
Precise Deadlock Detection for Polychronous Data-flow
Specifications

V.C. Ngo J-P. Talpin T. Gautier

INRIA, Rennes

ESLsyn - DAC 2014

Outline

1 Signal language

2 Problem statement

3 A more precise deadlock detection

4 Implementation with SMT

5 Concluding remarks

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 2 / 17

Signal language Basic notations

Signal and Clock

• signal x : sequences x(t), t ∈ N, of typed values (] is absence)

• clock Cx of x : instants where x(t) 6=]

• process: relations between values/clocks of signals

• parallelism: processes are running concurrently

• process y := x +1, ∀t ∈ Cy ,y(t) = x(t)+1

t t0 t1 t2 t3 t4 t5 ...
x 1 3 # 6 # 2 ...
Cx tt tt ff tt ff tt ...
y 2 4 # 7 # 3 ...

• Other languages: Esterel (Esterel Technologies), Lustre (Verimag),...

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 3 / 17

Signal language Language features

Primitive Operators

• Stepwise functions: y := f (x1, ...,xn)
∀t ∈ Cy ,y(t) = f (x1(t), ...,xn(t)), Cy = Cx1 = ...= Cxn

• Delay : y := x$1 init a
y(0) = a,∀t ∈ Cx ∧ t > 0,y(t) = x(t−1), Cy = Cx

• Merge: y := x default z
y(t) = x(t) if t ∈ Cx ,y(t) = z(t) if t ∈ Cz \Cx , Cy = Cx ∪Cz

• Sampling: y := x when b
∀t ∈ Cx ∩Cb ∧b(t) = true,y(t) = x(t), Cy = Cx ∩ [b]

• Composition: P1|P2 denotes the parallel composition of two processes

• Restriction: P where x specifies x as a local variable to P

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 4 / 17

Signal language Example

Cyclic Dependency Program

process CycleDependency=
(? integer x, c; ! integer v) /* IO signals*/
(| y := (v when (c <= 0)) default x
| u := y + x /*equations*/
| v := u when (c >= 1) /*order does not matter*/
|)

where integer y, u end; /*local signals*/

t t0 t1 t2 t3 t4 t5 ...
x 1 3 # 2 # 7 ...
c 1 3 -1 0 -2 6 ...
y 1 3 # 2 # 7 ...
u 2 6 # 4 # 14 ...
v 2 6 # # # 14 ...

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 5 / 17

Problem statement Compilation of Signal programs

Compilation Process

Signal Program

- Syntax and type analysis
- Clock analysis
- Data dependency analysis
- Code generation

C/C++, Java

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 6 / 17

Problem statement Compilation of Signal programs

Deadlock

• A deadlock is a cyclic data dependency, denoted by (x0,x1, ...,xn,x0)

• In Signal, the dependencies are conditioned by polynomials over Z/3Z
that are represented as a Graph of Conditional Dependency (GCD)

• This representation may cause erroneous detection when dealing with
numerical expressions

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 7 / 17

Problem statement Compilation of Signal programs

Example of Deadlock

process CycleDependency=
(?integer x,c; !integer v)
(| y := (v when (c <= 0))

default x
| u := y + x
| v := u when (c >= 1)
|)

where integer y, u end;

uv v1 y

u2(−c2− c2
2)

v2(−c1− c2
1) v2

1 u2

• c1 := c <= 0,c2 := c >= 1, and
v1 := v when c1

• x
P−→ y : y depends on x when

Sol(P−1) 6= /0

• The cyclic dependency
(v ,v1,y ,u,v) stands for a
deadlock iff:

v2(−c1− c2
1)∗ v2

1 ∗u2∗
u2(−c2− c2

2) = 1
has some solution

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 8 / 17

Problem statement Compilation of Signal programs

Fault Detection

• With current implementation, Signal considers (v ,v1,y ,u,v) is a deadlock
since

Sol(u2(−c2− c2
2)∗ v2(−c1− c2

1)∗ v2
1 ∗u2−1) 6= /0

• A solution is (u2 = v2 = v2
1 = c1 = c2 = 1), meaning c1 and c2 have the

value true at the same instant
=⇒ Numerical expressions not fully addressed in abstraction: c1 and c2

cannot be present at the same instant.

