Advanced Cloud Infrastructures

From Data Centers to Fog Computing (part 2)
Guillaume Pierre

Master 2 CCS & SIF, 2017

Advanced Cloud Infrastructures 1/45

Fog computing is...
A system-level architecture
to extend

Compute
Network

Storage

Capability of Cloud to the
edge of the loT network

ulewoq o4

Data Center / Cloud

Transactional response times

Advanced Cloud Infrastructures

Source: Cisco

2/ 45

@ Fog applications taxonomy
=] F = = DA

Advanced Cloud Infrastructures

L85

Computation
Offloading

oon

Internet of tings.

‘Surveilance camera

@ Parts of the application is offloaded out of the mobile device

http://slideplayer.com/slide/5737709/

http://slideplayer.com/slide/5737709/

(example application)

Advanced Cloud Infrastructures

DA

https://youtu.be/dp6QhhExP30

loT

Optimized sensor data processing with Fog Computing

‘Added latency Optimize network traffic
Excess bandwidth consumption Localized decision making

Additional security risks
More cloud processing required
i

https://www.networkworld.com/article/3147085/internet-of - things/

which-iot-applications-work-best-with-fog-computing.html

@ Data processing is intelligently partitioned between fog nodes co-located
with loT devices and the cloud.

@ This enables real-time tracking, anomaly detection, and collection of insights
from data captured over long intervals of time.

Advanced Cloud Infrastructures Fog applications taxonomy 6 /45

https://www.networkworld.com/article/3147085/internet-of-things/which-iot-applications-work-best-with-fog-computing.html
https://www.networkworld.com/article/3147085/internet-of-things/which-iot-applications-work-best-with-fog-computing.html

We can derive system-level requirements for a fog computing platform from
the reference applications:

Q@ A complete cloud-like service offering

Context-aware application/data placement and resource scheduling
Fog computing infrastructure management and control

Efficient software deployment

Efficient container live-migration

Efficient data storage

©0 0000

Software engineering methodologies and middlewares suitable for fog
computing scenarios

©

And many other open research topics. . .

Advanced Cloud Infrastructures Fog applications taxonomy 7/45

© From centralized clouds to decentralized fogs
=] F = = DA

l Your Applications
OpenStack Dashboard

i OPENSTACK
J CLOUD CPERATING SYSTEM
Networking
/ o N
OpenStack Shared Services
Standard Hardware

Advanced Cloud Infrastructures

https://hal.inria.fr/hal-01273427

https://hal.inria.fr/hal-01273427

.
Administrative tools, : : Compute ! ' Storage
Information manager, ' manager . ! manager
Accounting/Auditing * : . .
.o P
1 1 !
KeyStone S ' '

e

P L e

DA

u]
o)
1
n
it

Advanced Cloud Infrastructures

Nova
Scheduler

P

,~*"Non-Relational .

e

-

o p .
Advanced Cloud Infrastructures

Nova

Network

Nova
Conductor

Nova
Compute

-
Al

AMQP .-
bus -

Site 1

~
~
~

Nova

n-cond
n-api
nenet
n-cpu
horizon

Site 4

. /’
.
Nova #
Controller 5 n-sched

Compute .
Node

n-cond
n-api
nonet
n-cpu
horizon

Nova Controller 4
and compute node

Site3

Key/Value Store

ncpu
Rorzon Controfler 1 IS AMQP
N
> bus
\
\
N

n s=hédf:0ntmller Z- -

. D

e

2 L mm..
) C

n-sched N

n-cond

norizon

Controller 3

v Site 2

@ Replacing MySQL with Redis is not as easy as it sounds:

v

Distributed locking system

» Support for atomic updates
» Create secondary index to support join queries
>

Advanced Cloud Infrastructures

[m] = =

@ The internal OpenStack message bus is based on RabbitMQ
» Simple, robust, perfect in a single data center environment
» Centralized architecture based on a single broker node
» Every message queue is mirrorred in every node

@ Problem: RabbitMQ is very sensitive to network latency!
= Replace RabbitMQ with a P2P message bus (ActiveMQ, ZeroMQ). ..

