Translation Validation for

Clock TransformationsSin a
Synchronous Compiler

Van-Chan Ngo
Jean-Pierre Talpin
Thierry Gautier
Paul Le Guernic

FASE 2015 -

Our translation validation-
pased verifier checks the
correctness of program
transformations w.r.t
clock semantics In the
synchronous data-tlow
compiler, Signal.

Agenda

* |ntroduction * Detected bugs

 Motivation e Conclusion

e Related work

 Approach

* Clock semantics preservation

e (Clock model

e Translation validation for clock
transformations

Motivation: Bug 15549

int 1t (_Bool b, unsigned char c¢) {
return b < c;

}

int main ()
1f (!'1t(1,"a’)
abort () ;
}

e GCC compilesb<cinto(b==0) & (c !=0)
 Program always aborts

=> Compilers always might have some bugs

Development of critical software

- - - equivalence? equivalence?._ _ _

-
| |
Y \J A4
Synchronous Transformed Executable

Program | Program | Code

-

Formal Guarantees Formal Guarantees? Formal Guarantees?

e Safety requirements have to be implemented correctly

 Formal verification is applied at source level (static
analysis, model checking, theorem proving)

* [he guarantees are obtained at source program might
be broken due to the compiler bugs

=> Raise awareness about the importance of compiler
verification in critical software development

Related work on compiler veritication

* SuperTest: test and validation suite
« DO-178: certification standards
* Astree: a static analyzer

e Static analysis of Signal programs for efficient code
generation (Gamatié et al.)

* Translation validation for optimizing compiler (Berkeley, US)
» CompCert: a certified C compiler (Inria, France)

e Verified LLVM compiler (Harvard, US)

Compiler verification

Testing-based approach

* Test and validation suite to verity compilers
* TJest suite to quality the compiler’s output

Formal method-based approach

* Formal verification of compilers
 Formal veritication of compiler’'s output

 [Jranslation validation to check the correctness of the
compilation

Translation valigation

N Compilation — Semantic
> -
Process . Preservation

A4

» Validator

Verified translation

validation

e [Jakes the source and compiled programs as input

* Checks that the source program semantics is
preserved in the compiled program

Translation validation: Main components

Model builder
e Defines common semantics

e Captures the semantics of the source and compiled
programs

Analyzer
e Formalizes the notion of “correct translation”
* Provides an automated proof methoad

* (Generates a proof scripts or a counter-example

Translation valigation: Features

* Avoiding redoing the proof with changes of compiler
* Independence of how the compiler works

* Less to prove (in general, the validator is much more
simple than the compiler)

* Verification process is fully automatead

Signal compiler

b= Clock calculation, >l< Scheduling >l< Code generation ~ —>1

Boolean abstraction

*.SIG —| *_BASIC_TRA.SIG [—| "_BOOL_TRASIG ——»| *_SEQ_TRASIG [—»| C/C++, Java

e Syntax and type checking
* Clock analysis
 Data dependency analysis

* Executable code generation

Objective

A method to formally verify the Signal compiler w.r.t clock
semantics such that:

* light weight

e scalable: deals with 500K lines of code of the
implementation

* modularity

Approach

* Adopt translation validation approach

* Prove the correctness of each phase w.r.t the data
structure carrying the semantics relevant to that phase

 Decompose the preservation of the semantics into the

preservation of clock semantics, data dependency,
and value-equivalence

Formally verified Signal compiler

E Clock calculation, .
;'6 Boolean abstraction > Scheduling
: *.SIG ——| * BASIC_TRA.SIG || * BOOL_TRA.SIG }——»
| ' I
gy pappg S g | ———) —— 1
' |
Clock l Clock |
model ; model :
' |
l |
_. ’
Clock Clock
Refin Refin
Clock ement ement
model > >

Signal Compiler

<

Code generation —*l

*_SEQ_TRA.SIG

—p C/C++, Java

This work: Preservation of

clock semantics

Signal language

* Signal x: sequences z(t),t € N of typed values (L is
absence)

* Clock C, of x: instants at which z(t) # L

* Process: set of equations representing relations
between signals

e Parallelism: processes run concurrently
o Example: y:=x+1,Vt € C,,y(t) = x(t) + 1

e Other languages: Esterel, Lustre, Scade, ...

