
Translation Validation for Clock

Transformations in a Synchronous Compiler

Van Chan Ngo, Jean-Pierre Talpin, Thierry Gautier, and Paul Le Guernic

INRIA Rennes - Bretagne Atlantique, 35042 Rennes Cedex, France
{firstname,lastname}@inria.fr

Abstract. Translation validation was introduced as a technique to for-
mally verify the correctness of code generators that attempts to ensure
that program transformations preserve the semantics of input program.
In this work, we adopt this approach to construct a validator that for-
mally verifies the preservation of clock semantics during the Signal com-
piler transformations. The clock semantics is represented as a first-order
logic formula called clock model. We then introduce a refinement which
expresses the preservation of clock semantics, as a relation on clock mod-
els. Our validator does not require any instrumentation or modification
of the compiler, nor any rewriting of the source program.

Keywords: Formal Verification, Translation Validation, Certified Com-
piler, Smt Solver, Synchronous Data-Flow Languages.

1 Introduction

Motivation. Synchronous programming languages such as Signal, Lustre and
Esterel propose a formal semantic framework to give a high-level specifica-
tion of safety-critical software in automotive and avionics systems [10,13,2]. As
other programming languages, synchronous languages are associated with a com-
piler. The compiler takes a source program, analyses and transforms it, performs
optimizations, and finally generates executable code for a particular hardware
platform or in some general-purpose programming languages. However, a com-
piler is a large and very complex program which often consists of hundreds of
thousands, if not millions, lines of code, divided into multiple sub-systems and
modules. The compilation process involves many analyzes, program transforma-
tions and optimizations. Some transformations and optimizations may introduce
additional information, or constrain the compiled program. They may refine its
meaning and specialize its behavior to meet a specific safety or optimization
goal. Consequently, it is not uncommon that compilers silently issue an incor-
rect result in some unexpected context or inappropriate optimization goal. To
circumvent compiler bugs, one can entirely rewrite the compiler with a theorem
proving tool such as Coq [8], or check that it is compliant to the DO-178C doc-
uments [22]. Nonetheless, these solutions yield a situation where any change of
the compiler (e.g., further optimization and update) means redoing the proof.

c© Springer-Verlag Berlin Heidelberg 2015
A. Egyed and I. Schaefer (Eds.): FASE 2015, LNCS 9033, pp. 171–185, 2015.
DOI: 10.1007/978-3-662-46675-9_12

172 V. Chan Ngo et al.

Another approach, which provides ideal separation between the tool under ver-
ification and its checker, is trying to verify that the output and the input have
the same semantics. In this aim, translation validation was introduced in the
90’s by Pnueli et al. [20,21], as a technique to formally verify correctness of code
generators. Translation validators can be used to ensure that program trans-
formations do not introduce semantic discrepancies, or to help debugging the
compiler implementation.
Contribution. We consider the Signal compiler, in the first two phases, The
clock information and Boolean abstraction are computed. The next phase is
static scheduling and the final phase is the executable code generation. Obvi-
ously, one can prove that the input program and its transformed program at the
final phase have the same semantics. However, we believe that a better approach
consists in separating the concerns and proving for each phase the preservation of
different kinds of semantic properties. In the case of a synchronous compiler such
as Signal, the preservation of the semantics can be decomposed into the preser-
vation of clock semantics, data dependencies, and value-equivalence of variables
[18].

This paper focuses on constructing a validator that proves the preservation
of clock semantics in the first two phases of the Signal compiler. The clock
semantics of the source program and its transformed counterpart are formally
represented as clock models. A clock model is a first-order logic formula with
uninterpreted functions. This formula deterministically characterizes the pres-
ence/absence status of all discrete data-flows (input, output and local variables
of a program) manipulated by the specification at a given logic instant. Given two
clock models, a correct transformation relation between them is checked by the
existence of their refinement relation, which expresses the semantic preservation
of clock semantics. In the implementation, we apply our translation validation
to the first two transformation steps of the compiler.

The remainder of this paper is organized as follows. Section 2 introduces the
Signal language. Section 3 presents the abstraction that represents the clock
semantics in terms of first-order logic formula. In Section 4, we consider the
definition of correct transformation on clock models which formally proves the
conformance between the original specification and its transformed counterpart.
The application of the verification process to the Signal compiler, and its inte-
gration in the Polychrony toolset [19] is addressed in Section 5. Section 6 presents
related works and concludes our work.

2 The SIGNAL Language

Signal [5,11] is a polychronous data-flow language that allows the specification
of multi-clocked systems, called polychrony models. Signal handles unbounded
sequences of typed values x(t)t∈N, called signals, denoted as x. Each signal is
implicitly indexed by a logical clock indicating the set of instants at which the
signal is present, noted Cx. At a given instant, a signal may be present where
it holds a value, or absent where it holds no value, denoted by ⊥. Given two

Translation Validation for Clock Transformations in a Synchronous Compiler 173

signals, they are synchronous iff they have the same clock. A process, written
P or Q, consists of the synchronous composition of equations over signals x, y, z,
written x := y op z or x := op(y, z), where op is an operator. In particular, a
process can be used as a basic pattern, by means of an interface that describes
its parameters and its input and output signals. Moreover, a process can use
other subprocesses, or even other processes as external parameters. A program
is a process and the language is modular.
Data Domains. Data types consist of usual scalar types (Boolean, integer, float,
complex, and character), enumerated types, array types, tuple types, and the
special type event. It is a subtype of the Boolean which has only one value,
true.
Operators. The core language consists of two kinds of “statement” defined by
the following primitive operators: four operators on signals and two operators
on processes. The operators on signals define basic processes with implicit clock
relations while the operators on processes are used to construct complex pro-
cesses with the parallel composition operator. In the delay operator, inf and sup
denote the greatest lower bound and the least upper bound.

