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Abstract—Transaction-level modeling with SystemC has been
very successful in describing the behavior of embedded systems
by providing high-level executable models, in which many of
them have an inherent probabilistic behavior, i.e., random data,
reliability of the system’s components. It is crucial to evaluate
the quantitive and qualitative analysis of the probability of the
system’s properties. Such analysis can be conducted by using
probabilistic model checking. However, this method is unfeasible
to deal with large and complex systems and works directly with
systems modeling at transaction level (i.e., in SystemC) due to the
state space explosion. In this paper, we demonstrate the successful
use of statistical model checking to carry out such analysis for
systems modeled in SystemC. Our verification framework allows
designers to express a wide range of useful properties that can
be analyzed.
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I. INTRODUCTION

Transaction-level modeling (TLM) with SystemC has been
become increasingly prominent in describing the behavior of
embedded systems [4], i.e., System-on-Chips (SoCs). It allows
complex electronic components and software control units
can be combined into a single model, enabling simulation
of the whole system at once. In many cases, models include
probabilistic and non-deterministic characteristics, i.e, random
data, reliability of the system’s components. It is crucial to
evaluate the quantitive and qualitative analysis of the proba-
bility of the system’s properties. We consider a safety-critical
system (i.e, the control system for air-traffic, automotive,
and medical device). The reliability and availability model
of the system can be considered as a stochastic process, in
which it exhibits probabilistic characteristics. For instance,
the reliability and availability model of an embedded control
system [22], [15] that contains an input processor connected to
groups of sensors, an output processor, connected to groups of
actuators, and a main processor, that communicates with the
I/O processors through a bus. Suppose that the sensors, actua-
tors, and processors can be failed, in which the I/O processors
have transient and permanent faults. When a transient fault
occurs in a processor, rebooting the processor repairs the fault.
We assume that the times to failure and the times to reboot
a processor are exponentially distributed. Then, the reliability
of the system is modeled by a continuous-time Markov chain
(CTMC) [20], [27], [7] that is a special case of a discrete-state
stochastic process in which the probability distribution of the
next state depends only on the current state [27]. Hence, the
analysis can be quantifying the probability or rate of all safety-
related faults: How likely the system is available to meet a
demand for service? What is the probability that the system
repairs after a failure (e.g., the system conforms to the existent

and prominent standards such as the Safety Integrity Levels
(SILs))?

In order to conduct such analysis, a general approach is
modeling and analyzing a probabilistic model of the system
(i.e, Markov chains, stochastic processes), in which the algo-
rithm for computing the measures in properties depends on
the class of systems being considered and the logic used for
specifying the property. Many algorithms with the correspond-
ing mature tools are based on model checking techniques that
compute the probability by a numerical approach [3], [5], [23],
[11]. Timed automata with mature verification tools such as
UPPAAL [16] are used to verify real-time systems. For a
variety of probabilistic systems, the most popular modeling
formalism is Markov chain or Markov decision processes,
for which Probabilistic Model Checking (PMC) tools such as
PRISM [12] and MRMC [14] can be used. It is widely used
and has been successfully applied to the verification of a range
of timed and probabilistic systems. One of the main challenges
is the complexity of the algorithms in terms of execution time
and memory space due to the size of the state space that tends
to grow exponentially, also known as the state space explosion.
As a result, the analysis is infeasible. In addition, these tools
cannot work directly with the SystemC source code.

An alternative way to evaluate these systems is Statis-
tical Model Checking (SMC), a simulation-based approach.
Simulation-based approaches produce an approximation of the
value to evaluate, based on a finite set of system’s executions.
Clearly, comparing to the numerical approach, a simulation-
based solution does not provide an exact answer. However, the
user can tune the statistical parameters such as the confidence
interval and the confidence, according to the requirements.
Simulation-based approaches do not construct all the reachable
states of the system-under-verification (SUV), thus they require
far less execution time and memory space than numerical
approaches. For some real-life systems, they are the only one
option [29] and have shown the advantages over other methods
such as PMC [11], [13].

Our overall framework weaves the idea of statistical model
checking to yield qualitative and quantitative analysis for the
probability of a temporal property for SystemC models. The
paper makes the following contributions: (i) we propose a
framework to verify bounded temporal properties of SystemC
models with both timed and probabilistic characteristics. The
framework contains two main components: a monitor that ob-
serves a set of execution traces of the system-under-verifying
(SUV) and a statistical model checker implementing a set of
hypothesis testing algorithms. We use the similar techniques
proposed by Tabakov et al. [25] to automatically generate
the monitor. The statistical model checker is implemented



as a plugin of the checker Plasma Lab [2], in which the
properties to be verified are expressed in Bounded Linear
Temporal Logic (BLTL); (ii) we present a method that allows
users to expose a rich set of user-code primitives in form of
atomic propositions in BLTL. These propositions help users
exposing the state of the SystemC simulation kernel and the
full state of the SystemC source code model. In addition,
users can define their own fine-grained time resolution that
is used to reason on the semantics of the logic expressing the
properties rather the boundary of clock cycles in the SystemC
simulation; and (iii) we demonstrate our approach through
a running example, in which we showcase how our SMC-
based verification framework works. We also illustrate the
performance of the framework through some experiments.

II. BACKGROUND

This section introduces the SystemC modeling language
and reviews the main features of statistical model checking
for stochastic processes as well as bounded linear temporal
logic which is used to express system properties.

A. SystemC and the Simulation Kernel

SystemC1 is a C++ library [8] providing primitives for
modeling hardware and software systems at the level of
transactions. Every SystemC model can be compiled with
a standard C++ compiler to produce an executable program
called executable specification. This specification is used to
simulate the system behavior with the provided event-driven
simulator. A SystemC model is hierarchical composition of
modules (sc module). Modules are building blocks of SystemC
design, they are like modules in Verilog [26], classes in C++.
A module consists of an interface for communicating with
other modules and a set of processes running concurrently
to describe the functionality of the module. An interface
contains ports (sc port), they are similar to the hardware pins.
Modules are interconnected using either primitive channels
(i.e., the signals, sc signal) or hierarchical channels via their
ports. Channels are data containers that generate events in the
simulation kernel whenever the contained data changes.

