
Translation Validation for
Clock Transformations in a

Synchronous Compiler
Van-Chan Ngo
Jean-Pierre Talpin
Thierry Gautier
Paul Le Guernic

FASE 2015

INRIA Rennes, France

Our translation validation-
based verifier checks the
correctness of program
transformations w.r.t
clock semantics in the
synchronous data-flow
compiler, Signal.

Agenda

• Introduction

• Motivation

• Related work

• Approach

• Clock semantics preservation

• Clock model

• Translation validation for clock
transformations

• Detected bugs

• Conclusion

Motivation: Bug 15549

• GCC compiles b < c into (b == 0) & (c != 0)

• Program always aborts

=> Compilers always might have some bugs

Development of critical software

• Safety requirements have to be implemented correctly

• Formal verification is applied at source level (static
analysis, model checking, theorem proving)

• The guarantees are obtained at source program might
be broken due to the compiler bugs

=> Raise awareness about the importance of compiler
verification in critical software development

Related work on compiler verification

• SuperTest: test and validation suite

• DO-178: certification standards

• Astrée: a static analyzer

• Static analysis of Signal programs for efficient code
generation (Gamatié et al.)

• Translation validation for optimizing compiler (Berkeley, US)

• CompCert: a certified C compiler (Inria, France)

• Verified LLVM compiler (Harvard, US)

Compiler verification
Testing-based approach

• Test and validation suite to verify compilers

• Test suite to qualify the compiler’s output

Formal method-based approach

• Formal verification of compilers

• Formal verification of compiler’s output

• Translation validation to check the correctness of the
compilation

Translation validation

• Takes the source and compiled programs as input

• Checks that the source program semantics is
preserved in the compiled program

Translation validation: Main components
Model builder

• Defines common semantics

• Captures the semantics of the source and compiled
programs

Analyzer

• Formalizes the notion of “correct translation”

• Provides an automated proof method

• Generates a proof scripts or a counter-example

Translation validation: Features

• Avoiding redoing the proof with changes of compiler

• Independence of how the compiler works

• Less to prove (in general, the validator is much more
simple than the compiler)

• Verification process is fully automated

Signal compiler

• Syntax and type checking

• Clock analysis

• Data dependency analysis

• Executable code generation

Objective

A method to formally verify the Signal compiler w.r.t clock
semantics such that:

• light weight

• scalable: deals with 500K lines of code of the
implementation

• modularity

Approach

• Adopt translation validation approach

• Prove the correctness of each phase w.r.t the data
structure carrying the semantics relevant to that phase

• Decompose the preservation of the semantics into the
preservation of clock semantics, data dependency,
and value-equivalence

Formally verified Signal compiler

This work: Preservation of
clock semantics

Signal language

• Signal x: sequences of typed values (is
absence)

• Clock of x: instants at which

• Process: set of equations representing relations
between signals

• Parallelism: processes run concurrently

• Example:

• Other languages: Esterel, Lustre, Scade, …

x(t), t 2 N ?

C
x

x(t) 6= ?

y := x+ 1, 8t 2 Cy, y(t) = x(t) + 1

Primitive operators

• Stepwise functions:

• Delay:

• Merge:

y := f(x1, ..., xn)

8t 2 C

y

, y(t) = f(x1(t), ..., xn

(t)), C
y

= C

x1 = ... = C

xn

y := x$1 init a

y := x default z

y(t) = x(t) if t 2 C

x

, y(t) = z(t) if t 2 C

z

\ C
x

,

C
y

= C
x

[C
z

y(t0) = a, 8t 2 C

x

^ t > t0, y(t) = x(t�), C
y

= C

x

Primitive operators

• Sampling:

• Composition:

 Denotes the parallel composition of two processes

• Restriction:

 Specifies that x as a local signal to P

y := x when b

8t 2 C

x

\ C

b

^ b(t) = true, y(t) = x(t), C
y

= C

x

\ [b]

P1|P2

P where x

Example

• Emits a sequence of values

• Execution traces

FB, FB� 1, ..., 1

?? ?

Preservation of clock semantics

Common semantics: Clock model

�(b := b1 and b2) = (bb , bb1 , bb2) ^ (bb) (eb , eb1 ^ eb2))

�(e := e1 + e2) = (be , cvi+ , be1 , be2) ^ (be) (ee = fvi+))

�(P) =
n̂

i=1

�(eqi)

Encodes the clock

Encodes the value
Uninterpreted functions:
Encode the numerical

expressions

Clock model of P

Clock model of DEC
FB ˆ= when (ZN <= 1)

(dFB , [ZN1 ^]ZN1)

^ ([ZN1 , dv1<= , dZN) ^ ([ZN1) (]ZN1 = gv1<=))

^ (dZN , bN) ^ (dZN) (gZN = m.N ^m.N 0 = eN))

^ (m.N0 = 1)

N := FB default (ZN � 1)
ZN := N$1 init 1

^ (bN , dFB _ [ZN2) ^ (bN) ((dFB ^ eN = gFB)

_(¬dFB ^ eN =]ZN2)))

^ ([ZN2 , cv1� , dZN) ^ ([ZN2) (]ZN2 = fv1�))

Correct translation: Clock refinement

• Clock event: A clock event is an interpretation over X.
The set of clock events denoted by

• Clock trace: A clock trace is a chain of
clock events. The natural numbers represent the
instants

• The concrete clock semantic of is a set of clock
trace denoted by

• Clock refinement:

EcX

Tc : N �! EcX

�(C) vclk �(A) on X i↵

�(P)
�(�(P))\X

8X.Tc.(X.Tc 2 �(�(C))\X) X.Tc 2 �(�(A))\X)

Proof method

• Define a variable mapping

• Given , prove ↵
�(C) vclk �(A) on XIO

dXA \ dXIO = ↵(dXC \ dXIO)

dXA \ dXIO = ↵(dXC \ dXIO)

8ˆI over

dXA [dXC .(ˆI |= �(C)) ˆI |= �(A))

�(C) vclk �(A) on XIO

Premise

Conclusion

Implementation with SMT

• Construct and

• Establish

• Check the validity of

�(A) �(C)

(�(C) ^dXA \ dXIO = ↵(dXC \ dXIO)) �(A))

|= (�(C) ^dXA \ dXIO = ↵(dXC \ dXIO)) �(A))

Detected bugs: Multiple constraints on a clock

Cause: The synchronization
between CLK and XZX_24

• In P_BASIC_TRA, x might be
absent when XZX_24 is
absent, which is not the case
in P and P_BOOL_TRA

• XZX_24 is introduced without
declaration

Detection:
�(P BOOL TRA) 6vclk �(P BASIC TRA)

Detected bugs: XOR operator

Cause: wrong implementation of
XOR operator

• In P_BASIC_TRA, true xor true
is true

Detection:
�(P BASIC TRA) 6vclk �(P)

Conclusion

A method to formally verify the Signal compiler

• Adopts the translation validation

• Is light-weight, scalable, modular

• Separates the proof into three smaller and
independent sub-proofs: clock semantic, data
dependency, and value-equivalence preservations

Future work

• Fully implementation of the validator: benchmarks and
integration into Polychrony toolset

• Use an SMT solver to reason on the rewrite rules in
SDVG transformations

Thank you!