• Stepwise Functions: y := f(x1, ..., xn), where f is a n-ary function on values,
defines a basic process whose output y is synchronous with x1, ..., xn (Cy =
Cx1 = ... = Cxn) and ∀t ∈ Cy, y(t) = f(x1(t), ..., xn(t)).

• Delay: y := x$1 init a defines a basic process such that y and x are syn-
chronous (Cy = Cx), y(t0) = a, and ∀t ∈ Cy ∧ t > t0, y(t) = x(t−) with t0 =
inf{t′|x(t′) �= ⊥}, t− = sup{t′|t′ < t ∧ x(t′) �= ⊥}.

• Merge: y := x default z defines a basic process which specifies that y is
present iff x or z is present (Cy = Cx ∪ Cz), and that y(t) = x(t) if t ∈ Cx

and y(t) = z(t) if t ∈ Cz \ Cx.
• Sampling: y := x when b where b is a Boolean signal, defines a basic process
such that ∀t ∈ Cx ∩ Cb ∧ b(t) = true, y(t) = x(t), and otherwise, y is absent
(Cy = Cx ∩ [b], where [b] = {t ∈ Cb|b(t) = true}).

• Composition: If P1 and P2 are processes, then P1|P2, also denoted as (|P1|P2|),
is the process resulting of their parallel composition. This process consists
of the composition of the systems of equations. The composition operator is
commutative, associative, and idempotent.

• Restriction: P where x, where P is a process and x is a signal, specifies a
process by considering x as local variable to P (i.e., x is not accessible from
outside P).

Clock Relations. Clock relations can be defined explicitly: y := x̂ specifies that y
with event type is the clock of x, Cx. The synchronization x =̂ y means that x
and y have the same clock. The clock extraction from a Boolean signal is denoted
by a unary when: when b. The clock union x +̂ y defines a clock as the union
Cx ∪ Cy. In the same way, the clock intersection x ∗̂ y and the clock difference
x −̂ y define clocks Cx ∩ Cy and Cx \ Cy.
Example. The following Signal program emits a sequence of values FB, FB−1,...,
2, 1, from each value of a positive integer signal FB coming from its environment.
We can see that the clock of the output signal is more frequent than that of the

174 V. Chan Ngo et al.

input. The following diagram illustrates one possible execution of the program
DEC.

process DEC=
(? integer FB; ! integer N) //FB is input signal and N is

output signal
(| FB =̂ when (ZN<=1) //FB is present when ZN holds a value

smaller than 1
| N := FB default (ZN-1)
| ZN := N$1 init 1 //ZN takes the previous value of N
|)

where integer ZN end; //ZN is defined as a local signal

t
FB 6 ⊥ ⊥ ⊥ ⊥ ⊥ 3 ⊥ ⊥ 2
ZN 1 6 5 4 3 2 1 3 2 1
N 6 5 4 3 2 1 3 2 1 2

CFB t0 t6 t9
CZN t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
CN t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

3 Clock Model

In Signal, clocks play a much more important role than in other synchronous
languages, they are used to express the underlying control (i.e., the synchro-
nization between signals) for any conditional definition. This differs from Lus-
tre, where all clocks are built by sampling the fastest clock. We consider the
following equation with the primitive operator sampling, where x and y are
numerical signals, and b is a Boolean signal: y := x when b. To express the
control, we need to represent the status of the signals x, y and b. We use a
Boolean variable x̂ to capture the status of x: (x̂ = true) means x is present,
and (x̂ = false) means x is absent. In the same way, the Boolean variable ŷ

captures the status of y. For b, two Boolean variables b̂ and ˜b are used to rep-
resent its status: (b̂ = true ∧ ˜b = true) means b is present and holds a value

true; (b̂ = true ∧ ˜b = false) means b is present and holds a value false; and

(b̂ = false) means b is absent. Hence, at a given instant, the clock relations of

the equation above can be encoded by the formula: ŷ ⇔ (x̂ ∧ b̂ ∧˜b)

3.1 Abstraction

Let X = {x1, ..., xn} be the set of all signals in program P consisting of input,
output, register (corresponding to delay operator), and local signals, denoted by
I, O,R and L, respectively. With each signal xi, based on the encoding scheme
proposed in [12], we attach a Boolean variable x̂i to encode its clock and a
variable x̃i of same type as xi to encode its value. The composition of processes

Translation Validation for Clock Transformations in a Synchronous Compiler 175

corresponds to logical conjunctions. Thus the clock model of P will be a conjunc-
tion Φ(P) =

∧n
i=1 φ(eqi), whose atoms are x̂i, x̃i, where φ(eqi) is the abstraction

of statement eqi, and n is the number of statements in the program. In the
following, we present the abstraction corresponding to each Signal operator.
Stepwise Functions. The functions which apply on signal values in the step-
wise functions are usual logic operators (not, and, or), numerical comparison
functions (<, >, =, <=, >=, / =), and numerical operators (+, −, ∗, /). In
our experience working with the Signal compiler, it performs very few arith-
metical optimizations and leaves most of the arithmetical expressions intact.
Every definition of a signal is determined explicitly by the input and register
signals, otherwise program can not be compiled. This suggests that most of the
implications will hold independently of the features of the numerical compari-
son functions and numerical operators and we can replace these operations by
uninterpreted functions. By following the encoding procedure of [1], for every nu-
merical comparison function and numerical operator (denoted by �) occurring
in an equation, we perform the following rewriting: i) Replace each x � y by a
new variable vi� of the same type as the return value by �. Two stepwise func-
tions x � y and x′ � y′ are replaced by the same variable vi� iff x, y are identical