Processes are not hierarchical, so no process can call an-
other process directly. A process is either a thread or a method.
A thread process (sc thread) can suspend its execution by
calling the library statement wait or any of its variants. When
the execution is resumed, it will continue from that point.
Threads run only once during the execution of the program
an are not expected to terminate. On the other hand, a method
process (sc method) cannot suspend its execution by calling
wait and is expected to terminate. Thus, it only returns the
control to the kernel when reaching the end of its body.

An event is an instance of the SystemC event class
(sc event) whose occurrence triggers or resumes the execution
of a process. All processes which are suspended by waiting for
an event are resumed when this event occurs, we say that the
event is notified. A module’s process can be sensitive to a list
of events. For example, a process may suspend itself and wait
for a value change of a specific signal. Then, only this event
occurrence can resume the execution of the process. In general,
a process can wait for an event, a combination of events, or for
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an amount time to be resumed. In SystemC, integer values are
used as discrete time model. The smallest quantum of time that
can be represented is called time resolution meaning that any
time value smaller than the time resolution will be rounded off.
The available time resolutions are femtosecond, picosecond,
nanosecond, microsecond, millisecond, and second. SystemC
provides functions to set time resolution and declare a time
object.

The SystemC simulator is an event-driven simulation [1],
[21]. It establishes a hierarchical network of finite number
of parallel communicating processes which under the super-
vision of the distinguished simulation kernel process. Only
one process is dispatched by the scheduler to run at a time
point, and the scheduler is non-preemptive, that is, the running
process returns control to the kernel only when it finishes
executing or explicitly suspends itself by calling wait. Like
hardware modeling languages, the SystemC scheduler supports
the notion of delta-cycles [18]. A delta-cycle lasts for an in-
finitesimal amount of time and is used to impose a partial order
of simultaneous actions which interprets zero-delay semantics.
Thus, the simulation time is not advanced when the scheduler
processes a delta-cycle. During a delta-cycle, the scheduler
executes actions in two phases: the evaluate and the update
phases.

The simulation semantics of the SystemC scheduler is
presented as follows: (1) Initialize. During the initialization,
each process is executed once unless it is turned off by calling
dont initialize(), or until a synchronization point (i.e., a wait)
is reached. The order in which these processes are executed is
unspecified; (2) Evaluate. The kernel starts a delta-cycle and
run all processes that are ready to run one at a time. In this
same phase a process can be made ready to run by an event
notification; (3) Update. Execute any pending calls to update()
resulting from calls to request update() in the evaluate phase.
Note that a primitive channel uses request update() to have
the kernel call its update() function after the execution of
processes; (4) Delta-cycle notification. The kernel enters the
delta notification phase where notified events trigger their
dependent processes. Note that immediate notifications may
make new processes runable during step (2). If so the kernel
loops back to step (2) and starts another evaluation phase and
a new delta-cycle. It does not advance simulation time; (5)
Simulation-cycle notification. If there are no more runnable
processes, the kernel advances simulation time to the earliest
pending timed notification. All processes sensitive to this event
are triggered and the kernel loops back to step (2) and starts
a new delta-cycle. This process is finished when all processes
have terminated or the specified simulation time is passed.

B. Statistical Model Checking

Let M be a model of a stochastic process and ϕ be a
property expressed as a BLTL formula. BLTL is a temporal
logic with bounded temporal operators, ensuring that the
satisfaction of a formula by a trace can be decided in a finite
number of steps. The statistical probabilistic model checking
problem consists in answering the following questions: (i) Is
the probability thatM satisfies ϕ greater or equal to a thresh-
old θ with a specific level of statistical confidence (qualitative
analysis)? (ii) What is the probability thatM satisfies ϕ with a
specific level of statistical confidence (quantitative analysis)?



They are denoted by M |= Pr(ϕ) and M |= Pr≥θ(ϕ),
respectively.

The key idea of SMC [17] is to get, through simulation,
a large amount of independent execution traces and count the
number of traces that satisfy ϕ. The ratio of this number over
the total number of execution traces provides the probability
that the property holds. Then statistical results associate a level
of confidence to this probability, depending on the number of
execution traces. Many statistical methods including sequential
hypothesis testing, Monte Carlo method, or 2-sided Chernoff
bound are implemented in a set of existing tools [28], [2], that
have shown their advantages over other methods such as PMC
on several case studies.

Although SMC can only provide approximate results with
a user-specified level of statistical confidence (as opposed to
the exact results provided by standard probabilistic model
checking method), it is compensated for by its better scalability
and resource consumption. Since the models to be analyzed
are often approximately known, an approximate result in the
analysis of desired properties within specific bounds is quite
acceptable. SMC has recently been applied in a wide range of
research areas including software engineering (e.g., verification
of critical embedded systems) [11], system biology, or medical
area [13].

We recall the syntax and semantics of BLTL [24], an
extension of Linear Temporal Logic (LTL) with time bounds
on temporal operators. A BLTL formula ϕ is defined over a
set of atomic propositions AP as in LTL. A BLTL formula
is defined by the grammar ϕ ::= true|false|p ∈ AP |ϕ1 ∧
ϕ2|¬ϕ|ϕ1 U≤T ϕ2, where the time bound T is an amount of
time or a number of states in the execution trace. The temporal
modalities F (the “eventually”, sometimes in the future) and
G (the “always”, from now on forever) can be derived from
the “until” U as follows.