13 / 45

Advanced Cloud Infrastructures From centralized clouds to decentralized fogs

Decentralized clouds 7 fogs

@ OpenStack is suitable for highly distributed clouds but not for fogs
» Lots of heavyweight processes
» VMs are not suitable for very small machines
= Let's move to container-based technologies

Kubernetes Master

API
Nodes | ‘ Pods ‘ ‘ Replication Controllers ‘ ‘ Services |
| Scheduler
| ETCD
Kubernetes Node Kubernetes Node Kubernetes Node

Kubelet Kubelet Kubelet
Pod | container Pod | container ‘ Pod | container Pod | container ‘ Pod | container Pod | container ‘

8- docker - docker - docker

$ LXC containers $ LXC containers $ LXC containers
Linux A Linux A Linux A

L o o

Advanced Cloud Infrastructures From centralized clouds to decentralized fogs 14 / 45

© Container deployment in an edge-cloud server

o & = E DA
Advanced Cloud Infrastructures

@ The RPI is quite a powerful machine
» 4-core ARM CPU
» GPU

» Excellent performance/price/energy ratio

= & = E DA
Advanced Cloud Infrastructures

@ The RPI is quite a powerful machine
» 4-core ARM CPU
» GPU

» Excellent performance/price/energy ratio

@ But it also faces major performance challenges
» Limited memory (1GB)
» Slow disk 1/0

» Slow network throughput

o = = = Q>
Advanced Cloud Infrastructures

_ Using a RPI as a cloud seryer

@ The RPI is quite a powerful machine

» 4-core ARM CPU
» GPU
» Excellent performance/price/energy ratio

@ But it also faces major performance challenges

» Limited memory (1GB)
» Slow disk 1/0
» Slow network throughput

e Traditional cloud systems were not designed for such environments

» The RPI is an extreme case, but researchers using other “small”
machines are facing exactly the same challenges

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 16 / 45

@ SD Cards were designed to store photos, videos, etc.

» Small number of large files
= Large physical block sizes

@ But Linux file systems expect small blocks by default

1= Tune the file system for larger blocks
iz Align partitions on the erase block boundaries (multiples of 4 MB)

http://3gfp.com/wp/2014/07/formatting- sd- cards-for- speed-and- lifetime/

Advanced Cloud Infrastructures Container deployment in an edge-cloud server

17 / 45

http://3gfp.com/wp/2014/07/formatting-sd-cards-for-speed-and-lifetime/

 Generic operating system Hui g S N

Swappiness is the kernel parameter that defines how much (and how often)
your Linux kernel will copy RAM contents to swap. This parameter’s
default value is “60” and it can take anything from “0” to “100". The higher
the value of the swappiness parameter, the more aggressively your kernel

WI// swap. https://www.howtoforge.com/tutorial/linux- swappiness/

What's the right swappiness value for us?

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 18 / 45

https://www.howtoforge.com/tutorial/linux-swappiness/
https://hal.inria.fr/hal-01446483v1

 Generic operating system Hui g S N

Swappiness is the kernel parameter that defines how much (and how often)
your Linux kernel will copy RAM contents to swap. This parameter’s
default value is “60” and it can take anything from “0” to “100". The higher
the value of the swappiness parameter, the more aggressively your kernel

WII/ swap. https://www.howtoforge.com/tutorial/linux- swappiness/

What's the right swappiness value for us?
@ RPIl-specific linux distributions set it to a very low value (e.g., 1)

@ We changed it to the maximum value: 100

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 18 / 45

https://www.howtoforge.com/tutorial/linux-swappiness/
https://hal.inria.fr/hal-01446483v1

Generic

Swappiness is the kernel parameter that defines how much (and how often)
your Linux kernel will copy RAM contents to swap. This parameter’s
default value is “60” and it can take anything from “0” to “100". The higher
the value of the swappiness parameter, the more aggressively your kernel

VVV// swap. https://www.howtoforge.com/tutorial/linux- swappiness/

What's the right swappiness value for us?
@ RPIl-specific linux distributions set it to a very low value (e.g., 1)

@ We changed it to the maximum value: 100

» If your machine is going to swap anyway (because of small memory),
then better do it out of the critical path

» Also the file system cache makes use of all the unused RAM

» Actually this results in less /0. ..

https://hal.inria.fr/hal-01446483v1

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 18 / 45

https://www.howtoforge.com/tutorial/linux-swappiness/
https://hal.inria.fr/hal-01446483v1

o Let's deploy a very simple Docker container on the RPI3
» Standard ubuntu container (~45MB) + one extra 51-MB layer