to x′ and y′, respectively; ii) For every pair of newly added variables vi� and vj�,
i �= j, corresponding to the non-identical occurrences x � y and x′ � y′, add the

implication (x̃ = ˜x′∧ ỹ = ˜y′) ⇒ ˜vi� =
˜

vj� into the abstraction Φ(P). The abstrac-
tion φ(y := f(x1, ..., xn)) of stepwise functions is defined by induction as follows:
φ(true) = true and φ(false) = false; φ(y := x) = (ŷ ⇔ x̂) ∧ (ŷ ⇒ (ỹ = x̃));
φ(y := x) = (ŷ ⇔ x̂) ∧ (ŷ ⇒ (ỹ = x̃)) ∧ (x̂ ⇒ x̃) if x is an event signal; φ(y :=
not x) = (ŷ ⇔ x̂)∧ (ŷ ⇒ (ỹ ⇔ ¬x̃)); φ(y := x1 and x2) = (ŷ ⇔ x̂1 ⇔ x̂2)∧ (ŷ ⇒
(ỹ ⇔ x̃1 ∧ x̃2)); φ(y := x1 or x2) = (ŷ ⇔ x̂1 ⇔ x̂2) ∧ (ŷ ⇒ (ỹ ⇔ x̃1 ∨ x̃2));

φ(y := x1 � x2) = (ŷ ⇔ ̂vi� ⇔ x̂1 ⇔ x̂2) ∧ (ŷ ⇒ (ỹ = ˜vi�)).
Delay. Considering the delay operator, y := x$1 init a, its encoding φ(y :=
x$1 init a) contributes to Φ(P) with the following conjunct: (ŷ ⇔ x̂) ∧ (ŷ ⇒
((ỹ = m.x) ∧ (m.x′ = x̃))) ∧ (m.x0 = a). This encoding requires that at any
instant, signals x and y have the same status (present or absent). To encode the
value of the output signal as well, we introduce a memorization variable m.x
that stores the last value of x. The next value of m.x is m.x′ and it is initialized
to a in m.x0.
Merge. The encoding of the merge operator, y := x default z, contributes to
Φ(P) with the following conjunct: (ŷ ⇔ (x̂∨ ẑ))∧ ŷ ⇒ ((x̂∧ (ỹ = x̃))∨ (¬x̂∧ (ỹ =
z̃))))
Sampling. The encoding of the sampling operator, y := x when b, contributes to
Φ(P) with the following conjunct: (ŷ ⇔ (x̂ ∧ b̂ ∧ b̄)) ∧ (ŷ ⇒ (ỹ = x̃))
Composition. Consider the composition of two processes P1 and P2. Its abstrac-
tion φ(P1|P2) is defined as follows: φ(P1) ∧ φ(P2)
Clock Relations. Given the above rules, we can obtain the following abstraction
for derived operators on clocks. Here, z is a signal of type event: φ(z := x̂) =
(ẑ ⇔ x̂)∧(ẑ ⇒ z̄); φ(xˆ= y) = x̂ ⇔ ŷ; φ(z := x +̂ y) = (ẑ ⇔ (x̂∨ ŷ))∧(ẑ ⇒ z̄);

176 V. Chan Ngo et al.

φ(z := x ∗̂ y) = (ẑ ⇔ (x̂∧ŷ))∧(ẑ ⇒ z̄); φ(z := x −̂ y) = (ẑ ⇔ (x̂∧¬ŷ))∧(ẑ ⇒ z̄);

φ(z := when b) = (ẑ ⇔ (b̂ ∧ b̄)) ∧ (ẑ ⇒ z̄).
Example. Applying the abstraction rules above, the clock semantics of the pro-
gram DEC is represented by the following formula Φ(DEC), where ZN <= 1 and
ZN − 1 are replaced by two fresh variables ZN1 and ZN2, and encoded by two
uninterpreted function symbols v1<= and v1−, respectively.

(̂FB ⇔ ̂ZN1 ∧ ˜ZN1) ∧ (̂ZN1 ⇔ ̂v1<= ⇔ ̂ZN) ∧ (̂ZN1 ⇒ (˜ZN1 = ˜v1<=))

∧ (̂ZN ⇔ ̂N) ∧ (̂ZN ⇒ (˜ZN = m.N ∧m.N ′ = Ñ)) ∧ (m.N0 = 1)

∧ (̂N ⇔ ̂FB ∨ ̂ZN2) ∧ (̂N ⇒ ((̂FB ∧ Ñ = ˜FB) ∨ (¬̂FB ∧ Ñ = ˜ZN2)))

∧ (̂ZN2 ⇔ ̂v1− ⇔ ̂ZN) ∧ (̂ZN2 ⇒ (˜ZN2 = ˜v1−))

In the following sections, we denote input, output, register, memorization and lo-
cal variables used in a clock model by Iclk, Oclk, Rclk,Mclk and Lclk, respectively.
Note that the memorization variables are introduced only by the translation into
clock models, they are not original in the Signal programs.

Definition 1 (Clock Configuration). Consider a clock model Φ(P) over the

set of variabels X̂. A clock configuration ̂I is an interpretation over X̂ such that
it is a model of the first-order logic formula Φ(P).

For instance, (̂FB
→ true,̂N
→ true,̂ZN
→ true,˜FB
→ 6, ~N
→ 6,˜ZN
→ 1) is a
clock configuration of Φ(DEC).

