Statistical Model Checking for SystemC Models

Van Chan Ngo Axel Legay Jean Quilbeuf

INRIA, Campus Beaulieu, 35042 Rennes, France
Email: {chan.ngo, axel.legay, jeaun.quilbeuf}@inria.fr

Abstract—Transaction-level modeling with SystemC has been very successful in describing the behavior of embedded systems by providing high-level executable models, in which many of them have an inherent probabilistic behavior, i.e., random data, reliability of the system’s components. It is crucial to evaluate the quantitative and qualitative analysis of the probability of the system’s properties. Such analysis can be conducted by using probabilistic model checking. However, this method is unfeasible to deal with large and complex systems and works directly with systems modeling at transaction level (i.e., in SystemC) due to the state space explosion. In this paper, we demonstrate the successful use of statistical model checking to carry out such analysis for systems modeled in SystemC. Our verification framework allows designers to express a wide range of useful properties that can be analyzed.

Keywords—SystemC, Statistical Model Checking, Stochastic Processes, Embedded Systems, Transaction-level Modeling

I. INTRODUCTION

Transaction-level modeling (TLM) with SystemC has been become increasingly prominent in describing the behavior of embedded systems [4], i.e., System-on-Chips (SoCs). It allows complex electronic components and software control units can be combined into a single model, enabling simulation of the whole system at once. In many cases, models include probabilistic and non-deterministic characteristics, i.e., random data, reliability of the system’s components. It is crucial to evaluate the quantitative and qualitative analysis of the probability of the system’s properties. We consider a safety-critical system (i.e, the control system for air-traffic, automotive, and medical device). The reliability and availability model of the system can be considered as a stochastic process, in which it exhibits probabilistic characteristics. For instance, the reliability and availability model of an embedded control system [22], [15] that contains an input processor connected to groups of sensors, an output processor, connected to groups of actuators, and a main processor, that communicates with the I/O processors through a bus. Suppose that the sensors, actuators, and processors can fail, in which the I/O processors have transient and permanent faults. When a transient fault occurs in a processor, rebooting the processor repairs the fault. We assume that the times to failure and the times to reboot a processor are exponentially distributed. Then, the reliability of the system is modeled by a continuous-time Markov chain (CTMC) [20], [27], [7] that is a special case of a discrete-state stochastic process in which the probability distribution of the next state depends only on the current state [27]. Hence, the analysis can be quantifying the probability or rate of all safety-related faults: How likely the system is available to meet a demand for service? What is the probability that the system repairs after a failure (e.g., the system conforms to the existent and prominent standards such as the Safety Integrity Levels (SILs))?

In order to conduct such analysis, a general approach is modeling and analyzing a probabilistic model of the system (i.e, Markov chains, stochastic processes), in which the algorithm for computing the measures in properties depends on the class of systems being considered and the logic used for specifying the property. Many algorithms with the corresponding mature tools are based on model checking techniques that compute the probability by a numerical approach [3], [5], [23], [11]. Timed automata with mature verification tools such as UPPAAL [16] are used to verify real-time systems. For a variety of probabilistic systems, the most popular modeling formalism is Markov chain or Markov decision processes, for which Probabilistic Model Checking (PMC) tools such as PRISM [12] and MRMC [14] can be used. It is widely used and has been successfully applied to the verification of a range of timed and probabilistic systems. One of the main challenges is the complexity of the algorithms in terms of execution time and memory space due to the size of the state space that tends to grow exponentially, also known as the state space explosion. As a result, the analysis is infeasible. In addition, these tools cannot work directly with the SystemC source code.

An alternative way to evaluate these systems is Statistical Model Checking (SMC), a simulation-based approach. Simulation-based approaches produce an approximation of the value to evaluate, based on a finite set of system’s executions. Clearly, comparing to the numerical approach, a simulation-based solution does not provide an exact answer. However, the user can tune the statistical parameters such as the confidence interval and the confidence, according to the requirements. Simulation-based approaches do not construct all the reachable states of the system-under-verification (SUV), thus they require far less execution time and memory space than numerical approaches. For some real-life systems, they are the only one option [29] and have shown the advantages over other methods such as PMC [11], [13].

Our overall framework weaves the idea of statistical model checking to yield qualitative and quantitative analysis for the probability of a temporal property for SystemC models. The paper makes the following contributions: (i) we propose a framework to verify bounded temporal properties of SystemC models with both timed and probabilistic characteristics. The framework contains two main components: a monitor that observes a set of execution traces of the system-under-verifying (SUV) and a statistical model checker implementing a set of hypothesis testing algorithms. We use the similar techniques proposed by Tabakov et al. [25] to automatically generate the monitor. The statistical model checker is implemented
as a plugin of the checker Plasma Lab [2], in which the properties to be verified are expressed in Bounded Linear Temporal Logic (BLTL); (ii) we present a method that allows users to expose a rich set of user-code primitives in form of atomic propositions in BLTL. These propositions help users exposing the state of the SystemC simulation kernel and the full state of the SystemC source code model. In addition, users can define their own fine-grained time resolution that is used to reason on the semantics of the logic expressing the properties rather the boundary of clock cycles in the SystemC simulation; and (iii) we demonstrate our approach through a running example, in which we showcase how our SMC-based verification framework works. We also illustrate the performance of the framework through some experiments.

II. BACKGROUND

This section introduces the SystemC modeling language and reviews the main features of statistical model checking for stochastic processes as well as bounded linear temporal logic which is used to express system properties.

A. SystemC and the Simulation Kernel

SystemC\(^1\) is a C++ library [8] providing primitives for modeling hardware and software systems at the level of transactions. Every SystemC model can be compiled with a standard C++ compiler to produce an executable program called executable specification. This specification is used to simulate the system behavior with the provided event-driven simulator. A SystemC model is hierarchical composition of modules (\textit{sc_module}). Modules are building blocks of SystemC design, they are like modules in Verilog [26], classes in C++. A module consists of an interface for communicating with other modules and a set of processes running concurrently to describe the functionality of the module. An interface contains ports (\textit{sc_port}), they are similar to the hardware pins. Modules are interconnected using either primitive channels (i.e., the signals, \textit{sc_signal}) or hierarchical channels via their ports. Channels are data containers that generate events in the simulation kernel whenever the contained data changes.