F≤T ϕ = true U≤T ϕ and G≤T ϕ = ¬F≤T ¬ϕ

The semantics of BLTL is defined w.r.t execution traces of the
model M. Let ω = (s0, t0)(s1, t1)...(sN−1, tN−1), N ∈ N be
an execution trace of M, ωk and ωk be the prefix and suffix
of ω respectively. We denote the fact that ω satisfies the BLTL
formula ϕ by ω |= ϕ.

• ωk |= true and ωk 6|= false

• ωk |= p, p ∈ AP iff p ∈ L(sk), where L(sk) is the
set of atomic propositions which are true in state sk

• ωk |= ϕ1 ∧ ϕ2 iff ωk |= ϕ1 and ωk |= ϕ2

• ωk |= ¬ϕ iff ωk 6|= ϕ

• ωk |= ϕ1 U≤T ϕ2 iff there exists i ∈ N such that
ωk+i |= ϕ2, Σ0<j≤i(tk+j − tk+j−1) ≤ T , and for
each 0 ≤ j < i, ωk+j |= ϕ1

Here is a simple example of temporal property expressed in
BLTL that can be verified with SMC:

ϕ = G≤T1(A→ F≤T2(B U≤T3 C))

The meaning of Pr(ϕ) is: What is the probability that during
the T1 time units of the system operation, if A holds then,
starting from T2 time units after, B happens before C within
T3 time units.

III. A RUNNING EXAMPLE

We will use a simple case study with a FIFO channel as
a running example (see Fig. 1 with the graphical notations
in [8]). This example illustrates how designers can create hi-
erarchical channels that encapsulate both design structure and
communication protocols. In the design, once a nanosecond the
producer will write one character to the FIFO with probability
p1, while the consumer will read one character from the
FIFO with probability p2. The FIFO which is derived from
sc channel encapsulates the communication protocol between
the producer and the consumer.

Fig. 1: Producer/consumer example

The FIFO channel is designed to ensure that all data is
reliably delivered despite the varying rates of production and
consumption. The channel uses an event notification hanshake
protocol for both the input and output. It uses a circular buffer
implemented within a static array to store and retrieve the items
within the FIFO. We assume that the sizes of the messages and
the FIFO buffer are fixed. Hence, it is obvious that the time
required to transfer completely a message, or message latency,
depends on the production and consumption rates, the FIFO
buffer size, the message size, and the probabilities of successful
writing and reading. The full implementation of the example
is given in Appendix A, in which the probabilities of writing
and reading are implemented with the Bernoulli distributions
with probabilities p1 and p2 respectively from GNU Scientific
Library (GSL) [9].

The quantitative analysis under consideration is: “What is
the probability that a message is transfered completely within
T1 nanoseconds during T nanoseconds of operation?” We
assume that the designer wants to check this property every
nanosecond, thus it computes the probability that at any time
point the message latency is smaller than T1 nanoseconds. This
kind of analysis can, thus, be conducted in the early design
steps. To formulate the underlying property more precisely,
we have to take into account the agreement protocol between
the producer and consumer, i.e., the simple protocal can be
every message has special starting delimiter with the character
’&’ and ending delimiter with the character ’@’. Thus, the
property can be translated in BLTL as follows:

ϕ = G≤T ((c read = ′&′)→ F≤T1
(c read = ′@′))

where c read is the character read in the FIFO by the
consumer. The input providing to the SMC checker is Pr(ϕ).
This property is expressed in terms of the characters read in
the FIFO by the consumer, but the communication protocal
between the producer and the consumer is abstracted at a very
high level. It is an illustration of the types of properties that
can be checked on TLM specifications. The verification of
such a property at the transaction level can be connected to its
counterpart at register-transfer level (RTL) in order to check
the correctness of RTL implementations.

IV. SMC FOR SYSTEMC MODELS

In order to apply SMC for SystemC models which exhibit
probabilistic and deterministic or non-deterministic charac-



teristics, this section presents the definitions of state and
execution trace of SystemC models. This section also shows
that the operational semantics of this class of SystemC models
is considered as stochastic processes.

A. SystemC Model State

Temporal logic formulas are interpreted over execution
traces and traditionally a trace has been defined as a sequence
of states in the execution of a model. Therefore before we can
define an execution trace we need a precise definition of the
state of a SystemC model simulation. We are inspired by the
definition of system state in [25], which consists of the state
of the simulation kernel and the state of the SystemC model.
We consider the external libraries as black boxes, meaning that
their states are not exposed.

The state of the kernel contains the information about the
current phase of the simulation (i.e., delta-cycle notification,
simulation-cycle simulation) and the SystemC events notified
during the execution of the model. The state of the SystemC
model is the full state of the C++ code of all modules in the
model, which includes the values of the module attributes, the
location of the program counter (i.e., a particular statement
is reached during the execution of the model, the function
calls), the call stack including the function execution, function
parameters and return values, and the status of the module pro-
cesses (i.e., suppended, runnable). We use V = {v0, ..., vn−1}
to denote the finite set of variables of primitive type (e.g, usual
scalar or enumerated type in C/C++) whose value domain DX
represents the states of a SystemC model.

We consider here some examples about states of the
simulation kernel and the SystemC model. Assume that a
SystemC model has an event named e, then the model state
can contain information such as the kernel is at the end of
simulation-cycle notification phase and the event e is notified.
Consider the running example again, a state can consist of the
information about the characters received by the consumer,
represented by the variable c read. It also contains the infor-
mation about the location of the program counter right before
and after a call of the function send() in the module Producer
that are represented by two Boolean variables send start and
send done, respectively, meaning that they hold the value true
immediately before and after a call of the function send().
Another example, we consider a module that consists several
statements at different locations in the source code, in which
these statements contain the devision operator “/” followed by
zero or more spaces and the variable “a” (e.g., the statement y
= (x + 1) / a). Then, a Boolean variable which holds the value
true right before the execution of all such statements can be
used as a part of the states.