3.2 Concrete Clock Semantics

We rely on the basic elements of trace semantics [14] to define the clock semantics
of a synchronous program. For each xi ∈ X , we use Dxi to denote its domain of
values, and D

⊥
xi

= Dxi ∪ {⊥} to denote its domain of values with absent value,
where ⊥ �∈ Dxi denotes the absent value. Then, the domain of values of X with
absent value is defined as D⊥

X =
⋃n

i=1 Dxi ∪ {⊥}

Definition 2 (Clock Events, Clock Traces). Given a non-empty set X, the
set of clock events on X, denoted by EcX , is the set of all possible interpretations
I over X. The set of clock traces on X, denoted by T cX , is defined by the set
of functions Tc defined from the set N of natural numbers to EcX , denoted by
Tc : N −→ EcX .

An interpretation I is an assignment of values from X to D

⊥
X . The assignment

I(x) = ⊥ means x holds no value while I(x) = v means that x holds the value v.
The natural numbers represent the instants, t = 0, 1, 2, ..., a trace Tc is a chain
of clock events. We denote the interpreted value of a variable xi at instant t by
Tc(t)(xi).

Definition 3 (Restriction Clock Trace). Given a non-empty set X, a subset
X1 ⊆ X, and a clock trace Tc being defined on X, the restriction of Tc onto X1

is denoted by X1.Tc. It is defined as X1.Tc : N −→ EcX1 such that ∀t ∈ N, ∀x ∈
X1, X1.Tc(t)(x) = Tc(t)(x).

Translation Validation for Clock Transformations in a Synchronous Compiler 177

Let X be the set of all signals in program P. We write [[P]]c to denote the clock
semantics of P which is defined as the set of all possible clock traces on X . For
any subset X1 ⊆ X , the set of all restriction clock traces on X1 defines the clock
semantics of P on X1, denoted by ([[P]]c)\X1

.
Let Φ(P) be the clock model of the program P. We now define the concrete

clock semantics of a clock model based on the notion of clock configurations.
Given a clock configuration Î, the set of clock events according to Î is the set
of interpretations I such that for every signal xi, if xi holds a value then x̂i has
the value true (xi is present), and x̃i holds the same value as xi. Otherwise, x̂i

has the value false (meaning xi is absent). The set of clock events according to
Î and the set of all clock events of Φ(P) are computed as follows:

SEcX (Î) = {I ∈ EcX | ∀xi ∈ X, (I(xi) = Î(x̃i) ∧ Î(x̂i) = true)

∨(I(xi) = ⊥ ∧ Î(x̂i) = false)}
SEcX (Φ(P)) =

⋃

Î|=Φ(P) SEcX (Î)

With a set of clock events SEcX (Φ(P)), the concrete clock semantics of Φ(P) is
defined by the following set of clock traces Γ (Φ(P)) = {Tc ∈ T cX | ∀t, Tc(t) ∈
SEcX (Φ(P))}. For any subsetX1 ⊆ X , the concrete clock semantics of Φ(P) onX1

is defined as Γ (Φ(P))\X1
= {X1.Tc| Tc ∈ T cX and ∀t, Tc(t) ∈ SEcX (Φ(P))}. Due

to the lack of space, we do not present the proof of soundness of our abstraction.

4 Clock Model Translation Validation

We adopt the translation validation approach [20,21] to formally verify that the
clock semantics is preserved for every transformation of the compiler. In order
to apply the translation validation to the transformations, we capture the clock
semantics of the original program and its transformed counterpart by means
of clock models. Then we introduce a refinement relation which expresses the
preservation of clock semantics, as relation on clock models.

4.1 Clock Refinement

Let Φ(A) and Φ(C) be two clock models of programs A and C, to which we refer
respectively as a source program and its transformed counterpart produced by
the compiler. We denote the sets of all signals in A, C byXA andXC , respectively.
The corresponding sets of variables which are used to construct the clock models
are denoted by ̂XA and ̂XC . Consider the finite set of common signals X =
XA ∩XC and the set of common variables which are used to construct the clock
models is ̂X = ̂XA ∩̂XC , we say that A and C have the same clock semantics on
X if Φ(A) and Φ(C) have the same set of concrete restriction clock traces on X :

∀X.Tc.(X.Tc ∈ Γ (Φ(C))\X ⇔ X.Tc ∈ Γ (Φ(A))\X)

In fact, the compilation makes the transformed program more concrete. For in-
stance, when the Signal compiler performs the “endochronization” which is

178 V. Chan Ngo et al.

used to generate the sequential executable code, the signal with the fastest clock
is always present in the generated code. Moreover, compilers perform transforma-
tions and optimizations for removing or eliminating some redundant behaviors
of the source program (e.g., eliminating subexpressions, trivial clock relations).
Consequently, the above requirement is too strong to be practical. Hence, we
have to relax it as follows:

∀X.Tc.(X.Tc ∈ Γ (Φ(C))\X ⇒ X.Tc ∈ Γ (Φ(A))\X)

It expresses that every restriction clock trace of Φ(C) is also a clock trace of
Φ(A) on X , or Γ (Φ(C))\X ⊆ Γ (Φ(A))\X . We say that Φ(C) is a correct clock
transformation of Φ(A), or Φ(C) is a clock refinement of Φ(A) on X , denoted by
Φ(C) �clk Φ(A).

Proposition 1. The clock refinement is reflexive and transitive

Proof. Proposition 1 is proved based on the clock refinement definition. Φ(P) �clk

Φ(P) since Γ (Φ(P))\X ⊆ Γ (Φ(P))\X . For every clock trace X.Tc ∈ Γ (Φ(P1))\X ,
Φ(P1) �clk Φ(P2) on X implies X.Tc ∈ Γ (Φ(P2))\X . Since Φ(P2) �clk Φ(P3) on
X , we have X.Tc ∈ Γ (Φ(P3))\X , or Φ(P1) �clk Φ(P3) on X .