Processes are not hierarchical, so no process can call another process directly. A process is either a thread or a method. A thread process (\textit{sc_thread}) can suspend its execution by calling the library statement \textit{wait} or any of its variants. When the execution is resumed, it will continue from that point. Threads run only once during the execution of the program and are not expected to terminate. On the other hand, a method process (\textit{sc_method}) cannot suspend its execution by calling \textit{wait} and is expected to terminate. Thus, it only returns the control to the kernel when reaching the end of its body.

An event is an instance of the SystemC event class (\textit{sc_event}) whose occurrence triggers or resumes the execution of a process. All processes which are suspended by waiting for an event are resumed when this event occurs, we say that the event is notified. A module’s process can be sensitive to a list of events. For example, a process may suspend itself and wait for a value change of a specific signal. Then, only this event occurrence can resume the execution of the process. In general, a process can wait for an event, a combination of events, or for an amount time to be resumed. In SystemC, integer values are used as discrete time model. The smallest quantum of time that can be represented is called \textit{time resolution} meaning that any time value smaller than the time resolution will be rounded off. The available time resolutions are femtosecond, picosecond, nanosecond, microsecond, millisecond, and second. SystemC provides functions to set time resolution and declare a time object.

The SystemC simulator is an event-driven simulation [1], [21]. It establishes a hierarchical network of finite number of parallel communicating processes which under the supervision of the distinguished simulation kernel process. Only one process is dispatched by the scheduler to run at a time point, and the scheduler is non-preemptive, that is, the running process returns control to the kernel only when it finishes executing or explicitly suspends itself by calling \textit{wait}. Like hardware modeling languages, the SystemC scheduler supports the notion of delta-cycles [18]. A delta-cycle lasts for an infinitesimal amount of time and is used to impose a partial order of simultaneous actions which interprets zero-delay semantics. Thus, the simulation time is not advanced when the scheduler processes a delta-cycle. During a delta-cycle, the scheduler executes actions in two phases: the \textit{evaluate} and the \textit{update} phases.

The simulation semantics of the SystemC scheduler is presented as follows: (1) \textit{Initialize}. During the initialization, each process is executed once unless it is turned off by calling \textit{dont_initialize()}, or until a synchronization point (i.e., a \textit{wait}) is reached. The order in which these processes are executed is unspecified; (2) \textit{Evaluate}. The kernel starts a delta-cycle and run all processes that are ready to run one at a time. In this same phase a process can be made ready to run by an event notification; (3) \textit{Update}. Execute any pending calls to \textit{update()} resulting from calls to \textit{request_update()} in the evaluate phase. Note that a primitive channel uses \textit{request_update()} to have the kernel call its \textit{update()} function after the execution of processes; (4) \textit{Delta-cycle notification}. The kernel enters the delta notification phase where notified events trigger their dependent processes. Note that immediate notifications may make new processes runnable during step (2). If so the kernel loops back to step (2) and starts another evaluation phase and a new delta-cycle. It does not advance simulation time; (5) \textit{Simulation-cycle notification}. If there are no more runnable processes, the kernel advances simulation time to the earliest pending timed notification. All processes sensitive to this event are triggered and the kernel loops back to step (2) and starts a new delta-cycle. This process is finished when all processes have terminated or the specified simulation time is passed.

B. Statistical Model Checking

Let \(\mathcal{M}\) be a model of a stochastic process and \(\varphi\) be a property expressed as a BLTL formula. BLTL is a temporal logic with bounded temporal operators, ensuring that the satisfaction of a formula by a trace can be decided in a finite number of steps. The statistical probabilistic model checking problem consists in answering the following questions: (i) Is the probability that \(\mathcal{M}\) satisfies \(\varphi\) greater or equal to a threshold \(\theta\) with a specific level of statistical confidence (\textit{qualitative analysis})? (ii) What is the probability that \(\mathcal{M}\) satisfies \(\varphi\) with a specific level of statistical confidence (\textit{quantitative analysis})?
They are denoted by $\mathcal{M} \models Pr(\varphi)$ and $\mathcal{M} \models Pr_{\geq \theta}(\varphi)$, respectively.

The key idea of SMC [17] is to get, through simulation, a large amount of independent execution traces and count the number of traces that satisfy φ. The ratio of this number over the total number of execution traces provides the probability that the property holds. Then statistical results associate a level of confidence to this probability, depending on the number of execution traces. Many statistical methods including sequential hypothesis testing, Monte Carlo method, or 2-sided Chernoff bound are implemented in a set of existing tools [28], [2], that have shown their advantages over other methods such as PMC on several case studies.

Although SMC can only provide approximate results with a user-specified level of statistical confidence (as opposed to the exact results provided by standard probabilistic model checking method), it is compensated for by its better scalability and resource consumption. Since the models to be analyzed are often approximately known, an approximate result in the analysis of desired properties within specific bounds is quite acceptable. SMC has recently been applied in a wide range of research areas including software engineering (e.g., verification of critical embedded systems) [11], system biology, or medical area [13].

We recall the syntax and semantics of BLTL [24], an extension of Linear Temporal Logic (LTL) with time bounds on temporal operators. A BLTL formula φ is defined over a set of atomic propositions AP as in LTL. A BLTL formula is defined by the grammar $\varphi ::= \text{true}|\text{false}|p \in AP|\varphi_1 \land \varphi_2|\neg \varphi_1 | F \varphi_2$, where the time bound T is an amount of time or a number of states in the execution trace. The temporal modalities F (the “eventually”, sometimes in the future) and G (the “always”, from now on forever) can be derived from the “until” U as follows.

$$F_{\leq T} \varphi = \text{true} U_{\leq T} \varphi \quad \text{and} \quad G_{\leq T} \varphi = \neg F_{\leq T} \neg \varphi$$

The semantics of BLTL is defined w.r.t execution traces of the model \mathcal{M}. Let $\omega = (s_0, t_0)(s_1, t_1)...(s_{N-1}, t_{N-1})$, $N \in \mathbb{N}$ be an execution trace of \mathcal{M}, ω_k and ω^k be the prefix and suffix of ω respectively. We denote the fact that ω satisfies the BLTL formula φ by $\omega \models \varphi$.