We have discussed so far the state of a SystemC model
execution. It remains to discuss how the semantics of the tem-
poral operators is interpreted over the states in the execution
of the model. That means how the states are sampled in order
to make the transition from one state to another state. The
following definition gives the concept of temporal resolution,
in which the states are evaluated only at instances in which the
temporal resolution holds. It allows the user to set granularity
of time.

Definition 1 (Temporal resolution): A temporal resolution
Tr is a finite set of Boolean expressions defined over V which
specifies when the set of variables V is evaluated.

Temporal resolution can be used to define a more fine-grained
model of time than a coarse-grained one provided by a cycle-
based simulation. We call the expressions in Tr temporal
events. Whenever a temporal event is satisfied or the temporal
event occurs, V is sampled. For example, in the producer and
consumer model, assume that we want the set of variables to be
sampled whenever at the end of simulation-cycle notification or
immediately after the event write event is notified during a run
of the model. Hence, we can define a temporal resolution as the
following set Tr = {end sc, we notified}, where end sc and
we notified are Boolean expressions that have the value true
whenever the kernel phase is at the end of the simulation-cycle
notification and the event write event notified, respectively.

We denote the set of occurrences of temporal events from
Tr along an execution of a SystemC model by T sr , called a
temporal resolution set. The value of a variable v ∈ V at an
event occurrence ec ∈ T sr is defined by a mapping ξvval : T sr →
Dv , where Dv is the value domain of v. Hence, the state of the
SystemC model at ec is defined by a tuple (ξv0val, ..., ξ

vn−1

val ).

A mapping ξt : T sr → T is called a time event that
identifies the simulation time at each occurrence of an event
from the temporal resolution. Hence, the set of time points,
called time tag, which corresponds to a temporal resolution
set T sr = {ec0 , ..., ecN−1

}, N ∈ N, is given as follows.

Definition 2 (Time tag): Given a temporal resolution set
T sr , the time tag T corresponding to T sr is a finite or infinite
set of non-negative reals {t0, t1, ..., tN−1}, where ti+1 − ti =
δti ∈ R≥0, ti = ξt(eci).

B. Model and Execution Trace

A SystemC model can be viewed as a hierarchical network
of parallel communicating processes. Hence, the execution of
a SystemC model is an alternation of the control between the
model’s processes, the external libraries and the kernel process.
The execution of the processes is supervised by the kernel
process to concurrently update new values for the signals and
variables w.r.t the cycle-based simulation. For example, given
a set of runnable processes in a simulation-cycle, the kernel
chooses one of them to execute first in a non-deterministic
manner as described in the prior section.

Let V be the set of variables whose values represent the
states of a SystemC model. The values of variables in V are
determined by a given probability distribution (i.e., production
from all probability distributions used in the model) and chosen
in the non-deterministic manner of the SystemC simulation
scheduler, i.e., the order in which runnable processes are
executed is unspecified.

Given a temporal resolution Tr and its correspond-
ing temporal resolution set along an execution of the
model T sr = {ec0 , ..., ecN−1

}, N ∈ N, the evaluation of
V at the event occurrence eci is defined by the tuple
(ξv0val, ..., ξ

vn−1

val ), or a state of the model at eci , denoted by
V (eci) = (V (eci)(v0), V (eci)(v1), ..., V (eci)(vn−1)), where
V (eci)(vk) = ξvkval(eci) with k = 0, ..., n − 1 is the value
of the variable vk at eci . We denote the set of all possible



evaluations by VT s
r
⊆ DV , called the state space of the

random variables in V . State changes are observed only at
the moments of event occurrences. Hence, the operational
semantics of a SystemC model is represented by a stochastic
process {(V (eci), ξt(eci)), eci ∈ T sr }i∈N, taking values in
VT s

r
×R≥0 and indexed by the parameter eci , which are event

occurrences in the temporal resolution set T sr . An execution
trace is a realization of the stochastic process is given as
follows.

Definition 3 (Execution trace): An execution trace of a
SystemC model corresponding to a temporal resolution set
T sr = {ec0 , ..., ecN−1

}, N ∈ N is a sequence of states and event
occurrence times, denoted by ω = (s0, t0)...(sN−1, tN−1),
such that for each i ∈ 0, ..., N − 1, si = V (eci) and
ti = ξt(eci).

N is the length (finite or infinite) of the execution, also denoted
by |ω|. Let V ′ ⊆ V , the projection of ω on V ′, denoted by
ω ↓V ′ , is an execution trace such that |ω ↓V ′ | = |ω| and
∀v ∈ V ′, ∀ec ∈ T sr , V ′(ec)(v) = V (ec)(v).

C. Expressing Properties

Our approach allows users to refer to a rich set of atomic
propositions expressing the states of the kernel simulation and
the SystemC source code without requiring the users to write
the monitoring code or to write aspect-oriented programming
advices manually. The implementation provides a mechanism
to define the set of variables V above in order to expose the
states of a SystemC model. The variables can be used to expose
the simulation kernel phases, event notification, values of
module attributes, function calls, function execution, function
arguments and return values, and the status of processes.
Users declare the variables via a high-level language in a
configuration file as the input of our tool. For instance, refering
to the producer and consumer model, the declaration location
send start “%Producer::send()”:call declares a Boolean vari-
able send start that holds the value true immediately before
the execution of the model reaches a call site of the function
send() in the module Producer. The characters received by the
consumer which is represented by the variable c read can be
declared as attribute pnt con→c int c read, where pnt con is
a pointer to the Consumer object and c int is an attribute of
the Consumer moudle representing the received character. The
detailed syntax can be found in the tool manual2.