4.2 Adaptation to SIGNAL Compiler

We will adapt the definition of the above general clock refinement to the case
of the Signal compiler. We need to consider the following factors [4]. A first
consideration is that the programs take the inputs from their environment and
the register values. Then, they calculate the outputs to react with the environ-
ment. In general, the programs can use some local variables to make the output
calculations. However, from the outside, the natural observation of the programs
is the snapshot of the values of the input and output signals. In our context, it
is the snapshot of the presence of the input and output signals. For example,
for the program DEC, the observation is the tuple of the presence of the signals
(FB, N) at a considered instant.

A second consideration is that in the compilation process of the Signal com-
piler, the local signals in the source program do not necessarily have counterparts
in the transformed program. However, all input and output signals are preserved
in the transformations and are represented by identical names in the transformed
program. Moreover, all signals in the R set are also preserved in the transfor-
mations. Therefore, it is natural to choose the snapshot of the presence of the
input and output signals to be the observation for the transformed program.

These considerations let us adapt the above definition of clock refinement as
follows. Let XA and XC be the sets of all signals in the source program A and its
counterpart transformed program C. We write XIO to denote the set of common
input and output signals. We say that C is correct transformation of A if at any
instant, the tuples of values representing the presence of the signals in XIO are
the same in both programs. In other words, Φ(C) �clk Φ(A) on XIO.

Translation Validation for Clock Transformations in a Synchronous Compiler 179

4.3 Proving Clock Refinement by SMT

Our aim is proving that Φ(C) refines Φ(A) on XIO. Let ̂XA, ̂XC and ̂XIO be the
set of variables which are used to construct Φ(A), Φ(C) and the set of common
variables between the two clock models. For every variable in the clock model
Φ(C) except the common variables in ̂XIO, we added “c” as superscript to dis-
tinguish them from the variables in the clock model of the input program. The
standard way of proving the existence of the clock refinement is based on the
following elements:

• The identification of a variable mapping that maps the non input/output
variables from the clock model Φ(A) to the non input/output variables in

the clock model Φ(C). We denote the mapping by: ̂XA \ ̂XIO = α(̂XC \ ̂XIO)
• The premises of a rule such that if the premises hold, then the conclusion,
Φ(C) refines Φ(A), is true. The premise is presented in Fig. 1.

For a variable mapping ̂XA \ ̂XIO = α(̂XC \ ̂XIO),

Premise ∀Î over ̂XA ∪̂XC .(Î |= Φ(C) ⇒ Î |= Φ(A))

Conclusion Φ(C) �clk Φ(A) on XIO

Fig. 1. Rule CLKREF

The rule CLKREF indicates that for any interpretation Î over ̂XA ∪ ̂XC such
that the variable mapping is evaluated to true, Î is a clock configuration of Φ(C)
then it is also a clock model of Φ(A). Then there exists a clock refinement for
(Φ(C), Φ(A)). The rule CLKREF is sound based on the following theorem.

Theorem 1. For a variable mapping ̂XA \ ̂XIO = α(̂XC \ ̂XIO), if the formula
Φ(C) ⇒ Φ(A) is valid, then Φ(C) �clk Φ(A) on XIO.

Proof. To prove it, we have to show that for every interpretation Î over X̂ =
̂XA ∪ ̂XC such that it is evaluated to true. If Î |= (Φ(C) ⇒ Φ(A)), then
Γ (Φ(C))\XIO

⊆ Γ (Φ(A))\XIO
. Given XIO.Tc ∈ Γ (Φ(C))\XIO

, it means that

∀t, Tc(t) ∈ SEcX (Φ(C)). Since for every interpretation Î, Î |= Φ(C) implies that
Î |= Φ(A)), thus SEcX (Φ(C)) ⊆ SEcX (Φ(A)) under the variable mapping. We get
Tc(t) ∈ SEcX (Φ(A)) for every t. Therefore, we have Tc ∈ Γ (Φ(A)).

Consider a variable x ∈ ̂XA \ ̂XIO, the mapping αx of the variable mapping
defines the value of x in the clock model Φ(A) α-related to the value represented
by the clock model Φ(C). We therefore need to describe the mappings αx for xc ∈
̂XC \ ̂XIO = Mclk ∪Rclk ∪Lclk. Recall that every register signal s, we introduce
memorization variablesm.s,m.s′ in the clock model Φ(A), and the corresponding
memorization variablesm.sc, m.s′c in the clock model Φ(C). Therefore, we define
the following instance of the αmapping for each register signal s: s̃ = ˜sc ⇒ m.s =
m.sc ∧m.s′ = m.s′c.

For example, the mapping for the variables m.N , m.N ′, m.N c, and m.N ′c

will be given by the formula: ˜N = ˜N c ⇒ m.N = m.N c ∧m.N ′ = m.N ′c.