- $\omega^k \models \text{true}$ and $\omega^k \models \neg \text{false}$
- $\omega^k \models p, p \in AP$ iff $p \in L(s_k)$, where $L(s_k)$ is the set of atomic propositions which are true in state s_k
- $\omega^k \models \varphi_1 \land \varphi_2$ iff $\omega^k \models \varphi_1$ and $\omega^k \models \varphi_2$
- $\omega^k \models \neg \varphi_1$ iff $\omega^k \models \varphi_1$
- $\omega^k \models F \varphi_2$ iff there exists $i \in \mathbb{N}$ such that $\omega^{k+i} \models \varphi_2$, $\Sigma_{0 \leq j \leq i}(t_{k+j} - t_{k+j-1}) \leq T$, and for each $0 \leq j < i$, $\omega^{k+j} \models \varphi_1$

Here is a simple example of temporal property expressed in BLTL that can be verified with SMC:

$$\varphi = G_{\leq T_1}(A \rightarrow F_{\leq T_2}(B U_{\leq T_3} C))$$

The meaning of $Pr(\varphi)$ is: What is the probability that during the T_1 time units of the system operation, if A holds then, starting from T_2 time units after, B happens before C within T_3 time units.

III. A RUNNING EXAMPLE

We will use a simple case study with a FIFO channel as a running example (see Fig. 1 with the graphical notations in [8]). This example illustrates how designers can create hierarchical channels that encapsulate both design structure and communication protocols. In the design, once a nanosecond the producer will write one character to the FIFO with probability p_1, while the consumer will read one character from the FIFO with probability p_2. The FIFO which is derived from $sc_channel$ encapsulates the communication protocol between the producer and the consumer.

![Producer/consumer example](image)

The FIFO channel is designed to ensure that all data is reliably delivered despite the varying rates of production and consumption. The channel uses an event notification handshake protocol for both the input and output. It uses a circular buffer implemented within a static array to store and retrieve the items within the FIFO. We assume that the sizes of the messages and the FIFO buffer are fixed. Hence, it is obvious that the time required to transfer completely a message, or message latency, depends on the production and consumption rates, the FIFO buffer size, the message size, and the probabilities of successful writing and reading. The full implementation of the example is given in Appendix A, in which the probabilities of writing and reading are implemented with the Bernoulli distributions with probabilities p_1 and p_2 respectively from GNU Scientific Library (GSL) [9].

The quantitative analysis under consideration is: “What is the probability that a message is transferred completely within T_1 nanoseconds during T nanoseconds of operation?” We assume that the designer wants to check this property every nanosecond, thus it computes the probability that at any point in time the message latency is smaller than T_1 nanoseconds. This kind of analysis can, thus, be conducted in the early design steps. To formulate the underlying property more precisely, we have to take into account the agreement protocol between the producer and consumer, i.e., the simple protocol can be every message has special starting delimiter with the character ‘&’ and ending delimiter with the character ‘@’. Thus, the property can be translated in BLTL as follows:

$$\varphi = G_{\leq T}(c_read = \&' \rightarrow F_{\leq T_1}(c_read = '@'))$$

where c_read is the character read in the FIFO by the consumer. The input providing to the SMC checker is $Pr(\varphi)$. This property is expressed in terms of the characters read in the FIFO by the consumer, but the communication protocol between the producer and the consumer is abstracted at a very high level. It is an illustration of the types of properties that can be checked on TLM specifications. The verification of such a property at the transaction level can be connected to its counterpart at register-transfer level (RTL) in order to check the correctness of RTL implementations.

IV. SMC FOR SYSTEMC MODELS

In order to apply SMC for SystemC models which exhibit probabilistic and deterministic or non-deterministic charac-
teristics, this section presents the definitions of state and execution trace of SystemC models. This section also shows that the operational semantics of this class of SystemC models is considered as stochastic processes.

A. SystemC Model State

Temporal logic formulas are interpreted over execution traces and traditionally a trace has been defined as a sequence of states in the execution of a model. Therefore before we can define an execution trace we need a precise definition of the state of a SystemC model simulation. We are inspired by the definition of system state in [25], which consists of the state of the simulation kernel and the state of the SystemC model. We consider the external libraries as black boxes, meaning that their states are not exposed.

The state of the kernel contains the information about the current phase of the simulation (i.e., delta-cycle notification, simulation-cycle simulation) and the SystemC events notified during the execution of the model. The state of the SystemC model is the full state of the C++ code of all modules in the model, which includes the values of the module attributes, the location of the program counter (i.e., a particular statement is reached during the execution of the model, the function calls), the call stack including the function execution, function parameters and return values, and the status of the module processes (i.e., suspended, runnable). We use \(V = \{ v_0, ..., v_{n-1} \} \) to denote the finite set of variables of primitive type (e.g., usual scalar or enumerated type in C/C++) whose value domain \(\mathbb{D}_X \) represents the states of a SystemC model.

We consider here some examples about states of the simulation kernel and the SystemC model. Assume that a SystemC model has an event named \(e \), then the model state can contain information such as the kernel is at the end of simulation-cycle notification phase and the event \(e \) is notified. Consider the running example again, a state can consist of the information about the characters received by the consumer, represented by the variable \(c_{read} \). It also contains the information about the location of the program counter right before and after a call of the function \(send() \) in the module Producer that are represented by two Boolean variables \(send_start \) and \(send_done \), respectively, meaning that they hold the value true immediately after and before a call of the function \(send() \). Another example, we consider a module that consists several states at different locations in the source code, in which these statements contain the division operator \(\div \) followed by zero or more spaces and the variable "ad" (e.g., the statement \(y = (x + 1) \div a \)). Then, a Boolean variable which holds the value true right before the execution of all such statements can be used as a part of the states.