3000

Network and Disk activities during container deployment

2500

2000

1500 -

1000 [

Network Throughput (KB/s)

500

Advanced Cloud Infrastructures

T

T

100

Time(s)

T

150

Received(KB/s) ——
Disk Write(KB/s
CPU usage(%]

200

10000

-1 8000

- 6000

- 4000

2000

250

Disk 110 (KB/s)

o Let's deploy a very simple Docker container on the RPI3
» Standard ubuntu container (~45MB) + one extra 51-MB layer

Network and Disk activities during container deployment

3000 T T T T 10000
Received(KB/s) ——
Disk Write(KB/s)
CPU usage(%) ——
2500 4
-1 8000
2 2000 F B
2 + 6000
E; 1500 =
2
é - 4000
% 1000 -
=4
500] 2000
0 0
50 100 150 200 250
Time(s)
o Total deployment time: about 4 minutes!!!
1 Can we make that faster?
=] =

Advanced Cloud Infrastructures

Disk 110 (KB/s)

How

@ A container image is composed of multiple layers
» Each layer complements or modifies the previous one
» Layer 0 with the base OS, layer 1 with extra config files, layer 2 with
the necessary middleware, layer 3 with the application, layer 4 with a
quick-and-dirty fix for some wrong config file, etc.

@ What takes a lot of time is bringing the image from the external
repository to the raspberry pi
» Starting the container itself is much faster

@ Deployment process:

© Download all layers simultaneously
© Decompress and extract each layer to disk sequentially
@ Start the container

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 20 / 45

How

@ A container image is composed of multiple layers
» Each layer complements or modifies the previous one
» Layer 0 with the base OS, layer 1 with extra config files, layer 2 with
the necessary middleware, layer 3 with the application, layer 4 with a
quick-and-dirty fix for some wrong config file, etc.

@ What takes a lot of time is bringing the image from the external
repository to the raspberry pi
» Starting the container itself is much faster

@ Deployment process:

© Download all layers simultaneously
© Decompress and extract each layer to disk sequentially
@ Start the container

Question: What's wrong with this?

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 20 / 45

_ Sequential layer download

@ Observation: parallel downloading delays the time when the first
download has completed

@ Idea: let’s download layers sequentially. This should allow the
deployment process to use the bandwidth and disk I/O simultaneously

Standard Docker deployment

Download layer 1 Extract layer 1
Download layer 2 N Extract layer 2
!
Download layer 3 Extract layer 3
B Time
Our proposal
 Download layer 1 Extract layer 1 ,
Download layer 2 | Extract layer 2
Dgwnload layer 3 Extract layer 3,
B Time

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 21 /45

@ Observation: parallel downloading delays the time when the first
download has completed

@ Idea: let’s download layers sequentially. This should allow the
deployment process to use the bandwidth and disk I/O simultaneously

Standard Docker deployment

Download layer 1 Extract layer 1
Download layer 2 N Extract layer 2
!
Download layer 3 Extract layer 3
B Time
Our proposal
 Download layer 1 Extract layer 1 ,
Download layer 2 | Extract layer 2
Dgwnload layer 3 Extract layer 3,
B Time

@ Performance gains:

» ~3-6% on fast networks
» ~6-12% on slow (256 kbps) networks
» Best gains with several big layers + slow networks

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 21 /45

@ Image layers are always delivered in compressed form, usually with gzip
» Docker calls gunzip to decompress the images

» But gunzip is single-threaded while RPis have 4 CPU cores!

@ Let's use a multithreaded gunzip implementation instead

= & = A
Advanced Cloud Infrastructures

 Let's speed up the decompreSSiO NI

@ Image layers are always delivered in compressed form, usually with gzip

» Docker calls gunzip to decompress the images
» But gunzip is single-threaded while RPis have 4 CPU cores!

@ Let's use a multithreaded gunzip implementation instead
@ Performance improvement: ~15-18% on the entire deployment

process
» Much more if we look just at the decompression part of the process. . .