Primitive operators

« Stepwise functions: vy := f(z1,...,Zn)
Vi € Cy,y(t) = f(z1(1),...,2n(t)),Cy = Cyy

%1 init a

* Delay: y:
y(to) = a,Vt € Cp ANt > tg,y(t) =z(t™),C, = Cy
* Merge: y := x default 2

y(t) =x(t) if t € Cp,y(t) = 2(t) if t € C, \ Cy,
C, =C,UC,

Primitive operators

e Sampling: y := x when b

Vi € Cp NCy ANb(t) = true,y(t) = x(t),Cy, = Cp N [b]
« Composition: P | P

Denotes the parallel composition of two processes

e Restriction: P where x

Specifies that x as a local signal to P

Example

process DEC=

(? integer FB;! 1nteger N)
(] FB = when (ZN<=1)

N := FB default (ZN-1)
ZN := N$1 init 1

)

where 1integer ZN end;

/*

/-k
/*

/*

I0 signals */

equations */

order does not matter

local signals

 Emits a sequence of values FB,FB—1,...,1

e Execution traces
t o 1 I 13 1

FB. 6 1 1 L 1
/N1 6 5 4 3
N 6 5 4 3 2

I5 16
1
2
1

DN DO

*x/

*/

Preservation of clock semantics

Signal Compiler

Clock calculation, . .
= Boolean abstraction > Scheduling >f< Code generation —>
*SIG ——| * BASIC_TRA.SIG || * BOOL TRA.SIG —r»| * SEQ TRASIG [—»{ C/C++, Java
| I
_______________________________ | ey nppy———— | | yy———————————E iy —————
| |
Clock ! Clock '
model ; model :
| I
| |
R -
Clock Clock
Refin Refin
Clock ement ement
model o .

..............................

Preservation of clock
semantics

Common semantics: Clock model

Encodes the clock

d(b:=0by and by) = (b= by < bo) A (b= (b by Aby))

Uninterpreted functions:
Encode the numerical Encodes the value

expressions

dle=e1+e) =@l 6 &) AE=(E=0v)))

Clock model of P
mn

®(P) = [\ d(eq:)

1=1

Clock model of DEC

FB "= when (ZN <=1)
ZN := N$1 init 1
N := F'B default (ZN — 1)

(FB < ZN1AZN1)

A

— S———

N1 vl_ e ZN)A(ZN1 = (ZN1=vl_))

~

A (Z
A(ZN & N)A(ZN = (ZN = m.N Am.N' = N))
A (m.Ng =1)
A(N@FBVZNQ) A(N = (FBAN = FB)
V(-FBAN = ZN2)))
A (ZN2 < vl < ZN) A (ZN2 = (ZN2 = ol))

Correct translation: Clock refinement

 Clock event: A clock event is an interpretation over X.
The set of clock events denoted by Ecx

 Clock trace: A clock trace 1, : N — Ecx is a chain of
clock events. The natural numbers represent the
instants

* The concrete clock semantic of ®(P)is a set of clock
trace denoted by I'(®(P))\ x

* Clock refinement: &(C) C . P(A) on X iff
VXT,.(XT, e IN(®(C)\x = XT, € I'(®(A))\x)

Proof method

e Define a variable mapping)/(Z \)@ = oz()/(; \)?;))

* Givena, prove &(C) Cyp ®(A) on X0

Premise
XA\ X0 =a(Xc\ Xi0)
VI over X4 UXc.(I E®(C) =1 E ®(A))

Conclusion

@(C) ;clk (I)(A) oIl X]O

Implementation with SMT

B E @ Clock Model

SignalProgram | 1 Construction :
A : B(A) 2 3 :

: Checking Formula | . |

: Construction Yices Solver ;

Sianal P 0 Clock Model :
\gna Crogram — Construction :
: ®(C) :

* Construct ¢(A)and &(C)
» Establish (®(C) A X4\ X160 = a(Xc \ X10) = ®(A))

* Check the validity of
= (B(C) A X4\ X10 = a(Xo \ X10) = ©(A))

Detected bugs: Multiple constraints on a clock

IG Cause: The synchronization
| x 7= when (y <= J) between CLK and XZX_24

| X *= when (y >= 1)
// P_BASIC_TRA.SIG

A

| | p

* In P_BASIC_TRA, x might be

| CL;—X o RCRL S absent when XZX 24 is
| CLK := when (y >= 1) absent, which is not the case
| CLK_x "= CLK in P and P BOOL TRA
| CLK "= XZX 24
// P_BOOL_TRA. SIG o XZX_24 is introduced without
“when Tick “= C g = declaration
C_CLK
| when C_z "= x "= z Detection:
| C_z =y <=9
| C_CLK := y >= 1 ®(P_BOOL_TRA) [Z.;;, ®(P_BASIC_TRA)

Detected bugs: XOR operator

/] P.SIG Cause: wrong implementation of

| b3 := (true xor true) XOR operator
and bl

// P _BASIC TRA.SIG

e In P_BASIC TRA, true xor true

CLK bl := ~bl IS true
CLK bl *= bl *= b3
R Detection:

®(P_BASIC_TRA) IZ ., ®(P)

Conclusion

A method to formally verify the Signal compiler
* Adopts the translation validation

* |s light-weight, scalable, modular

e Separates the proof into three smaller and

independent sub-proofs: clock semantic, data
dependency, and value-equivalence preservations

Future work

* Fully implementation of the validator: benchmarks and
integration into Polychrony toolset

e Use an SMT solver to reason on the rewrite rules In
SDVG transformations

Thank you!

