language initially developed to model the
reactive behavior of a set of “Internet-of-Things” devices communi-
cating through asynchronous message passing. Through a decade
of research and development, ThingML has evolved to a more gen-
eral modeling language, able to represent the behavior of most
distributed systems communicating through asynchronous mes-
sage passing. Fundamentally, ThingML is based on a sub-set of the
UML (statecharts and components), with a textual syntax bridging
the gap with formalisms developers are used to i.e., code. By default,
ThingML comes with a set of compilers targeting C (for microcon-
trollers and Linux), Java, JavaScript (Node.JS and Browser) and Go,
and a set of plugins to allow components to communicate through
a number of network protocols such as MQTT, WebSocket, and so
on, which we use in Section 2.3.

We model communication protocols as a set of communicating
state-machines, encapsulated into components. A protocol involves
two roles: 1) a client e.g., a device, a web-browser or a mobile app,
and 2) a server e.g., a gateway or a cloud back-end. In the remainder
of this paper, we assume that communications happen between one
server and a number of clients.

First, the clients and the server need to agree on a common API.
Since communication is typically asynchronous in a distributed
system, the common API is specified as a set of messages. Listing 1
illustrates an example for API specification.

Listing 1: A simple API
1 thing fragment Msgs {

2 message m1(a:Byte ,b:Byte ,c:Integer ,

3 d:Byte ,e:Byte)

4 message m2(a:Byte ,b:Byte ,c:Byte)

5 message m3(a:Byte)

6 }

A thing fragment is a form of interface, defining a set of struc-
tural features, here three messages, that can later on be included
into other things. This interface defines three messages m1, m3 and
m3. Each message encapsulates data into a set of parameters, and
each parameter is typed.

Next, this API is imported by the client component and the server
component, and the messages are organized into ports, as shown
in the script below:

Listing 2: The client component
1 thing Client includes Msgs {

2 required port app {

3 sends m1, m2

4 receives m3

5 }

6 }

The client component, or thing, sends messages m1 and m2, and
receives message m3. Symmetrically, the server receives m1 and
m2, and sends m3. The overall structure for this simple protocol is
shown in Figure 1.

Figure 1: API for the simple protocol

Finally, the behavior of the client and the server needs to be
implemented. Though ThingML allows for the complete implemen-
tation of components, in this paper we are only concerned about
implementing the logic describing valid interactions, e.g. sequences
and timing related to the emission or reception of messages. All
the behavior beyond this logic is not relevant for this paper.

Figure 2 shows the implementation of the protocol for the client.
In this example, the client will be identified by a random number,
stored in variable _a, which is initialized on startup. In the RUN
state, the client will 1) send messages m1 and m2, containing the
identifier of the client, together with other data, and 2) wait for a
response from the server. The server replies with a message m3. If
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the parameter a of this message m3 is different from the identifier
of the client, the client goes in the ERROR state and terminates. If
the parameter is valid, the client re-enters the RUN state. After 100
successful interactions, the client will terminate.

Figure 2: Behavior of the client, exported from ThingML

In a rather symmetrical way, the server will 1) wait for a message
m1, then 2) wait for a message m2, and finally 3) if the client identifier
is correct, sends a message m3 back to the client with this identifier.

2.2 Diversifying Protocol Models through
Model Transformations

Themodel-based diversification process itself is depicted in Figure 3.
The diversifier is a 1-to-n, endogenous transformation. It takes
a ThingML protocol model as input and generates n ThingML
protocol models as output. A key benefit of this design choice is
that the whole ThingML tool-chain, and in particular the compilers
(Section 2.3), can be reused as-is on those diversified protocols.

The transformation is configured according to the following
parameters:

(1) seed: the seed for the random number generator used in-
ternally in the diversifier. Given one seed and one input
protocol, the diversifier produces repeatable outputs.

(2) mode: all transformations introduce static diversity. In addi-
tion, some transformation (see Sections 3.5 and 3.6) can also
introduce dynamic diversity.

(a) static diversity: in this mode, the diversifier generates dif-
ferent implementations for the input protocol. However,
all the diversity is fixed by the diversifier itself i.e., the
protocol will not evolve over time.

(b) dynamic diversity: in this mode, the diversifier still gener-
ates different implementations. In addition, some diversity
still remains open at runtime, so as to allow the protocol
to change over time (within some boundaries) and act as
a moving target defense [10].