Atomic propositions are predicates defined over the set of
variables V . Using these predicates, users can define temporal
properties related to the states of the kernel and the SystemC
model. Recall the considered property of the running example,
the predicates which are defined over the variable c read are
c read =′ &′ and c read =′ @′. Another example, assume
that we want to answer the following question: “Over a period
of T time units, is the probability that the number of elements
in the FIFO buffer in between n1 and n2 is greater or equal
to θ with the confidence α?”. The predicates need to be
defined in order to construct the underlying BLTL formula
are n1 ≤ nelements and nelements ≤ n2, where nelements
is an integer variable that represents the current number of
elements in the FIFO buffer (it capptures the value of the
num elements attribute in the Fifo module). Then, the property

2https://project.inria.fr/plasma-lab/documentation/tutorial/mag manual/

can be translated in BLTL with the operator “always” as
follows. The input which is given to the checker is Pr≥θ(ϕ)
along with the confidence α.

ϕ = G≤T ((n1 ≤ nelements) & (nelements ≤ n2))

V. IMPLEMENTATION

We have implemented a SMC-based verification tool that
contains two main components: a monitor and aspect-advice
generator (MAG) and a statistical model checker (SystemC
Plugin). The flow of our tool is depicted in Fig. 2. The full
implementation of the monitor and aspect-advice generator and
the checker can be downloaded on the website of Plasma Lab3.

A. MAG and SystemC Plugin Implementation

In principle, the full state can be observed during the
simulation of the model. In practice, however, users define
a set of variables of interest, according to the properties that
the users want to verify, called observed variables, and only
these variables appear in the states of an execution trace. Given
a SystemC model, we use Vobs ⊆ V to denote the set of
variables, called observed variables, to expose the states of
the SystemC model. Then, the observed execution traces of
the model are the projections of the execution traces on Vobs,
meaning that for every execution trace ω, the corresponding
observed execution trace is ω ↓Vobs

. In the following, when we
mention about execution traces, we mean observed execution
traces.

Fig. 2: The framework’s flow

The implementation of MAG allows users to define a set
of observed variables that is used with a temporal resolution
to generate a monitor. The implementation based on the
techniques in [25], in which the SytemC model is instrumented
to communicate with the monitor. The generator generates an
aspect-advice file that is used by AspectC++ [6] to automati-
cally instrument the SystemC model. Then, the instrumented
model will produce a set of execution traces of the model. The
generated monitor evaluates the set of observed variables at
every time point at which an event of the temporal resolution
occurs during the SystemC model simulation. For example,
the exposing of c read is done by creating a communication
between the SystemC model code and the monitor, and instru-
menting the model code to communicate with the monitor. The
monitor defines a callback function and a variable c read, and
the instrumented model will call this function immediately at
the end of simulation-cycle notification. The execution of the
callback function consists of getting the current value of the
character received by the consumer and assigning it to c read.

Our statistical model checker is implemented as a plugin
of Plasma Lab [2] which establishes an interface between

3https://project.inria.fr/plasma-lab/download/plugins/

https://project.inria.fr/plasma-lab/documentation/tutorial/mag_manual/
https://project.inria.fr/plasma-lab/download/plugins/


Plasma Lab and the instrumented model being executed by
the SystemC simulator. In the current version, the communi-
cation is done via the standard input and output. The plugin
requests new states until the satisfaction of the formula to be
verified can be decided, which terminates because the temporal
operators are bounded. Similarly, the required number of
execution traces by the plugin depends on the hypothesis
testing algorithms in use (e.g., sequential hypothesis testing,
Monte Carlo simulation, or 2-sided Chernoff bound).

B. Running Verification

Running the verification tool consists of two steps as
follows. First, users define a set of observed variables and a
temporal resolution in a configuration file, as well as other
necessary information as an input for MAG to generate a
monitor and an aspect-advices file. Users then use AspectC++
to instrument the model. The instrumented model and the
generated monitor are compiled and linked together with the
SystemC kernel into an executable model in order to make a
set of execution traces. For example, refering to the running
example, users will define the set of observed variables Vobs =
{c read, nelements, end sc}, where c read is the character
read in the FIFO, nelements is the number of characters in
the FIFO buffer, and end sc is true whenever the kernel phase
is at the end of the simulation-cycle notification. The temporal
resolution will be defined as Tr = {end sc}, meaning that
a new state in execution traces is produced whenever the
simulation kernel is at the end of simulation-cycle notification
or every one nanosecond in the example since the time unit is
one nanosecond.

In the second step, the plugin of Plasma Lab is used to
verify the desired properties. The satisfaction checking of the
properties is brought out based on the set of execution traces
by executing the instrumented SystemC model and can be done
by several hypothesis testing algorithms provided by Plasma
Lab.

VI. EXPERIMENTAL RESULTS

We report the experimental results for the running example
and also demonstrate the use of our verification tool to
analyze the dependability of a large embedded control system.
The number of components in this system makes numerical
approaches such as PMC unfeasible. In both case studies, we
used the 2-sided Chernoff bound algorithm with the absolute
error ε = 0.02 and the confidence α = 0.98. The experiments
were run on machine with Intel Core i7 2.67 GHz processor
and 4GB RAM under the Linux OS with SystemC 2.3.0. The
analysis of the embedded and control system case study takes
almost 2 hours, in which 90 properties were verified.

A. Producer and Consumer

Let us go back to the running example in Section III, recall
that we want to compute the probability that the following
property ϕ expressed in BLTL satisfies every 1 nanosecond,
with the absolute error 0.02 and the level of confidence 0.98.
In this verification, both the FIFO buffer size and message size
are 10 characters including the starting and ending delimiters,
and the production and consumption rates are 1 nanosecond.