We have discussed so far the state of a SystemC model execution. It remains to discuss how the semantics of the temporal operators is interpreted over the states in the execution of the model. That means how the states are sampled in order to make the transition from one state to another state. The following definition gives the concept of temporal resolution, in which the states are evaluated only at instances in which the temporal resolution holds. It allows the user to set granularity of time.

Definition 1 (Temporal resolution): A temporal resolution \(T \) is a finite set of Boolean expressions defined over \(V \) which specifies when the set of variables \(V \) is evaluated.

Temporal resolution can be used to define a more fine-grained model of time than a coarse-grained one provided by a cycle-based simulation. We call the expressions in \(T \) temporal events. Whenever a temporal event is satisfied or the temporal event occurs, \(V \) is sampled. For example, in the producer and consumer model, assume that we want the set of variables to be sampled whenever at the end of simulation-cycle notification or immediately after the event \(write_event \) is notified during a run of the model. Hence, we can define a temporal resolution as the following set \(T = \{ \text{end_sc}, \text{we notified} \} \), where \(\text{end_sc} \) and \(\text{we notified} \) are Boolean expressions that have the value true whenever the kernel phase is at the end of the simulation-cycle notification and the event \(write_event \) notified, respectively.

We denote the set of occurrences of temporal events from \(T \) along an execution of a SystemC model by \(\mathcal{T}_T \), called a temporal resolution set. The value of a variable \(v \in V \) at an event occurrence \(e_c \in \mathcal{T}_T \) is defined by a mapping \(\xi^{val} : \mathcal{T}_T \rightarrow \mathbb{D}_v \), where \(\mathbb{D}_v \) is the value domain of \(v \). Hence, the state of the SystemC model at \(e_c \) is defined by a tuple \((\xi^{val}, ..., \xi^{val}_{v_{n-1}}) \).

A mapping \(\xi_t : \mathcal{T}_T \rightarrow T \) is called a time event that identifies the simulation time at each occurrence of an event from the temporal resolution. Hence, the set of time points, called time tag, which corresponds to a temporal resolution set \(\mathcal{T}_T = \{ e_0, ..., e_{N-1} \} \), \(N \in \mathbb{N} \), is given as follows.

Definition 2 (Time tag): Given a temporal resolution set \(\mathcal{T}_T \), the time tag \(T \) corresponding to \(\mathcal{T}_T \) is a finite or infinite set of non-negative reals \(\{ t_0, t_1, ..., t_{N-1} \} \), where \(t_{i+1} - t_i = \delta t_i \in \mathbb{R}_{\geq 0}, t_i = \xi_t(e_c) \).

B. Model and Execution Trace

A SystemC model can be viewed as a hierarchical network of parallel communicating processes. Hence, the execution of a SystemC model is an alternation of the control between the model’s processes, the external libraries and the kernel process. The execution of the processes is supervised by the kernel process to concurrently update new values for the signals and variables w.r.t. the cycle-based simulation. For example, given a set of runnable processes in a simulation-cycle, the kernel chooses one of them to execute first in a non-deterministic manner as described in the prior section.

Let \(V \) be the set of variables whose values represent the states of a SystemC model. The values of variables in \(V \) are determined by a given probability distribution (i.e., production from all probability distributions used in the model) and chosen in the non-deterministic manner of the SystemC simulation scheduler, i.e., the order in which runnable processes are executed is unspecified.

Given a temporal resolution \(T \) and its corresponding temporal resolution set along an execution of the model \(\mathcal{T}_T = \{ e_0, ..., e_{N-1} \} \), \(N \in \mathbb{N} \), the evaluation of \(V \) at the event occurrence \(e_c \) is defined by the tuple \((\xi^{val}_{v_0}, ..., \xi^{val}_{v_{n-1}}) \), or a state of the model at \(e_c \), denoted by \(V(e_c) = (V(e_c)(v_0), V(e_c)(v_1), ..., V(e_c)(v_{n-1})) \), where \(V(e_c)(v_k) = \xi^{val}_{v_k}(e_c) \) with \(k = 0, ..., n - 1 \) is the value of the variable \(v_k \) at \(e_c \). We denote the set of all possible
evaluations by \(V_{T} \subseteq D_{V} \), called the state space of the random variables in \(V \). State changes are observed only at the moments of event occurrences. Hence, the operational semantics of a SystemC model is represented by a stochastic process \(\{(V(e_{c_{i}}), \xi_{i}(e_{c_{i}})), e_{c_{i}} \in T^{*} \}_{i \in \mathbb{N}} \), taking values in \(V_{T} \times \mathbb{R}_{\geq 0} \) and indexed by the parameter \(e_{c_{i}} \), which are event occurrences in the temporal resolution set \(T^{*} \). An execution trace is a realization of the stochastic process is given as follows.

Definition 3 (Execution trace): An execution trace of a SystemC model corresponding to a temporal resolution set \(T^{*} = \{ e_{0}, \ldots, e_{\text{max}} \} \), \(N \in \mathbb{N} \) is a sequence of states and event occurrence times, denoted by \(\omega = (s_{0}, t_{0}) \ldots (s_{N-1}, t_{N-1}) \), such that for each \(i \in 0, \ldots, N - 1 \), \(s_{i} = V(e_{c_{i}}) \) and \(t_{i} = \xi_{i}(e_{c_{i}}) \).

\(N \) is the length (finite or infinite) of the execution, also denoted by \(|\omega| \). Let \(V' \subseteq V \), the projection of \(\omega \) on \(V' \), denoted by \(\omega \downarrow V' \), is an execution trace such that \(|\omega \downarrow V'| = |\omega| \) and \(\forall v \in V' \), \(\forall e_{c} \in T^{*} \), \(V'(e_{c})(v) = V(e_{c})(v) \).