Figure 3: Overview of the model-based diversification pro-
cess for communication protocols

(3) n: the number of diversified protocols to be generated. In
Section 4, we generate 100 protocols in each mode.

Figure 4 shows one diversified protocol for the client, which has
been generated from the inputs described by Figure 1 and Figure 2.
Note that for this diversified client, and every other diversified
client, a corresponding protocol is also generated for the server.

Figure 4: A diversified client, exported from ThingML

A detailed discussion about this particular diversified protocol is
beyond the scope of this paper as it represents a very small sample
of the quasi-infinite number of protocols that can be generated
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by our approach. We will detail in Section 3 the six atomic model
transformations contributing to producing diversified protocols.

2.3 Generating Fully Operational Code from
(Diversified) Protocol Models

The automatic generation of both client and server side code is
an essential feature of our MDE process for the diversification of
communication.

Here, we rely on the compilers available as part of the ThingML
Framework. The diversified protocol models “plain old ThingML
specifications”, and those compilers1 can be reused out-of-the-box.
This way we can generate C (for resource-constrained microcon-
trollers or Linux), Java, JavaScript (for the browser or Node.JS) or
Go code for the client and server sides.

Given a communication model, different compilers generate
different versions of the machine code, where the control flow and
data flow to manage incoming and outgoing messages is likely
to use different low-level instructions, storing intermediate data
differently in RAM and in registers. A discussion on this computing
diversity is beyond the scope of this paper, and pending further
work. In this paper, we focus on the communications between
components, and consider each component as a black-box.

ThingML supports communication [11] by generating the ’glue’
between components:

(1) marshalling/unmarshalling logic, to serialize and parse mes-
sage in a string or binary format. In this work we use the bi-
nary format, which is similar to Google’s Protocol Buffer [12]

(2) transport logic, to transfer message between two local pro-
cesses, or between two remote processes over the network.
For local communications, ThingML relies on in-memory
queues where processes read and write. For networked com-
munications, ThingML generates wrappers around com-
ponents, which delegate this logic to existing libraries for
HTTP, WebSocket, MQTT, Serial, and so on.

Figure 5 shows how messages are serialized. The first byte of any
message is an identification code, necessary for the receiving side
to parse the message. The following bytes encode the parameters,
which can have different size depending on their types. If parameter
a is an identifier for the client, it represents an essential piece of
information for attackers: knowing this, they can focus on the other
parameters, see how they evolve over time, how they correlate, etc.
This is exactly the learnability that we aim at breaking, or making
more difficult, using the transformations described in Section 3.

Once the code is generated, it must be deployed and executed.
One potential issue with our approach is that, for a high number
N of clients, if we assume each client is provided with a unique
protocol, the server needs to run N versions of the server-side
protocol. This would be a major issue, and even a show stopper, in
a static monolithic system, where those N versions would need to
be built in this monolith and kept up and running at any time. We
see this as a purely theoretical issue, as companies still operating
a static monolith in 2018 most likely do not deal with a very high
number of users. In contrary, leading companies such as Netflix,
Google, Amazon and so on, are already running a large number
1strictly speaking, model-to-text transformations generating source code, which then
can be interpreted or compiled to machine code by other compilers (gcc, javac, etc).

Figure 5: Serialization of the protocol

of instances on the server side. More recent, dynamic and scalable
architectures, such as serverless architectures (a.k.a Function-as-a-
Service)2 are perfectly compatible with our approach, able to run
those server-side protocols only when needed, at a low operational
cost.

2.4 Implementation
ThingML and our communications diversification tool are publicly
available on GitHub under the open-source Apache 2.0 License:

• ThingML3: Our approach builds on ThingML, a modeling
language and code generation framework for reactive sys-
tems, developed over the past 10 years.

• thingml-diversifier4: Our approach to diversity communi-
cations.
– src/main/java contains the implementation of the diversi-
fier i.e., the model transformations described in Section 3.

– src/main/python contains the evaluation procedure used
in Section 4.

3 MODEL-BASED DIVERSIFICATION
STRATEGIES FOR COMMUNICATIONS

Diversifications are introduced into communications through a
set of model transformations. Fundamentally, the goal of these
transformations is to break sequences and patterns for individual
client/server pairs, and to reduce the similarities between different
client/server pairs.