ϕ = G≤T ((c read = ′&′)→ F≤T1
(c read = ′@′))

p1\p2 0.3 0.6 0.9
0.6 0 0.0194 0.0720
0.9 0 0.0835 1

TABLE I: The probability that the message latency is smaller
than 25 in the first 5000 time units of operation

First, we check this property with the various values of
the probabilities p1 and p2. The results are given in Table I
with T = 5000 and T1 = 25 nanoseconds. It is trivial that
the probability that the message latency is smaller than T1
time increases when p1 and p2 increase. That means that, in
general, the latency is shorter when the either the probability
that the producer successfully writes to the FIFO increases, or
the probability that the consumer successfully reads from the
FIFO increases.

Fig. 3: The probability that the message latency is smaller than
T1 in the first T time units of operation

Second, we compute the probability that a message can be
sent completely (or the message latency) from the producer
to the consumer within T1 time over a period of T time of
operation, in which the probabilities p1 and p2 are fixed at
0.9. Fig. 3 shows this probability with different values of T1
over T = 10000 nanoseconds. It is observed that the message
latency is almost smaller than 18 nanoseconds.

B. An Embedded Control System

This case study is closely based on the one presented in
[22], [15] but contains much more components. The system
consists of an input processor (I) connected to 50 groups of 3
sensors, an output processor (O), connected to 30 groups of 2
actuators, and a main processor (M ), that communicates with
I and O through a bus. At every cycle, 1 minute, the main
processor polls data from the input processor that reads and
processes data from the sensor groups. Based on this data, the
main processor constructs commands to be passed to the output
processor for controlling the actuator groups. For instance,
the input sensors can measure the fluid level, temperature, or
pressure, while the commands sent to actuators could be used
for controlling valves.

The reliability of the system is affected by the failures
of the sensors, actuators, and processors. The probability of
bus failure is negligible, hence we do not consider it. The
sensors and actuators are used in 37−of−50 and 27−of−30
modular redundancies, respectively. That means if at least 37
sensor groups are functional (a sensor group is functional if
at least 2 of the 3 sensors are functional), the system obtains



enough information to function properly. Otherwise, the main
processor is reported to shut the system down. In the same
way, the system requires at least 27 functional actuator groups
to function properly (a actuator group is functional if at least
1 of the 2 actuators is functional). Transient and permanent
faults can occur in processors I or O and prevent the main
processor(M ) to read data from I or send commands to O.
In that case, M skips the current cycle. If the number of
continuously skipped cycles exceeds the limit K, the processor
M shuts the system down. When a transient fault occurs in
a processor, rebooting the processor repairs the fault. Lastly,
if the main processor fails, the system is automatically shut
down. The mean times to failure for the sensors, the actua-
tors, and the processors are 1 month, 2 months and 1 year,
respectively. The mean time to transient failure is 1 day and
I/O processors take 30 seconds, 1 time unit, to reboot.

The reliability of the system is modeled as a CTMC [20],
[27], [7] that is realized in SystemC, in which a sensor group
has 4 states (0, 1, 2, 3, the number of working sensors), 3
states (0, 1, 2, the number of working actuators) for an actuator
group, 2 states for the main processor (0: failure, 1: functional),
and 3 states for I/O processors (0: failure, 1: transient failure,
2: functional). A state of the CTMC is represented as a tuple
of the component’s states, and the mean times to failure define
the delay before which a transition between states is enabled.
The delay is sampled from a negative exponential distribution
with parameter equal to the corresponding mean time to failure.
Hence, the model has about 2155 states comparing to the model
in [15] with about 210 states, that makes the PMC technique
is unfeasible. That means the state explosion likely occurs,
even with some abstraction, i.e., symbolic model checking is
applied. The full implementation of the SystemC code of this
case study can be obtained at the website of our tool4.

We define four types of failures: failure1 is the failure of
the sensors, failure2 is the failure of the actuators, failure3
is the failure of the I/O processors and failure4 is the failure
of the main processor. For example, failure1 is defined by
(number sensors < 37)∧ (proci status = 2). It specifies
that the number of working sensor groups has decreased below
37 and the input processor is functional, so that it can report the
failure to the main processor. We define failure2, failure3,
and failure4 in a similar way.

In our analysis which is based on the one in [15] with
K = 4, in which the properties are checked every 1 time
unit. First, we try to determine which kind of component
is more likely to cause the failure of the system, meaning
that we determine the probability that a failure related to a
given component occurs before any other failures. The atomic
proposition shutdown =

∨4
i=1 failurei indicates that the

system has shut down because one of the failures has occurred,
and the BLTL formula ¬shutdown U≤T failurei states that
the failure i occurs within T time units and no other failures
have occurred before the failure i occurs. Fig. 4 shows the
probability that each kind of failure occurs first over a period
of 30 days of operation. It is obvious that the sensors are
likelier to cause a system shutdown. At T = 20 days, it seems
that we reached a stationary distribution indicating for each
kind of component the probability that it is responsible for the

4https://project.inria.fr/plasma-lab/embedded-control-system/

failure of the system.

Fig. 4: The probability that each of the 4 failure types is the
cause of system shutdown in the first T time of operation

For the second part of our analysis, we divide the states
of system into three classes: “up”, where every component
is functional, “danger”, where a failure has occurred but the
system has not yet shut down (e.g., the I/O processors have
just had a transient failure but they have rebooted in time),
and “shutdown”, where the system has shut down [15]. We
aim to compute the expected time spent in each class of states
by the system over a period of T time units. To this end, we
add in the model, for each class of state c, a random variable
reward c that measures the time spent in the class c. In our
tool, the formula X≤T reward c returns the mean value of
reward c after T time of execution. The results are plotted
in Fig. 5. From T = 20 days, it seems that the amounts of
time spent in the “up” and “danger” states are converged at
101.063 = 11.57 days and 10−1.967 = 0.01 days, respectively.
Due to the lack of space, we present the other parts of the
analysis in Appendix B.