180 V. Chan Ngo et al.

It remains to define the instance of the mapping α for variables l̂,˜l ∈ Rclk ∪
Lclk in the clock model Φ(A) which correspond to the local or register signal
named l in the program. In a Signal program, one signal is defined by an
equation l = eq, if we follow the definitions of all output and local signals in this
equation and apply successively substitutions, then we get that the equation
is constructed only by the input and register signals. This property is yielded
since the Signal program is determinate, meaning that all definitions of signals
are defined determinately by the input and register signals, and the compilers
rejects all non-determinate program. Equivalently, in the corresponding clock
model Φ(A), the output, register and local variables are determinately defined
by the input I and memorization M variables. The definition is written in the
clock model in the form l̂ ⇔ f̂ ∧ (l̂ ⇒ ˜l = ˜f) or l̂ ⇔ f̂ ∧ (l̂ ⇒ ˜l = ˜f) ∧ ˜f0, where

f̂ , ˜f and ˜f0 are the formulas which define the clock relation, the value, and the
initial value of the signal l in the clock model Φ(A). Therefore, we define the
following instance of the α mapping in the clock model corresponding to each
register or local signal l: l̂ ⇔ f̂ ∧ (l̂ ⇒ ˜l = ˜f) or l̂ ⇔ f̂ ∧ (l̂ ⇒ ˜l = ˜f) ∧ ˜f0.

For example, the mapping for the variables ̂ZN and ˜ZN in the clock model
Φ(DEC) corresponding to the local variable ZN in the program DEC will be given

by the formula: (̂ZN ⇔ ̂N)∧ (̂ZN ⇒ (˜ZN = m.N ∧m.N ′ = ˜N))∧ (m.N0 = 1).

Therefore, the variable mapping ̂XA \ ̂XIO = α(̂XC \ ̂XIO) is expressed as the
following formula:

∧

m.s∈M (s̃ = ˜sc ⇒ m.s = m.sc) ∧
∧

l̂,˜l∈S∪L(l̂ ⇔ f̂ ∧ (l̂ ⇒ ˜l = ˜f)) or
∧

m.s∈M (s̃ = ˜sc ⇒ m.s = m.sc) ∧
∧

l̂,˜l∈S∪L(l̂ ⇔ f̂ ∧ (l̂ ⇒ ˜l = ˜f) ∧ ˜f0)

To solve the validity of the formula (Φ(C) ⇒ Φ(A)) in Theorem 1 under the vari-
able mapping, a Smt solver is needed since this formula involves non-Boolean
variables and uninterpreted functions (using a Sat solver would not be suffi-
cient). A Smt solver decides the satisfiability of arbitrary logic formulas of linear
real and integer arithmetic, scalar types, other user-defined data structures, and
uninterpreted functions. If the formula belongs to the decidable theory, the solver
gives two types of answers: sat when the formula has a model (there exists an
interpretation that satisfies it); or unsat, otherwise. In our case, we will ask the

solver to check whether the formula ¬(Φ(C)∧̂XA \ ̂XIO = α(̂XC \ ̂XIO) ⇒ Φ(A))

is unsatisfiable, since this formula is unsatisfiable iff |= (Φ(C) ∧ ̂XA \ ̂XIO =

α(̂XC \ ̂XIO) ⇒ Φ(A)). In our translation validation, the clock models which are
constructed from Boolean or numerical variables and uninterpreted functions
belong to a part of first-order logic which has a small model property accord-
ing to [3]. The numerical variables are involved only in some implications with

uninterpreted functions such as (x̃ = ˜x′ ∧ ỹ = ˜y′) ⇒ ˜vi� =
˜

vj�.
In addition, the formula is quantifier-free. This means that the check of sat-

isfiability can be established by examining a certain finite cardinality of models.
Therefore, the formula can be solved efficiently and significantly improves the
scalability of the solver.

Translation Validation for Clock Transformations in a Synchronous Compiler 181

5 Implementation

This section describes the implementation of our validator and some adaptation
when the translation validation is applied to the real Signal compiler. We also
show the previously unknown bugs have been detected so far by our validator.

5.1 Towards Certified Compiler

Given a program P, with an unverified compiler, the compilation process can be
represented in the following pseudo-code, where Cp(P) is the compilation step
from the source program P to either compiled code IR(P) or compilation errors:

if (Cp(P) is Error) then
output Error;

else output IR(P);

Now, the compilation is followed by our refinement verification which checks that
the transformed program IR(P) refines P w.r.t. the clock semantics:

if (Cp(P) is Error) then
output Error;

else if (Φ(IR(P)) �clk Φ(P)) then
output IR(P);

else output Error;

This will provide a formal guarantee as strong as that provided by a certified
compiler in case the correctness of the validator is proved. We describe the main
components of the implementation which is integrated in the existing Poly-
chrony toolset [19] to prove the preservation of clock semantics of the Signal
compiler. We are interested here in the first phase: clock calculation and Boolean
abstraction where the intermediate forms of the source program of are expressed
in the Signal language itself.

At a high level, our validator, which is depicted in Figure 2, works as follows.
First, it takes the input program P and its transformed counterpart P BASIC TRA,
and constructs the corresponding clock models. These clock models are com-
bined as the formula (Φ(P BASIC TRA) ⇒ Φ(P)). In the solving phase, it checks
the validity of the formula Φ(P BASIC TRA) ⇒ Φ(P). The result of this check
can be exploited for the preservation of clock semantics of the transformations.
If the formula is not valid then it emits a compiler bug. Otherwise, the com-
piler continues its work. The same procedure is applied for the other steps of
the compiler. Finally, our verification process asserts that Φ(P BOOL TRA) �clk

Φ(P BASIC TRA) �clk Φ(P) along the transformations of the compiler. We dele-
gate the checking of the clock refinement to a Smt solver. For our experiments,
we consider the Yices [9] solver, which is one of the best solvers at the Smt-
Comp competition [23].