3.1 Re-ordering messages
This transformation re-orders the definitions of messages that a
ThingML component can send and receive. Remember that each
message is associated with an identifier, serialized as bytes[0] in
the payload to be sent on the network, so that it can be parsed by
the receiving side. Those identifiers are generated by ThingML as a
sequence following the order of message definitions. Re-ordering
messages will thus prevent the same message to always be affected
with the same code for different clients, and will contribute to

2See for example Amazon’s AWS Lambda (https://aws.amazon.com/lambda/) or Mi-
crosoft’s Azure Functions (https://azure.microsoft.com/en-us/services/functions/)
3https://github.com/TelluIoT/ThingML
4https://github.com/SINTEF-9012/thingml-diversifier



A Model-Based Approach to Systematically Diversify Communications MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

increase the diversity and reduce the learnability of the code gener-
ated from ThingML.

This simple transformation is basically implemented as:
java.util.Collections.shuffle(myCpt.getMessages())
Figure 6 shows the impact of this transformation on the payloads

to be exchanged on the network. Here, three clients (12, 36 and
99) send a message m2 to the server. The first parameter a contains
the identifier of the clients (0x0C, 0x23 and 0x63, hexadecimal
notation), while the other parameters are set to zero.

Figure 6: Impact of re-ordering messages on three clients

The first bytes of the payloads, identifying the same message m2
for different clients, is different: 0x00, 0x01 and 0x02.

3.2 Re-ordering parameters
This transformation re-orders the parameters within a given mes-
sage and is implemented in a similar way as the previous transforma-
tion. In addition to re-shuffling the order of the formal parameters
defined in the message definitions, the order of the actual param-
eters when a message is sent should also be updated accordingly.
In ThingML, sending a message is a first-class concept in the meta-
model. For all instances of SendAction referring to this message,
the list of their actual parameters is re-shuffled according to the
same order.

This is quite similar to refactoring a function expressed in any
programming language. Should you update the order of the func-
tion’s parameters, all calls to this function should also be updated
to ensure the consistency of this refactoring at the interface level,
avoid type errors and bugs in the refactored program and preserve
its initial semantics. This implies side-effects observable at a lower
level: when calling the function, the order in which their actual
parameters are pushed to the stack and/or the order in which reg-
isters are allocated to actual parameters will be different. In the
same way, this transformation will impact the order in which the
parameter of a message are serialized.

Note that transitions reacting to the original message do not
need to be updated even though they might use the values of the
parameters. In ThingML, those values will be accessed by referring
to the name of the parameter and not by referring to their positions.

Figure 7 shows the impact of this transformation. In particular, it
is important to note that the identifier for each client is not anymore
at a fixed place in the payload: bytes[2] for client 12, bytes[3]
for client 36 and bytes[1] for client 99.

Figure 7: Impact of re-ordering parameters on three clients

3.3 Adding random parameters
This transformation adds a parameter to a message. Like the pre-
vious transformation, both the message definition and all the in-
stances of SendAction referring to this message should also be
updated. By default, the expression for this additional actual param-
eter is a call to a function returning a random value. This expression
can however be customized to any valid ThingML expression, such
as a constant or a call to another random function returning values
in a sub-set of the original random.

3.4 Upscaling parameters
This transformation upscales a parameter within a message. By
upscaling, we mean that the initial type of the parameter will be
changed to a larger compatible type, if any. For example, a byte
can be upscaled to an integer or a long, without losing information,
and an integer can be upscaled to a long, and so on. For example,
upscaling the parameter b of message m2 to an integer, would pro-
duce the same result as parameter b (of type integer) of message
m1 in Figure 5 i.e., it would be serialized using two bytes instead of
one byte, shifting all the following bytes.

3.5 Duplicating messages
This transformation first clones a given message m, and the re-
sulting new message mBis is renamed to avoid avoid any name
confusion with the original one. The idea is to sometimes send
the original message, and some other times send this new cloned
message.

At this point, it is important to note that those individual trans-
formations can be combined together, so that a given message can
be transformed multiple times, possibly by different transforma-
tions. Even though the original and cloned message are very similar
at the time when this transformation is applied, they can eventually
become very different.

After the message has been cloned, two additional steps, illus-
trated in Figure 8, are performed:

• For all instances sa of SendAction referring to the original
message m:
– sa is cloned into a new instance of SendAction sa’, and
sa’ is updated so as to refer to the cloned message mBis.

– a choice is made to determine when to send the original
message and when to send the cloned message:
∗ In dynamic mode, a new conditional action ca is created,
sa being affected to the then clause of ca and sa’ to the
else clause. A new Boolean expression is created and
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affected to ca to determine which branch to choose at
runtime, based on a random threshold.