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 9 / 17

A more precise deadlock detection Approach

A More Precise Deadlock Detection

• Represent the dependencies as a Synchronous Data-flow Dependency
Graph (SDDG)

• The dependencies are conditioned by first-order logic formulas, called
clock constraints

• For each signal x , attach a pair (x̂ , x̃) to encode its clock and value

• Given variation intervals of input signals, the encoding scheme identifies
the variation intervals of output and local signals

• φ(b := b1 and b2) = b̃ = b̃1∧ b̃2

• φ(e := c <= 0) = ẽ⇔ (c̃ ∈ (−∞,0])

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 10 / 17

A more precise deadlock detection Approach

Deadlock Detection with SDDG - 1/3

v

u

v1 y

c2 c1 x

v̂1

v̂1

v̂ û

¬v̂1∧ x̂
û

v̂ v̂1

• The clock constraints:
(v̂ ⇔ û∧ ĉ2∧ c̃2); (c̃2⇔ (c̃ ∈ [1,+∞)))
(v̂1⇔ v̂ ∧ ĉ1∧ c̃1); (c̃1⇔ (c̃ ∈ (−∞,0]))

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 11 / 17

A more precise deadlock detection Approach

Deadlock Detection with SDDG - 2/3

v

u

v1 y

c2 c1 x

v̂1

v̂1

v̂ û

¬v̂1∧ x̂
û

v̂ v̂1

• The cyclic dependency (v ,v1,y ,u,v) is a deadlock iff

M |= (v̂1∧ v̂1∧ û∧ v̂)

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 12 / 17

A more precise deadlock detection Approach

Deadlock Detection with SDDG - 3/3

• Replacing the definitions of v̂ and v̂1, the cyclic dependency (v ,v1,y ,u,v)
is not deadlock since

M 6|= (v̂1∧ v̂1∧ û∧ v̂)

since (c̃2⇔ (c̃ ∈ [1,+∞)))∧ (c̃1⇔ (c̃ ∈ (−∞,0]))⇔ false

• More precise than the current deadlock detection when dealing with
numerical expressions, specially the numerical comparisons

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 13 / 17

Implementation with SMT Implementation with SMT

Implementation

Signal Program
Interval Analyzer

Boolean-intervval
Abstraction

SDDG Construction
and Proven Formulas

SMT Solver

1

2 3

4

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 14 / 17

Concluding remarks Conclusion

Related Works

• Gamatié et al. ”Enhancing the Compilation of Synchronous Data-flow
Programs with Combined Numerical-Boolean Abstraction”, 2012

• Jose et al. ”SMT based false causal loop detection during code synthesis
from polychronous specifications”, 2011

• Ngo et al. ”Formal Verification of Synchronous Data-flow Program
Transformations Toward Certified Compilers”, 2013

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 15 / 17

Concluding remarks Conclusion

Concluding Remarks

• An expressive representation of dependency with the Boolean-interval
abstraction

• Improvement of static analysis for detecting cyclic dependencies

• Next step: benchmarks and integration in Polychronous toolset

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 16 / 17

Concluding remarks Conclusion

Thanks!

In this talk...

• Signal language

• Problem statement

• A more precise deadlock detection

• Implementation with SMT

• Concluding remarks

Ngo, Talpin and Gautier Precise Deadlock Detection for Polychronous Data-flow Specifications ESLsyn - DAC 2014 17 / 17

	Signal language
	Basic notations
	Language features
	Example

	Problem statement
	Compilation of Signal programs

	A more precise deadlock detection
	Approach

	Implementation with SMT
	Implementation with SMT

	Concluding remarks
	Conclusion