C. Expressing Properties

Our approach allows users to refer to a rich set of atomic propositions expressing the states of the kernel simulation and the SystemC source code without requiring the users to write the monitoring code or to write aspect-oriented programming advices manually. The implementation provides a mechanism to define the set of variables \(V \) above in order to expose the states of a SystemC model. The variables can be used to expose the simulation kernel phases, event notification, values of module attributes, function calls, function execution, function arguments and return values, and the status of processes. Users declare the variables via a high-level language in a configuration file as the input of our tool. For instance, referring to the producer and consumer model, the declaration `location send_start “%Producer::send()”::call` declares a Boolean variable `send_start` that holds the value `true` immediately before the execution of the model reaches a call site of the function `send()` in the module `Producer`. The characters received by the consumer which is represented by the variable `c_read` can be declared as `attribute pnt_con->c_int c_read, where pnt_con` is a pointer to the `Consumer` object and `c_int` is an attribute of the `Consumer` module representing the received character. The detailed syntax can be found in the tool manual.\(^2\)

Atomic propositions are predicates defined over the set of variables \(V \). Using these predicates, users can define temporal properties related to the states of the kernel and the SystemC model. Recall the considered property of the running example, the predicates which are defined over the variable `c_read` are `c_read = ’l’` and `c_read = ’@’`. Another example, assume that we want to answer the following question: “Over a period of \(T \) time units, is the probability that the number of elements in the FIFO buffer is between \(n_{1} \) and \(n_{2} \) greater or equal to \(\theta \) with the confidence \(\alpha \)”. The predicates need to be defined in order to construct the underlying BLTL formula are \(n_{1} \leq n_{\text{elements}} \) and \(n_{\text{elements}} \leq n_{2} \), where \(n_{\text{elements}} \) is an integer variable that represents the current number of elements in the FIFO buffer (it captures the value of the `num_elements` attribute in the `Fifo` module). Then, the property can be translated in BLTL with the operator “always” as follows. The input which is given to the checker is \(Pr_{\geq \theta}(\varphi) \) along with the confidence \(\alpha \).

\[\varphi = G_{\leq T}(n_{1} \leq n_{\text{elements}} \& (n_{\text{elements}} \leq n_{2})) \]

V. Implementation

We have implemented a SMC-based verification tool that contains two main components: a monitor and aspect-advice generator (MAG) and a statistical model checker (SystemC Plugin). The flow of our tool is depicted in Fig. 2. The full implementation of the monitor and aspect-advice generator and the checker can be downloaded on the website of Plasma Lab.\(^3\)

A. MAG and SystemC Plugin Implementation

In principle, the full state can be observed during the simulation of the model. In practice, however, users define a set of variables of interest, according to the properties that the users want to verify, called observed variables, and only these variables appear in the states of an execution trace. Given a SystemC model, we use \(V_{\text{obs}} \subseteq V \) to denote the set of variables, called observed variables, to expose the states of the SystemC model. Then, the observed execution traces of the model are the projections of the execution traces on \(V_{\text{obs}} \), meaning that for every execution trace \(\omega \), the corresponding observed execution trace is \(\omega \downarrow V_{\text{obs}} \). In the following, when we mention about execution traces, we mean observed execution traces.

![Fig. 2: The framework’s flow](image)

The implementation of MAG allows users to define a set of observed variables that is used with a temporal resolution to generate a monitor. The implementation based on the techniques in \([25]\), in which the SystemC model is instrumented to communicate with the monitor. The generator generates an aspect-advice file that is used by AspectC++ \([6]\) to automatically instrument the SystemC model. Then, the instrumented model will produce a set of execution traces of the model. The generated monitor evaluates the set of observed variables at every time point at which an event of the temporal resolution occurs during the SystemC model simulation. For example, the exposing of `c_read` is done by creating a communication between the SystemC model code and the monitor, and instrumenting the model code to communicate with the monitor. The monitor defines a callback function and a variable `c_read`, and the instrumented model will call this function immediately at the end of simulation-cycle notification. The execution of the callback function consists of getting the current value of the character received by the consumer and assigning it to `c_read`.

Our statistical model checker is implemented as a plugin of Plasma Lab \([2]\) which establishes an interface between\(^3\)

\(^2\)https://project.inria.fr/plasma-lab/documentation/tutorial/mag_manual/

\(^3\)https://project.inria.fr/plasma-lab/download/plugins/
Plasma Lab and the instrumented model being executed by the SystemC simulator. In the current version, the communication is done via the standard input and output. The plugin requests new states until the satisfaction of the formula to be verified can be decided, which terminates because the temporal operators are bounded. Similarly, the required number of execution traces by the plugin depends on the hypothesis testing algorithms in use (e.g., sequential hypothesis testing, Monte Carlo simulation, or 2-sided Chernoff bound).

B. Running Verification

Running the verification tool consists of two steps as follows. First, users define a set of observed variables and a temporal resolution in a configuration file, as well as other necessary information as an input for MAG to generate a monitor and an aspect-advice file. Users then use AspectC++ to instrument the model. The instrumented model and the generated monitor are compiled and linked together with the SystemC kernel into an executable model in order to make a set of execution traces. For example, referring to the running example, users will define the set of observed variables \(V_{obs} = \{c_{\text{read}}, n_{\text{elements}}, end_{\text{SC}}\} \), where \(c_{\text{read}} \) is the character read in the FIFO, \(n_{\text{elements}} \) is the number of characters in the FIFO buffer, and \(end_{\text{SC}} \) is true whenever the kernel phase is at the end of the simulation-cycle notification. The temporal resolution will be defined as \(T_R = \{end_{\text{SC}}\} \), meaning that a new state in execution traces is produced whenever the simulation kernel is at the end of simulation-cycle notification or every one nanosecond in the example since the time unit is one nanosecond.