∗ In static mode, this choice is made by the diversifier so
that a given instance will always either send the original
message or the clone message. However, two instances
duplicating the same message in the same way will not
necessarily implement the same choice.

• For all transitions t reacting on the original message m, a
transition t’ is created by cloning t and updated so as it
reacts on the cloned message mBis. Note that the cloning
operation ensures that the source state, the target state, the
guard and the actions are similar in t and t’, hence preserving
the original execution semantics.

Figure 8: Duplicating Message: Before and After

Figure 9: Impact of duplicating a message

Figure 9 shows the result of this transformation applied in dy-
namic mode for message m2. At runtime, whenever the client origi-
nally sent this message, it will now choose whether it should send
this original message or the cloned message, based on the evalua-
tion of a random function and a comparison to a threshold. This
threshold is randomly chosen by the diversifier, so that different ap-
plications of the split message transformation will result in different
distributions of these messages over time.

3.6 Splitting messages
This transformation is rather similar to the previous one in the way
it is implemented, but is semantically quite different as shown in
Figure 10:

• When applying the previous transformation, both the orig-
inal and the new message are interchangeable. Whenever
the original message was sent, the updated model can decide
to send one or the other message, but not both. Whenever
the original model was waiting for the original message, the
updated model waits for one or the other message, but does
not need to, and will not, wait for both messages.

• When applying this transformation, the original message is
no longer used, and is replaced by two complementary, and
non equivalent messages. Whenever the original was sent,
the updated model must send both messages. Whenever the
original model was waiting for the original message, the
updated model waits for one and then the other message, in
any order. An additional region is created in the state ma-
chine to handle this synchronization. When both messages
are received, it will emit the original message on an internal
port. The transition originally reacting on p?m(...) i.e., a
message m coming on an external port p is updated so as to
expect this message on the internal port i.

Figure 10: Splitting Message: Before and After

Figure 11 shows the result of this transformation applied in
dynamic mode for message m2. At runtime, whenever the client
originally sent this message, it will now choose in which order
it will send both fragments resulting from the split, based on the
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evaluation of a random function and a comparison to a threshold.
Again, this threshold is randomly chosen by the diversifier.

Figure 11: Impact of duplicating a message

4 VALIDATION
In this section, we evaluate our diversification approach, with re-
spect to two dimensions:

(1) Assess the diversity of communications (Section 4.2), where
we evaluate the quality of the diversity introduced automat-
ically by our approach.

(2) Assess the overhead of diversified communications com-
pared to non-diversified ones (Section 4.3) on a set of repre-
sentative platforms.

4.1 Experimental Setup
In our experiments, we reused the basic protocol detailed in Sec-
tion 2, composed of a client and a server exchanging 3 messages.
This protocol was diversified to produce 100 statically-diversified
protocols and 100 dynamically-diversified protocols.

The base protocol was run 100 times to simulate different clients,
and the generated 200 diversified protocols were run once each.
Each of those 300 protocols is executed on 3 platforms (JavaScript,
Go and Arduino5) during 100 interactions. We collected all the raw
bytes exchanged by the clients and server, as well as performance
data (execution time, memory used, amount of bytes exchanges
and size of the binaries) for those 90,000 interactions.

In addition to the binary data, we also simulated a “weak” pa-
rameter in one of the messages, and recorded its position and type
in the exchanged messages. This parameter could for example be a
parameter used by attackers to force the system into a vulnerable
mode e.g., by provoking a buffer overflow [13, 14]

The base protocol is simple, by design, for the purpose of this
experiment. Indeed, it is important to understand that the more
complex the base protocol is, the more opportunities we have to
introduce diversity. In other words, a simple base protocol corre-
sponds to the worst case for our approach.

5A dialect of C++ for AVR microcontrollers.

4.2 Assessing the Diversity of Communications
4.2.1 Qualitative analysis of the raw data. Figure 12 visualizes a

sub-set of the raw bytes transferred between the client and server
over 5 interactions (15 messages), for 10 instances of the base proto-
col compared to 10 instances of the dynamically diversified proto-
cols. The clearly visible vertical stripes in the non-diversified data,
demonstrate the repetition of data over time, and similarity across
instances. These bytes correspond to the ID of the client, which
explains why they stay the same over time, but are different across
instances. In the diversified data however, it is apparent that both
the structure of the messages and the amount of data transmitted
for each instance vary significantly. Looking closer at the data from
the first diversified instance, we also observe that the ID (bright
rectangles) is not always transmitted at the same place during each
interaction, indicating that the protocol is changing over time.