Fig. 5: The expected amount of time spent in each of the states:
“up”, “danger” and “shutdown”

VII. RELATED WORK AND CONCLUSION

Some work has been carried out for analyzing stochastic
systems with PMC, for example, the dependability analysis of
control system with PRISM [15]. PRISM supports construction
and analysis of models as Markov chains, determining whether
the model satisfies each property expressing in LTL. For
example, the exact probabilities can be computed by PRISM.
However, the main drawback of this approach is that when
it deals with real-world large size systems which make the
PMC technique is unfeasible, even with some abstraction,

https://project.inria.fr/plasma-lab/embedded-control-system/


i.e., symbolic model checking with Ordered Binary Decision
Diagrams (OBDDs), is applied.

There has been a lot of work on the formalization of
SystemC [10], [19]. The goal is to extract a formal model
from a SystemC program, so that tools like model-checkers
can be applied. However, all these formalizations consider
semantics of SystemC and its simulator in some form of global
model, and they also suffer from the state space explosion
when dealing with industrial and large systems.

Tabakov et al. [25] proposed a framework for monitoring
temporal SystemC properties. This framework allows users ex-
press the verifying properties by fully exposing the semantics
of the simulator as well as the user-code. They extend LTL by
providing some extra primitives for stating the atomic propo-
sitions and let users define a much finer temporal resolution.
Their implementation consists of a modified simulation kernel,
and a tool to automatically generate the monitors and aspect
advices for applying Aspect Oriented Programming (AOP) [6]
to instrument SystemC programs automatically.

This paper presents the first attempt to verify non-trivial
temporal properties of SystemC model with statistical model
checking techniques. The framework contains two main com-
ponents: a monitor generator that automatically instruments
the SUV based on the properties to verify, and a statistical
model checker implementing a set of hypothesis testing algo-
rithms. We use the techniques proposed by Tabakov et al. [25]
to automatically generate the monitor corresponding to the
properties to verify. The statistical model checking is done
by Plasma-lab [2], that we extended with a plugin.

In comparison to the probabilistic model checking, our
approach allows users to handle large industrial systems as
well as to expose a rich set of user-code primitives by auto-
matically instrumenting the SystemC code with AspectC++ .
For instance, our verification framework is used to analyze
the dependability of large industrial computer-based control
systems as shown in the case study.

Currently, we consider an external library as a “black box”,
meaning that we do not consider the states of external libraries.
Thus, arguments passed to a function in an external library
cannot be monitored. For future work, we would like to allow
users to monitor the states of the external libraries with the
future version of AspectC++. We also plan to apply statistical
model checking to verify temporal properties of SystemC-
AMS (Analog/Mixed-Signal).
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APPENDIX A: RUNNING EXAMPLE IMPLEMENTATION

The SystemC Source Code
1 #ifndef FIFO_IF
2 #define FIFO_IF
3 #include <systemc.h>
4

5 class fifo_write_if : virtual public sc_interface {
6 public:
7 virtual void fifo_write(char) = 0;
8 virtual void fifo_reset() = 0;
9 };

10

11 class fifo_read_if : virtual public sc_interface {
12 public:
13 virtual void fifo_read(char&) = 0;
14 virtual int fifo_num_available() = 0;
15 };
16

17 #endif

Listing 1: The fifo if.h

1 #ifndef BASE_CHANNEL_H
2 #define BASE_CHANNEL_H
3 #include <systemc.h>
4 #include "fifo_if.h"
5

6 class Fifo : public sc_channel, public fifo_write_if,
public fifo_read_if {

7 private:
8 enum e {max = 10}; // capacity of the fifo
9 char data[max];

10 int num_elements, first;
11 sc_event write_event, read_event;
12

13 public:
14 Fifo(sc_module_name name) : sc_channel(name),

num_elements(0), first(0) {}
15

16 void fifo_write(char c) {
17 if (num_elements == max) {
18 wait(read_event);
19 }
20

21 data[(first + num_elements) % max] = c;
22 ++num_elements;
23 write_event.notify();
24 }
25

26 void fifo_read(char &c) {
27 if (num_elements == 0) {
28 wait(write_event);
29 }
30

31 c = data[first];
32 --num_elements;
33 first = (first + 1) % max;
34 read_event.notify();
35 }
36

37 void fifo_reset() {
38 num_elements = 0;
39 first = 0;
40 }
41

42 int fifo_num_available() {
43 return num_elements;
44 }
45 };
46

47 #endif

Listing 2: The fifo.cpp

1 #ifndef CONSUMER_H
2 #define CONSUMER_H
3

4 #include <systemc.h>
5 #include <tlm.h>
6 #include "fifo.cpp"
7 #include "utils.h"
8 #include <gsl/gsl_rng.h>

9 #include <gsl/gsl_randist.h>
10 #include <gsl/gsl_cdf.h>
11

12 SC_MODULE(Consumer) {
13 SC_HAS_PROCESS(Consumer);
14 public:
15 // Definitions of ports
16 sc_port<fifo_read_if> in; // input port
17 // Constructor
18 Consumer(sc_module_name name, int c_init, gsl_rng *rnd);
19 // Destructor
20 ˜Consumer() {};
21 // Definition of processes
22 void main();
23 // Reading function
24 void receive(char &c);
25

26 private:
27 // Reading character in ASCII
28 int c_int;
29 gsl_rng *r;
30 };
31

32 #endif

Listing 3: The consumer.h

1 #include "consumer.h"
2

3 Consumer::Consumer(sc_module_name name, int c_init, gsl_rng

*rnd) {
4 c_int = c_init;
5 r = rnd; // random generator
6

7 SC_THREAD(main);
8 }
9

10 void Consumer::receive(char &c) {
11 in->fifo_read(c);
12 c_int = c;
13 }
14

15 void Consumer::main() {
16 char c;
17 while (true) {
18 // use the Bernoulli distribution in GSL
19 int b = get_bernoulli(r,0.90);
20 if (b) {
21 receive(c);
22 }
23