5.2 Detected Bugs

So far, our validator has revealed three previously unknown bugs in the compi-
lation of the Signal compiler. The first problem was introduced when multiple

182 V. Chan Ngo et al.

*.SIG *_BASIC_TRA.SIG *_BOOL_TRA.SIG *_SEQ_TRA.SIG C/C++, Java

Clock calculation,
Boolean abstraction Scheduling Code generation

Clock
model

Clock
model

Yices
solver

Yices
solver

Clock
model

Signal compiler

Validator

Fig. 2. The Integration within POLYCHRONY Toolset

constraints condition a clock such as in the following segment of Signal program
and its clock calculation part in transformed programs:

// P_BASIC_TRA.SIG // P_BOOL_TRA.SIG
| CLK_x := when (y <= 9) | when Tick ˆ= C_z ˆ= C_CLK
| CLK := when (y >= 1) | when C_z ˆ= x ˆ= z
| CLK_x ˆ= CLK | C_z := y <= 9
| CLK ˆ= XZX_24 | C_CLK := y >= 1
// P.SIG
| x ˆ= when (y <= 9)
| x ˆ= when (y >= 1)

In the transformed counterpart P BASIC TRA, the introduction of signal XZX 24

and the synchronization between CLK and XZX 24 cause the incorrect specification
of clocks, the signal x might be absent when XZX 24 is absent, which is not the
case in P, nor in P BOOL TRA). This bug was caught by our validator when it
found that Φ(P BOOL TRA) ��clk Φ(P BASIC TRA).

The second problem is the wrong implementation of xor operator as shown
in the followng program. The validator detects this bug with the fact that
Φ(P BASIC TRA) ��clk Φ(P).

// P.SIG // P_BASIC_TRA.SIG
| b3 := (true xor true) and b1 | CLK_b1 := ˆb1

| CLK_b1 ˆ= b1 ˆ= b3 | b3 := b1

The last problem detected was not found by the translation validation but was
indirectly discovered when trying to apply it. It occurred in a program in which
a merge operator with a constant signal was used, such as y := 1 default x.
In this case, the code generation phase of the compiler dealt wrongly with the
clock context of a constant signal by introducing a syntax error in the generated
C code. The bug and its fix are given by:

// Version with bug // Version without bug
if (C_y) { if (C_y) {

y = 1; else y = x; if (C_y) y = 1; else y = x;
w_ClockError_y(y); w_ClockError_y(y);

} }

Translation Validation for Clock Transformations in a Synchronous Compiler 183

6 Related Work and Conclusion

The notion of translation validation was introduced in [20,21] by A. Pnueli et
al. to verify the code generator of Signal. In that work, the authors define a
language of symbolic models to represent both the source and target programs,
called Synchronous Transition Systems (Sts). A Sts is a set of logic formulas
which describes the functional and temporal constraints of the whole program
and its generated C code. Then they use Bdd [6] representations to imple-
ment the symbolic Sts models, and their proof method uses a solver to reason
on constraints over signals. The drawback of this approach is that it does not
capture explicitly the clock semantics. Additionally, for a large program, the for-
mula is very large, including numerical expressions that cause some inefficiency.
Moreover, the whole calculation of a synchronous program or the corresponding
generated code is considered as one atomic transition in Sts, thus it does not
capture the data dependencies between signals and does not explicitly prove the
preservation of abstract clocks in the compiler transformations.

Another related work is the static analysis of Signal programs for efficient
code generation [12]. In a similar way as we do, the authors formalize the abstract
clocks and clock relations as first-order logic formulas with the help of interval
abstraction technique. The objective is to make the generated code more efficient
by detecting and removing the dead-code segments (e.g., segment of code to
compute a data-flow which is always absent). They determine the existence of
empty clocks, mutual exclusion of two or more clocks, or clock inclusions, by
reasoning on the formal model using a Smt solver.

Some other works have adopted the translation validation approach in verifi-
cation of transformations, and optimizations. In [16], the translation validation
is used to verify several common optimizations such as common subexpression
elimination, register allocation, and loop inversion. The validator is simulation-
based, that means it checks the existence of a simulation relation between two
programs. Leroy et al. [15,7] used this technique to develop the CompCert high-
assurance C compiler. The programs before and after the transformations and
optimizations of the compiler are represented in a common intermediate form,
then the preservation of semantics is checked by using symbolic execution and
the proof assistant Coq. It also has shown that translation validation can be
used to validate advanced loop optimizations such as software pipelining as in
[25]. Tristan et al. [24] recently proposed a framework for translation validation
of Llvm optimizer. For a function and its optimized counterpart, they compute a
shared value-graph. The graph is normalized (roundly speaking, the graph is re-
duced). After the normalizing, if the outputs of two functions are represented by
the same sub-graph, they can safely conclude that two functions are equivalent.

With the same purpose, in the work of [17], we encode the source Signal
programs and their transformations with Polynomial Dynamical Systems (Pds),
and we prove that the transformations preserve the abstract clocks and clock
relations of the source programs. This approach uses simulation relation in model
checking techniques, and it suffers from the increasing of the state-space when
it deals with large programs. On the contrary, in our present work, the abstract

184 V. Chan Ngo et al.

clocks and clock relations are described as a logic formula over Boolean variables.
Thanks to the efficiency of Smt solver implementation in processing formulas
over Boolean variables and uninterpreted functions, our approach can deal with
large programs whose number of variables is large. This situation generally makes
the state-space explosion problem in model checking techniques.

The present paper provides a proof of correctness of a the synchronous data-
flow compiler. We have presented a technique based on Smt solving to prove the
preservation of clock semantics during the compilation. Namely, we have shown
that implicit clock relations, describing the discrete timing model of a data-
flow specification, are preserved in their implementation. The desired behavior
of a given source program and the transformed one are represented as clock
models. A refinement relation between source and transformed programs is used
to express the preservation, which is checked by using a Smt solver. We have
constructed and integrated our validator within the Polychrony toolset to
prove the correctness of the Signal compiler.