It is important to note that all the diversified clients reached the
STOP state, showing that they were able to successfully communi-
cate back and forth with their associated diversified server.

4.2.2 Quantitative analysis of the diversity. To evaluate the gen-
erated diversity in a quantitative manner, Figures 13 and 14 show
the number of bytes that are different in the exchange between
client and server, across instances and interactions respectively.

Figure 13 compares each instance to the others, for each mode.
Each point along the horizontal axis shows the average number
of bytes that are different to the other instances, divided by the
number of interactions. Both static and dynamic diversifications
introduce a significant amount of diversity, both for individual
instances (thin bright lines) and on average (thick lines).

Figure 14 compares each interaction to the others. Each point
along the horizontal axis displays the average number of bytes
that are different to the other interactions, divided by the number
of instances. The results indicate that both static and dynamic
diversity introduce diversity for all individual instances, although
the latter significantly more than the former. Interestingly, the
static diversification also introduces diversity across interactions
(i.e. along time). This can be explained by the upscaling of message
parameters, yielding a higher impact on the underlying bytes.

4.2.3 Practical implications of diversity. Figure 15 offers a dif-
ferent view over the raw data visualized in Figure 12: only the
simulated “weak” parameter from a single message is displayed.
This highlights the impact of diversification on the data that an at-
tacker would be interested in. The results show that the diversified
protocol drastically changes the layout of the data, as visualized
by changes in position and type of the parameter, compared to the
non-diversified protocol where the parameter stays in the same
place and with the same type both across instances and interactions.

Overall, our model-driven approach to diversify communica-
tions is able to automatically introduce significant diversity
along the space dimension (for different clients) and along the
time dimension (for multiple interactions of a given client).
All the 60,000 diversified interactions were successful and
allowed each client to communicate with their respective
server-side protocol.
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Figure 12: Raw data of non-diversified and dynamically diversified protocols for 10 instances and 5 interactions. The colors
indicate the actual byte values. White sections correspond to no data (caused by differences in message lengths).
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Figure 13: Analysis of the diversity across instances.

4.3 Assessing the Overhead of Diversity
Table 1 summarizes the results of the benchmarks we conducted on
900 protocols: a) 100 base protocols, b) 100 statically-diversified pro-
tocols, and c) 100 dynamically-diversified protocols, were executed
on Arduino, Go and JavaScript. More precisely, the table presents
the overhead of b) and c), compared to the baseline performances
obtained in a) for the three platforms.

Overall, the overhead of diversity is very well contained for
JavaScript and Go. As those two languages are typically used on
powerful machines (with several GB of RAM and storage, and sev-
eral GHz CPUs), the overhead of diversity is almost imperceptible
in practice. Indeed, beyond the communication logic, the business
logic itself will use a significant amount of time and resources: it
will check messages, persist some data, do some computing to come
up with a response, and so on.

We highlighted in the table the results deserving a closer atten-
tion, which we further analyze in the remainder of this section.
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Figure 14: Analysis of the diversity across interactions.

4.3.1 Overhead on Arduino. Note that on Arduino, the 100 base
protocols always use a fixed amount of resources. This is to be
expected from a microcontroller running bare-metal (without OS)
where any given instruction will always execute predictably.

Even though the RAM is extremely limited (2kB), the memory
overhead is reasonably well contained.

The overhead on the binary size, especially in dynamic mode
is rather high, compared to the 32KB of flash memory available
on the Arduino. This is explained by the fact that the Arduino has
no built-in hardware random generator, and a software random
generator needs to be loaded in the dynamic version. This alone has
however a limited impact (+0.5kb). Some overhead is related to the
additional if/else statements that are inserted in dynamic mode
to allow the Arduino to make choices at runtime on which messages
to use (introduced by the duplicate and split transformations). We
discuss in future work (Section 6) some strategies to reduce this
overhead.
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Figure 15: Simulated "weak" parameter: non-diversified versus diversified protocols. The panels show the same experiment as
in Figure 12, while displaying only a single parameter. The colors corresponds to data type (byte, int, float, etc.).