In the second step, the plugin of Plasma Lab is used to verify the desired properties. The satisfaction checking of the properties is brought out based on the set of execution traces by executing the instrumented SystemC model and can be done by several hypothesis testing algorithms provided by Plasma Lab.

VI. EXPERIMENTAL RESULTS

We report the experimental results for the running example and also demonstrate the use of our verification tool to analyze the dependability of a large embedded control system. The number of components in this system makes numerical approaches such as PMC unfeasible. In both case studies, we used the 2-sided Chernoff bound algorithm with the absolute error \(\epsilon = 0.02 \) and the confidence \(\alpha = 0.98 \). The experiments were run on machine with Intel Core i7 2.67 GHz processor and 4GB RAM under the Linux OS with SystemC 2.3.0. The analysis of the embedded and control system case study takes almost 2 hours, in which 90 properties were verified.

A. Producer and Consumer

Let us go back to the running example in Section III, recall that we want to compute the probability that the following property \(\varphi \) expressed in BLTL satisfies every 1 nanosecond, with the absolute error 0.02 and the level of confidence 0.98. In this verification, both the FIFO buffer size and message size are 10 characters including the starting and ending delimiters, and the production and consumption rates are 1 nanosecond.

\[
\varphi = G_{\leq T}(c_{\text{read}} = 'c') \rightarrow F_{\leq T_1}(c_{\text{read}} = '@')
\]

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>0.3</th>
<th>0.6</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0</td>
<td>0.0194</td>
<td>0.0720</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
<td>0.0835</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TABLE I: The probability that the message latency is smaller than 25 in the first 5000 time units of operation

First, we check this property with the various values of the probabilities \(p_1 \) and \(p_2 \). The results are given in Table I with \(T = 5000 \) and \(T_1 = 25 \) nanoseconds. It is trivial that the probability that the message latency is smaller than \(T_1 \) time increases when \(p_1 \) and \(p_2 \) increase. That means that, in general, the latency is shorter when the either the probability that the producer successfully writes to the FIFO increases, or the probability that the consumer successfully reads from the FIFO increases.

Second, we compute the probability that a message can be sent completely (or the message latency) from the producer to the consumer within \(T_1 \) time over a period of \(T \) time of operation, in which the probabilities \(p_1 \) and \(p_2 \) are fixed at 0.9. Fig. 3 shows this probability with different values of \(T_1 \) over \(T = 10000 \) nanoseconds. It is observed that the message latency is almost smaller than 18 nanoseconds.

B. An Embedded Control System

This case study is closely based on the one presented in [22], [15] but contains much more components. The system consists of an input processor \((I) \) connected to 50 groups of 3 sensors, an output processor \((O) \), connected to 30 groups of 2 actuators, and a main processor \((M) \), that communicates with \(I \) and \(O \) through a bus. At every cycle, 1 minute, the main processor polls data from the input processor that reads and processes data from the sensor groups. Based on this data, the main processor constructs commands to be passed to the output processor for controlling the actuator groups. For instance, the input sensors can measure the fluid level, temperature, or pressure, while the commands sent to actuators could be used for controlling valves.

The reliability of the system is affected by the failures of the sensors, actuators, and processors. The probability of bus failure is negligible, hence we do not consider it. The sensors and actuators are used in \(37 - \alpha = 50 \) and \(27 - \alpha = 30 \) modular redundancies, respectively. That means if at least 37 sensor groups are functional (a sensor group is functional if at least 2 of the 3 sensors are functional), the system obtains
enough information to function properly. Otherwise, the main processor is reported to shut the system down. In the same way, the system requires at least 27 functional actuator groups to function properly (an actuator group is functional if at least 1 of the 2 actuators is functional). Transient and permanent faults can occur in processors I or O and prevent the main processor(M) to read data from I or send commands to O. In that case, M skips the current cycle. If the number of continuously skipped cycles exceeds the limit K, the processor M shuts the system down. When a transient fault occurs in a processor, rebooting the processor repairs the fault. Lastly, if the main processor fails, the system is automatically shut down. The mean times to failure for the sensors, the actuators, and the processors are 1 month, 2 months and 1 year, respectively. The mean time to transient failure is 1 day and I/O processors take 30 seconds, 1 time unit, to reboot.

The reliability of the system is modeled as a CTMC [20], [27], [7] that is realized in SystemC, in which a sensor group has 4 states (0,1,2,3, the number of working sensors), 3 states (0, 1, 2, the number of working actuators) for an actuator group, 2 states for the main processor (0: failure, 1: functional), and 3 states for I/O processors (0: failure, 1: transient failure, 2: functional). A state of the CTMC is represented as a tuple of the component’s states, and the mean times to failure define the delay before which a transition between states is enabled. The delay is sampled from a negative exponential distribution with parameter equal to the corresponding mean time to failure. Hence, the model has about 2^{32} states comparing to the model in [15] with about 2^{10} states, that makes the PMC technique is unfeasible. That means the state explosion likely occurs, even with some abstraction, i.e., symbolic model checking is applied. The full implementation of the SystemC code of this case study can be obtained at the website of our tool.

We define four types of failures: failure_1 is the failure of the sensors, failure_2 is the failure of the actuators, failure_3 is the failure of the I/O processors and failure_4 is the failure of the main processor. For example, failure_1 is defined by $(\text{number Sensors} < 37) \land (\text{proci status} = 2)$. It specifies that the number of working sensor groups has decreased below 37 and the input processor is functional, so that it can report the failure to the main processor. We define failure_2, failure_3, and failure_4 in a similar way.

In our analysis which is based on the one in [15] with $K = 4$, in which the properties are checked every 1 time unit. First, we try to determine which kind of component is more likely to cause the failure of the system, meaning that we determine the probability that a failure related to a given component occurs before any other failures. The atomic proposition $\text{shutdown} = \bigvee_{i=1}^{4} \text{failure}_i$ indicates that the system has shut down because one of the failures has occurred, and the BLTL formula $\lnot \text{shutdown} \land U_{\leq T} \text{failure}_i$ states that the failure i occurs within T time units and no other failures have occurred before the failure i occurs. Fig. 4 shows the probability that each kind of failure occurs first over a period of 30 days of operation. It is obvious that the sensors are likelier to cause a system shutdown. At $T = 20$ days, it seems that we reached a stationary distribution indicating for each kind of component the probability that it is responsible for the failure of the system.