We believe that our validator must have the following features to be effective
and realistic. First, we do not modify or instrument the compiler, and we treat
the compiler as a “black box”. Hence the validator is not affected by some
future update or modification of the compiler. We only need some additional
information about the mapping between original names and potential new names
of local variables. Our approach consists in applying formal methods to the
compiler transformations themselves in order to automatically generate formal
evidence that the clock semantics of the source program is preserved during
program transformations, as per applicable qualification standard. Second, it is
important that the validator can be scaled to large programs. For this purpose,
we represent the desired program semantics using a scalable abstraction and
we use efficient Smt libraries [9] to achieve the expected goals: traceability and
formal evidence. Moreover, this approach provides an attractive alternative to
develop a certified compiler for a synchronous language since in general the
validator is much smaller and easier to verify than the compiler it validates.

References

1. Ackerman, W.: Solvable Cases of the Decision Problem. Study in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam (1954)

2. Berry, G.: The Foundations of Esterel. In: Proof, Language and Interaction: Essay
in Honor of Robin Milner, MIT Press (2000)

3. Borger, E., Gradel, E., Gurevich, Y.: The Classical Decision Problem. Spinger-
Verlag (1996)

4. Besnard, L., Gautier, T., Le Guernic, P., Talpin, J.-P.: Compilation of Polychronous
Data Flow Equations. In: Synthesis of Embedded Software. Springer (2010)

5. Benveniste, A., LeGuernic, P.: Hybrid Dynamical Systems Theory and the Signal
Language. IEEE Transactions on Automatic Control 35(5), 535–546 (1990)

6. Bryant, R.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C 35(8), 677–691 (1986)

7. Inria, The CompCert Project, http://compcert.inria.fr

http://compcert.inria.fr

Translation Validation for Clock Transformations in a Synchronous Compiler 185

8. Inria, The Coq Proof Assitant, http://coq.inria.fr
9. Dutertre, B., de Moura, L.: Yices Sat-solver (2009), http://yices.csl.ri.com

10. Gamatié, A.: Designing Embedded Systems with the Signal Programming Lan-
guage: Synchronous, Reactive Specification, pp. 971–978. Springer, New York
(2009) ISBN 978-1-4419-0940-4

11. Kahn, G. (ed.): FPCA 1987. LNCS, vol. 274. Springer, Heidelberg (1987)
12. Gamatié, A., Gonnord, L.: Static Analysis of Synchronous Programs in Sig-

nal for Efficient Design of Multi-Clocked Embedded Systems. In: ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, Tools and Theory for Em-
bedded Systems - LCTES 2011, Chicago, IL, USA (April 2011)

13. Halbwachs, N.: A Synchronous Language at Work: the Story of Lustre. In: 3th
ACM-IEEE International Conference on Formal Methods and Models for Codesign,
MEMOCODE 2005 (July 2005)

14. Le Guernic, P., Gautier, T.: Advanced Topics in Data-flow Computing, Chapter
Data-flow to von Neumann: the Signal Approach, pp. 413–438. Prentice-Hall (1991)

15. Leroy, X.: Formal Certification of a Compiler Back-end, or Programming a Com-
piler with a Proof Assistant. In: 33rd Symposium Principles of Programming Lan-
guages, pp. 42–54. ACM Press (2006)

16. Necula, G.C.: Translation Validation for an Optimizing Compiler. In: Proceeding
PLDI 2000 Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pp. 83–94 (May 2000)

17. Ngo, V.C., Talpin, J.-P., Gautier, T., Le Guernic, P., Besnard, L.: Formal Veri-
fication of Compiler Transformations on Polychronous Equations. In: Derrick, J.,
Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 113–127.
Springer, Heidelberg (2012)

18. Ngo, V.C.: Formal Verification of a Synchronous Data-flow Compiler: from Signal
to C. In: PhD thesis (2014)

19. Inria/Espresso, Polychrony Toolset,
http://www.irisa.fr/espresso/Polychrony

20. Pnueli, A., Siegel, M., Singerman, E.: Translation Validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

21. Pnueli, A., Shtrichman, O., Siegel, M.: Translation Validation: From Signal to C.
In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710, pp.
231–255. Springer, Heidelberg (1999)

22. RTCA, DO-178C, http://rtca.org
23. Stump, A., Deters, M.: SMT-Comp (2009), http://www.smtcomp.org/2009
24. Tristan, J.-B., Govereau, P., Morrisett, G.: Evaluating Value-graph Translation

Validation for LLVM. In: ACM SIGPLAN Conference on Programming and Lan-
guage Design Implementation, California (June 2011)

25. Tristan, J.-B., Leroy, X.: A Simple, Verified Validator for Software Pipelining. In:
37th Principles of Programming Languages, pp. 83–92. ACM Press (2010)

http://coq.inria.fr
http://yices.csl.ri.com
http://www.irisa.fr/espresso/Polychrony
http://rtca.org
http://www.smtcomp.org/2009

	Translation Validation for Clock Transformations in a Synchronous Compiler
	1 Introduction
	2 The SIGNAL Language
	3 Clock Model
	3.1 Abstraction
	3.2 Concrete Clock Semantics

	4 Clock Model Translation Validation
	4.1 Clock Refinement
	4.2 Adaptation to SIGNAL Compiler
	4.3 Proving Clock Refinement by SMT

	5 Implementation
	5.1 Towards Certified Compiler
	5.2 Detected Bugs

	6 Related Work and Conclusion