Language Mode Time (per msg.) Data (per msg.) Memory Binary size

JavaScript
Base 61.90 ± 9.40 µs 4.33 B 3.05 ± 0.04MB 26.0 kB
Static +48.2 ± 12.0 µs +2.97 ± 0.86 B +148.0 ± 28.0 kB +6.47 ± 0.02 kB
Dynamic +79.2 ± 19.6 µs +3.10 ± 0.90 B +295.0 ± 56.8 kB +18.50 ± 0.02 kB

Go
Base 2.72 ± 2.42 µs 4.33 B 116.00 ± 0.27 kB 2.16MB
Static +1.75 ± 1.65 µs +2.97 ± 0.86 B +19.10 ± 2.41 kB +108.00 ± 3.84 kB
Dynamic +1.94 ± 1.76 µs +3.10 ± 0.90 B +20.30 ± 2.17 kB +227.00 ± 5.81 kB

Arduino
Base 463 µs 4.33 B 697 kB 13.4 kB
Static +809.0 ± 74.1 µs +2.97 ± 0.86 B +76.70 ± 8.39 B +8.09 ± 0.40 kB
Dynamic +1.04 ± 0.08ms +3.10 ± 0.90 B +146.0 ± 13.7 B +24.00 ± 1.01 kB

Table 1: Overhead

The overhead on the execution time is rather high on the Arduino
compared to the to other platforms, though it evolves similarly than
JavaScript and Go. The extra 200 µs in dynamic mode compared
to the static mode can largely be explained by the software ran-
dom generator and by the extra logic induced by the additional
if/else statements. The overhead of 800ms for the static diversity
is important. Some initial investigations show that the additional
regions created in the state machine by the split transformation
have a significant impact on execution time. We will discuss in fu-
ture work a possible refactoring for the split transformation, which
is likely to reduce the execution overhead, and possibly helps re-
ducing the binary size. Other platforms would also benefit from
this refactoring.

This 1ms execution overhead can be an issue, in particular in
safety-critical real-time control systems. Remember however, that
our approach is targeted at “mass-produced” communicating soft-
ware. For a device like the Arduino, this means typical Internet-of-
Things applications, such a smart homes. If a smart-bulb needs to
exchange 5-10 messages with the gateway before turning on or off
the light, this would imply a 5-10ms longer delay in the actuation.
For many similar applications where acceptable latency is in the
order of 100ms or more, the overhead induced by our approach on
execution time is negligible.

4.3.2 Constant data overhead across platforms. The overhead on
the number of transmitted bytes (approximately +3 bytes per mes-
sage) may seem suspiciously identical for the different platforms.
This can however be simply explained. The 100 static protocols
and the 100 dynamic protocols are the very same for the different
platforms. As no choice is made at runtime in the static version, this
trivially explains why the static modes are identical for all platforms.
As for the dynamic diversity, it may still seem counter-intuitive
that different platforms yield exactly the same amount of bytes on
the network. Even though the choices made at runtime are most
likely different for the different platforms, a closer look at Figures 9
and 11 reveals that no matter which choice is made, the amount of
transmitted bytes will be the same, only the order and/or the value
of the bytes will vary.

Overall, our model-driven approach to diversify communi-
cations only incurs a very contained overhead at runtime.
This overhead is fully compatible with most use-cases where
“mass-produced” software systems are used. On resource-
constrained devices (8-bit microcontrollers), this overhead
is significantly higher than on more powerful platforms, but
still completely acceptable for a large number of IoT use
cases.
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5 RELATEDWORK
The automatic introduction of diversity at different levels in the
software stack is a promising way to increase the security and
resilience of software systems [1, 4].

At runtime, Address Space Layout Randomization [15, 16] is an
example of low-level diversity commonly found in modern oper-
ating systems. This diversification technique can mitigate certain
runtime attacks by randomizing the places where programs and
their data are loaded in RAM. Also at the OS level, Rauti et al. [17]
propose a diversification framework for protecting operating sys-
tems, in particular focusing on diversifying the low-level system
API provided by the OS. They showed, by experimenting on the
Linux kernel, that this significantly impacts the graph call of appli-
cations interacting with those low-level system APIs. At this level,
diversification techniques are generic and apply to any binary pro-
gram. While such approaches can be beneficial, our model-driven
approach to diversification weaves diversity into each and every ap-
plication, fundamentally changing the way each instance behaves
and communicates. Nevertheless, our approach benefits from, and
is actually amplified by, approaches working at a lower level.