![Fig. 4: The probability that each of the 4 failure types is the cause of system shutdown in the first T time units of operation](image)

For the second part of our analysis, we divide the states of system into three classes: “up”, where every component is functional, “danger”, where a failure has occurred but the system has not yet shut down (e.g., the I/O processors have just had a transient failure but they have rebooted in time), and “shutdown”, where the system has shut down [15]. We aim to compute the expected time spent in each class of states by the system over a period of T time units. To this end, we add in the model, for each class of state c, a random variable reward_c that measures the time spent in the class c. In our tool, the formula $X_{\leq T} \text{reward}_c$ returns the mean value of reward_c after T time of execution. The results are plotted in Fig. 5. From $T = 20$ days, it seems that the amounts of time spent in the “up” and “danger” states are converged at $10^{1.063} = 11.57$ days and $10^{1.063} = 0.01$ days, respectively. Due to the lack of space, we present the other parts of the analysis in Appendix B.

![Fig. 5: The expected amount of time spent in each of the states: “up”, “danger” and “shutdown”](image)

VII. RELATED WORK AND CONCLUSION

Some work has been carried out for analyzing stochastic systems with PMC, for example, the dependability analysis of control system with PRISM [15]. PRISM supports construction and analysis of models as Markov chains, determining whether the model satisfies each property expressing in LTL. For example, the exact probabilities can be computed by PRISM. However, the main drawback of this approach is that when it deals with real-world large size systems which make the PMC technique is unfeasible, even with some abstraction.
i.e., symbolic model checking with Ordered Binary Decision Diagrams (OBDDs), is applied.

There has been a lot of work on the formalization of SystemC [10], [19]. The goal is to extract a formal model from a SystemC program, so that tools like model-checkers can be applied. However, all these formalizations consider semantics of SystemC and its simulator in some form of global model, and they also suffer from the state space explosion when dealing with industrial and large systems.

Tabakov et al. [25] proposed a framework for monitoring temporal SystemC properties. This framework allows users express the verifying properties by fully exposing the semantics of the simulator as well as the user-code. They extend LTL by providing some extra primitives for stating the atomic propositions and let users define a much finer temporal resolution. Their implementation consists of a modified simulation kernel, and a tool to automatically generate the monitors and aspect advices for applying Aspect Oriented Programming (AOP) [6] to instrument SystemC programs automatically.

This paper presents the first attempt to verify non-trivial temporal properties of SystemC model with statistical model checking techniques. The framework contains two main components: a monitor generator that automatically instruments the SUV based on the properties to verify, and a statistical model checker implementing a set of hypothesis testing algorithms. We use the techniques proposed by Tabakov et al. [25] to automatically generate the monitor corresponding to the properties to verify. The statistical model checking is done by Plasma-lab [2], that we extended with a plugin.

In comparison to the probabilistic model checking, our approach allows users to handle large industrial systems as well as to expose a rich set of user-code primitives by automatically instrumenting the SystemC code with AspectC++. For instance, our verification framework is used to analyze the dependability of large industrial computer-based control systems as shown in the case study.

Currently, we consider an external library as a “black box”, meaning that we do not consider the states of external libraries. Thus, arguments passed to a function in an external library cannot be monitored. For future work, we would like to allow users to monitor the states of the external libraries with the future version of AspectC++. We also plan to apply statistical model checking to verify temporal properties of SystemC-AMS (Analog/Mixed-Signal).

REFERENCES

APPENDIX A: RUNNING EXAMPLE IMPLEMENTATION

The SystemC Source Code

Listing 1: The fifo_if.h

```c
#ifndef FIFO_IF
#define FIFO_IF

#include "systemc.h"

class fifo_write_if : virtual public sc_interface {

public:
  virtual void fifo_write(char) = 0;
  virtual void fifo_reset() = 0;
};

class fifo_read_if : virtual public sc_interface {

public:
  virtual void fifo_read(char) = 0;
  virtual int fifo_num_available() = 0;
};

#endif
```

Listing 2: The fifo.cpp

```c
#include "fifo_if.h"

#include <systemc.h>
#include "utils.h"

public:
  virtual void fifo_write(char c) {
    if (num_elements == max) {
      wait(read_event);
    }
    data[(first + num_elements) % max] = c;
    ++num_elements;
    write_event.notify();
  }

private:
  virtual void fifo_read(char c) {
    if (num_elements == 0) {
      wait(write_event);
    }
    c = data[first];
    --num_elements;
    first = (first + 1) % max;
    read_event.notify();
  }

int fifo_num_available() {
  return num_elements;
}
```

Listing 3: The consumer.h

```c
#include "consumer.h"

#include <systemc.h>
#include "fifo.cpp"
#include "utils.h"
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_cdf.h>

class Consumer : public fifo_read_if {

public:
  void receive(char &c) {
    if (first == 0) {
      wait(read_event);
    }
    c = data[first];
    --num_elements;
    first = (first + 1) % max;
    read_event.notify();
  }

private:
  void main() {
    char c;
    while (true) {
      if (b) {
        receive(c);
      }
      wait(1,SC_NS); // waits for 1 nanosecond
    }
  }
```

Listing 4: The consumer.cpp

```c
#include "consumer.h"

#include <systemc.h>
#include <tlm.h>
#include "fifo.cpp"
#include "utils.h"
#include <gsl/gsl_randist.h>
#include <gsl/gsl_cdf.h>

class Consumer : public fifo_read_if {

public:
  virtual void receive(char &c) {
    if (first == 0) {
      wait(read_event);
    }
    c = data[first];
    --num_elements;
    first = (first + 1) % max;
    read_event.notify();
  }

private:
  void main() {
    char c;
    while (true) {
      if (b) {
        receive(c);
      }
      wait(1,SC_NS); // waits for 1 nanosecond
    }
  }
```