24 wait(1,SC_NS); // waits for 1 nanosecond
25 }
26 }

Listing 4: The consumer.cpp

1 #ifndef PRODUCER_H
2 #define PRODUCER_H
3

4 #include <systemc.h>
5 #include <tlm.h>
6 #include "fifo.cpp"
7 #include "utils.h"
8 #include <gsl/gsl_rng.h>
9 #include <gsl/gsl_randist.h>

10 #include <gsl/gsl_cdf.h>
11

12 SC_MODULE(Producer) {
13 SC_HAS_PROCESS(Producer);
14 public:
15 // Definitions of ports
16 sc_port<fifo_write_if> out; // output port
17 // Constructor
18 Producer(sc_module_name name, int c_init, gsl_rng *rnd);
19 // Destructor
20 ˜Producer() {};
21 // Definition of processes
22 void main();
23 // Writing function
24 void send(char c);
25

26 private:



27 int c_int;
28 gsl_rng *r;
29 };
30

31 #endif

Listing 5: The producer.h

1 #include "producer.h"
2

3 Producer::Producer(sc_module_name name, int c_init, gsl_rng

*rnd) {
4 c_int = c_init;
5 r = rnd; // random generator
6

7 SC_THREAD(main);
8 }
9

10 void Producer::send(char c) {
11 out->fifo_write(c);
12 c_int = c;
13 }
14

15 void Producer::main() {
16 const char* str = "&abcdefgh@";
17 const char* p = str;
18 while (true) {
19 int b = get_bernoulli(r,0.90);
20 if (b) {
21 send(*p);
22 p++;
23 if (!*p) {
24 p = str;
25 }
26 }
27 wait(1,SC_NS); // waits for 1 nanosecond
28 }
29 }

Listing 6: The producer.cpp

1 #include <time.h>
2 #include "fifo.cpp"
3 #include "consumer.h"
4 #include "producer.h"
5

6 #include <gsl/gsl_rng.h>
7 #include <gsl/gsl_randist.h>
8 #include <gsl/gsl_cdf.h>
9 // The monitor generated by MAG

10 #include "monitor.h"
11

12 int sc_main(int argc, char *argv[]) {
13 // random generator in GSL
14 const gsl_rng_type *T;
15 gsl_rng *r;
16 gsl_rng_env_setup();
17 T = gsl_rng_default;
18 r = gsl_rng_alloc(T);
19 // seed the generator
20 srand(time(NULL));
21 gsl_rng_set(r,random());
22

23 sc_set_time_resolution(1,SC_NS); // time unit
24 Fifo afifo("fifo"); // create a channel fifo
25 Producer prod("producer",-1,r);
26 Consumer cons("consumer",-1,r);
27 prod.out(afifo); // the producer binding
28 cons.in(afifo); // the consumer binding
29 // the observer for Instrumented model
30 mon_observer* obs = local_observer::createInstance(1,
31 &cons,
32 &prod);
33 sc_start();
34 gsl_rng_free (r); // release the generator
35 return 0;
36 }

Listing 7: The main.cpp

Observed Variables, Temporal Resolution, and Properties

1 # Where to output the monitor
2 output_file ./monitor.cpp
3

4 # The (class) name of the generated monitors
5 mon_name monitor
6

7 # Plasma project file
8 plasma_file /PLASMA_Lab-1.3.0/fifo/fifo.plasma
9

10 # Plasma project name
11 plasma_project_name fifo
12

13 # Plasma model name
14 plasma_model_name fifo_model
15

16 # Instrumented executable SystemC model
17 plasma_model_content /PLASMA_Lab-1.3.0/fifo/fifo
18

19 # Set to write traces to a file
20 write_to_file false
21

22 # Declare monitors as friend to adder class
23 usertype Consumer
24 usertype Producer
25

26 # Example of how to declare type of non-native variables
27 type Consumer *pnt_con
28 type Producer *pnt_pro
29

30 # Module attributes
31 attribute pnt_con->c_int c_read
32 attribute pnt_pro->c_int c_write
33

34 # Attribute type
35 att_type int c_read
36 att_type int c_write
37 att_type int n_elements
38

39 # Time resolution
40 time_resolution MON_TIMED_NOTIFY_PHASE_END
41

42 # Properties
43 formula G<=#10000((c_read = 38) => (F<=#15(c_read = 64)))
44

45 # Includes the files
46 include consumer.h
47 include producer.h

Listing 8: The configuration file for MAG

APPENDIX B: ADDITIONAL EXPERIMENTAL RESULTS

In addition to the analysis in Section VI-B, we study the
probability that each of the four types of failure eventually
occurs in the first T time of operation. This is done using the
BLTL formula F≤T (failurei). Fig. 6 plots these probabil-

Fig. 6: The probability that each of the 4 failure types in the
first T time of operation

ities over the first 30 days of operation. We observe that the
probabilities that the sensors and I/O processors eventually fail
are more than the others do. In the long run, they are almost
the same and approximate to 1, meaning that the sensors and



Fig. 7: Expected number of reboots that occur in the first T
time of operation

Fig. 8: Expected number of functional sensor and actuator
groups in the first T time of operation

I/O processors will eventually fail with probability 1. The main
processor has the smallest probability to eventually fail.

Finally, we approximate the number of reboots of the I/O
processors, and the number sensor groups, actuator groups that
are functional over time by computing the expected values of
random variables that count the number of reboots, functional
sensor and actuator groups. The results are plotted in Fig. 7
and Fig. 8. It is obvious that the number of reboots of both
processors doubles the number of reboots of each processor
since they have the same behavior.
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