At the code level, numerous approaches propose to diversify
code, for example code obfuscation [18, 19], to make it harder to de-
compile binaries and to reduce the ability to learn from decompiled
binaries. Our approach does not intend to make each individual
protocol harder to understand, but rather focuses on making each
individual protocol differ, so as to make it harder to generalize from
one example and learn from the overall system. Again, though our
approach has a different focus, the code ultimately generated by
our tool-chain can be obfuscated by these approaches. Diversifica-
tion is a key principle for mutation testing [20, 21], where bugs are
introduced by mutators in order to assess if existing tests can detect
them. Though the underlying techniques are related, our approach
produces semantically equivalent implementations. More related to
our work, Cohen [22] proposed to protect operating system through
evolving programs, by combining a set of mutations that transform
instructions into different, yet functionally equivalent instructions.
Similarly, Koo et al. [3] propose a binary re-writer implemented by
extending the LLVM tool-chain by introducing fine-grained trans-
formations. Conceptually, our work is similar, applying a set of
model transformations to introduce diversity. However, the scope
is different as 1) we specifically target communications, which to
the best of our knowledge has not been investigated before, and
2) we introduce diversity at an abstract level, allowing us to target
a wide range of languages and platforms, through a generative
approach.

At the protocol level (as in TCP/IP), a few approaches propose
to increase security through obfuscation or diversification [23].
Again, such approaches are related to our work but serve another
purpose. More related to our work is the preliminary approach by
Hosseinzadeh et al. [24], which propose to secure the Internet-of-
Things (IoT) through obfuscation and diversification, leveraging the
inherent diversity available in the IoT [25], for example different
combination of the OSI network stack: HTTP, MQTT or CoAP for
the application layer, IPv6 or 6LowPAN for the network layer.

Specific libraries also integrate diversity to increase their re-
silience. For example, software countermeasures, are usually added

as a protection on top of cryptographic algorithms, to prevent (or
make it less feasible) key recovery attacks [26]. FrankenSSL [27] is
a recent approach recombining existing implementations of SSL-
/TLS, the security mechanism behind HTTPS, to produce unique
implementations of SSL and mitigate the risks of a successful at-
tack targeting a given implementation. Those approaches relate
to N-Version programming [28], where independent teams imple-
ment independent versions of the same design. Our approach also
leverages the design of the application to introduce diversity, but
aims at automating the diversification to the same extent than the
generic approaches we previously commented.

6 CONCLUSION AND FUTUREWORK
This work introduces a new model-driven approach for the system-
atic diversification of communications between different entities.
Diversification is introduced into abstract protocols through the
combination of six atomic model transformations, and fully opera-
tional code is then automatically derived, covering a large number of
platforms and network protocols. By analyzing 90,000 interactions,
we showed that the diversity we automatically introduce produces
significantly different protocols, contributing to reducing the learn-
ability of the overall system. We also showed that the overhead
induced by our diversification approach is very well contained and
compatible with the requirements of most “mass-produced” soft-
ware such as mobile or web applications communicating with a
cloud server, or Internet-of-Things devices communicating with a
gateway. On powerful devices (gateways and servers), this over-
head will practically be imperceptible: less than 100 µs additional
latency and less than 300 kB memory overhead. On 8-bit microcon-
trollers, the overhead is more significant (1ms additional latency)
but remains acceptable.

A remarkable feature of our approach is, being amodel-driven ap-
proach, that existing diversification approaches operating at lower
levels e.g., in compilers or operating systems, can be applied to
the code we generate and contribute to amplifying the effects of
our approach. Beyond our approach, we see MDE as a convincing
paradigm to manage and introduce rich software diversity by a)
reasoning at a higher level of abstraction, b) understanding and re-
lying on the semantics of programs, and c) automatically impacting
the whole software stack through automated code generation.

In future work, we will improve our approach by:
(1) Reducing the overhead, in particular for resource-constrained

microcontrollers, by inlining the split transformation directly
in the original state machine, rather than creating a new
region for each message we split. We believe this will signif-
icantly reduce the execution time overhead and reduce the
size of the binaries.

(2) Allowing for more flexible diversification workflows. Right
now, all transformations are systematically applied to all
messages composing the protocol. We believe a rich diversity
can still be achieved by only applying a different sub-set of
transformations to each message. This will also contribute
to reduce the overhead of our approach.

We will also generalize our MDE approach to diversify more
aspects of software, for example to diversify the control flows and
data flows within each computing node of a distributed system.
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