Listing 1: The fifo_if.h

```c
#ifndef BASE_CHANNEL_H
#define BASE_CHANNEL_H

#include <systemc.h>
#include "fifo_if.h"

class Fifo : public sc_channel, public fifo_write_if, public fifo_read_if {

private:
  enum e {max = 10}; // capacity of the fifo
  char data[max];
  int num_elements,
  sc_event write_event, read_event;

public:
  Fifo(sc_module_name name) : sc_channel(name),
  fifo_write_if(),
  fifo_read_if {
    num_elements = 0;
    first = 0;
  }

  virtual public
  sc_channel,
  virtual public
  fifo_write_if,
  virtual public
  fifo_read_if {
    virtual public
  SC_HAS_PROCESS
  (Producer) {
    Producer(sc_module_name name, int c_init, gsl_rng *rnd) {
      c_int = c_init;
      r = rnd; // random generator
      ...
    }
    virtual public
    SC_THREAD(main);
    ~Producer() {
    }
  }

  virtual public
  Consumer(sc_module_name name, int c_init, gsl_rng *rnd) {
    c_int = c_init;
    r = rnd; // random generator
    ...
    virtual public
    SC_THREAD(main);
    ~Consumer() {
    }
  }

private:
  virtual void main() {
    char c;
    while (true) {
      if (b) {
        receive(c);
      }
      wait(1,SC_NS); // waits for 1 nanosecond
    }
  }

public:
  Fifo(sc_module_name name) : sc_channel(name),
  fifo_write_if(),
  fifo_read_if {
    num_elements = 0;
    first = 0;
  }

  virtual public
  sc_channel,
  virtual public
  fifo_write_if,
  virtual public
  fifo_read_if {
    virtual public
  SC_HAS_PROCESS
  (Producer) {
    Producer(sc_module_name name, int c_init, gsl_rng *rnd) {
      c_int = c_init;
      r = rnd; // random generator
      ...
    }
    virtual public
    SC_THREAD(main);
    ~Producer() {
    }
  }

  virtual public
  Consumer(sc_module_name name, int c_init, gsl_rng *rnd) {
    c_int = c_init;
    r = rnd; // random generator
    ...
    virtual public
    SC_THREAD(main);
    ~Consumer() {
    }

  virtual void main() {
    char c;
    while (true) {
      if (b) {
        receive(c);
      }
      wait(1,SC_NS); // waits for 1 nanosecond
    }
  }
```
Listing 5: The producer.h

```c
#include "producer.h"

Producer::Producer(sc_module_name name, int c_init, gsl_rng *rnd) {
    c_int = c_init;
    r = rnd; // random generator
    SC_THREAD(main);
}

void Producer::send(char c) {
    out->fifo_write(c);
    c_int = c;
}

void Producer::main() {
    const char str = "&abcdefgh@";
    constant char *p = str;
    while (true) {
        int b = get_bernoulli(r, 0.90);
        if (b) {
            send(*p);
            *p++;
        } else {
            if (!*p) {
                *p = str;
            }
        }
        wait(1, SC_NS); // waits for 1 nanosecond
    }
}
```

Listing 6: The producer.cpp

```c
#include <time.h>
#include "producer.h"
#include "consumer.h"
#include "fifo.h"
#include "gsl/gsl_rng.h"
#include <gsl/gsl_cdf.h>
#include <gsl/gsl_randist.h>

Producer::Producer(sc_module_name name, int c_init, gsl_rng *rnd) {
    c_int = c_init;
    r = rnd; // random generator
    SC_THREAD(main);
}

void Producer::send(char c) {
    out->fifo_write(c);
    c_int = c;
}

void Producer::main() {
    const char str = "&abcdefgh@";
    constant char *p = str;
    while (true) {
        int b = get_bernoulli(r, 0.90);
        if (b) {
            send(*p);
            *p++;
        } else {
            if (!*p) {
                *p = str;
            }
        }
        wait(1, SC_NS); // waits for 1 nanosecond
    }
}
```

Listing 7: The main.cpp

```c
int sc_main(int argc, char *argv[]) {
    // random generator in GSL
    const gsl_rng_type *T;
    gsl_rng *r;
    gsl_rng_env_setup();
    gsl_rng *r;
    // seed the generator
    srand(time(NULL));
    gsl_rng_set(r, random());
    sc_set_time_resolution(1, SC_NS); // time unit
    Fifo afifo("fifo"); // create a channel fifo
    Producer prod("producer", -1, r);
    Consumer cons("consumer", -1, r);
    prod.out(afifo); // the producer binding
    cons.in(afifo); // the consumer binding
    // the observer for Instrumented model
    mon_observer *obs = local_observer::createInstance(1, &cons,
                                                        &prod);
    sc_start();
    gsl_rng_free (r); // release the generator
    return 0;
}
```

Listing 8: The configuration file for MAG

```plaintext
Observed Variables, Temporal Resolution, and Properties

Appendix B: Additional Experimental Results

In addition to the analysis in Section VI-B, we study the probability that each of the four types of failure eventually occurs in the first T time of operation. This is done using the BLTL formula $F_{\leq T} (failure_{i})$. Fig. 6 plots these probabilities over the first 30 days of operation. We observe that the probabilities that the sensors and I/O processors eventually fail are more than the others do. In the long run, they are almost the same and approximate to 1, meaning that the sensors and
```

I/O processors will eventually fail with probability 1. The main processor has the smallest probability to eventually fail.

Finally, we approximate the number of reboots of the I/O processors, and the number sensor groups, actuator groups that are functional over time by computing the expected values of random variables that count the number of reboots, functional sensor and actuator groups. The results are plotted in Fig. 7 and Fig. 8. It is obvious that the number of reboots of both processors doubles the number of reboots of each processor since they have the same behavior.