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 22 /45

threads per layer

o Idea: let's split the download/decompress/extract process into three

» And pipeline the three parts: start the decompression and extract
processes as soon as the first bytes are downloaded
1= |ntersting thread synchronization exercise. .. @

Layer O >)ownload >ecompres> Extract
\
Layer 1

Layer 2

\Download >ecompress Extract
\

>Jownload >ecompress Extract
- o _ p .
Advanced Cloud Infrastructures

threads per layer

o Idea: let's split the download/decompress/extract process into three

» And pipeline the three parts: start the decompression and extract
processes as soon as the first bytes are downloaded
1= |ntersting thread synchronization exercise. .. @

Layer O >)ownload >ecompres> Extract
\
Layer 1

Layer 2

\Download >ecompress Extract
\

>Jownload >ecompress Extract
@ Performance improvement: ~ 20-55%
L o

Network and Disk activiies during container deployment Network and Disk activies during container deployment
3000 T T T T 10000 3000 T T T T T — 10000
Received(KE/s) Received(KE/S)
Digk Write(KB/S) —— Digk Write(KB/S) ——
CPU usage(%) —— CPU Usage(®) ——
2500 - q 2500 q
1 s000] 8000
2 2000 [2 2000 1
< =
< 00 B = {6000 5
El s i 3
) < 5 <
3 is00 - o g 100 1 °
£ ¥ = %
‘§ 4000 O ‘§ - 4000 ©
5 1000 [F 1000 1
2 2
2000 1 2000
500 500]
0 - A 0 0 A 0
50 250 10 20 20) 50 60
Time(s) Time(s)

Before After

e Combined performance gain: 17-73%
» Lowest gains obtained with low (256 kbps) networks. The network is
the bottleneck, not many local optimizations are possible
» When using a “decent” network connection: ~50—-73% gains

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 24 / 45

@ Live container migration

o & = E DA
Advanced Cloud Infrastructures

© Resources are fixed but users are mobile
@ Churn

© Workload fluctuations

@ Consolidation

@ Competing applications

= & DA
Advanced Cloud Infrastructures

ie Miaration

puting - Part ||

VM running normally on | Stage 0: Pre-Mi;
Host A Active VM on A
Alternate physical host may be preselected fa mlgrﬂm
Block devices mit d and free
Stage 1: Reservation
Initialize a container on the target host
Overhead due to copying Stage 2: lterative Pre-copy
Enable shadow paging 2
Copy dirty pages in successive rounds
6..2-;..};""""';3_"‘;; """ R -
(VM Out of Service) S Voo I:‘:-' i

VM runming normally on
Host B

https://www.slideshare.net/mhajibaba/

cloud-computing-principles-and-paradigms-5-virtual-machines-provisioning-and-migration-services

Generate ARP 10 redirect traffic 1o Host B

Synchronize all remaining VM state 1o Host B

Stage & Commitment i

VM state on Host A is released
................. # e —————
Stage 5: Activation %

VM starts on Host B

Connects 1o local devices

resumes normal operation

DA

Advanced Cloud Infrastructures

https://www.slideshare.net/mhajibaba/cloud-computing-principles-and-paradigms-5-virtual-machines-provisioning-and-migration-services
https://www.slideshare.net/mhajibaba/cloud-computing-principles-and-paradigms-5-virtual-machines-provisioning-and-migration-services

Live migration effect (on a running web server)

Effect of Migration on Web Server Transmission Raie

1 st procopy, 62 sces further jtcrations

765 Mbivsec i

Theoughput (Mbit'sec)

4 168 ms total dewntirme.

T Bample over 100 8

» Sample over S00 ms

© s & M @ w0 e 1w 10
Elapsed time {secs)

Presented by Majid Hajibaba

[m] = = =

DA
Advanced Cloud Infrastructures

@ The new LXD container system supports live migration
» Checkpoint/restart based on CRIU-2.0
» Requires a very recent Linux kernel
» Still announced as very experimental. . .
» ...and the mixed 64-bit (hardware) + 32-bit (OS) configuration of
Raspberry Pls is very confusing for CRIU

u]
o)
I
i
it
€
P
€

Advanced Cloud Infrastructures

A possible altemative: DM T

e DMTCP (Distributed MultiThreaded CheckPointing) checkpoints
processes in user space

» It also checkpoints open file descriptors, PID, sockets, etc.
» And it replaces them with a “dummy” at the destination node to avoid
name clashes

1 No kernel support required!

» And a container is nothing more than a group of processes. ..
» We “just” need support for statically-linked executables and for Linux
namespaces

http://dmtcp.sourceforge.net/

Advanced Cloud Infrastructures Live container migration 30 /45

http://dmtcp.sourceforge.net/

November Cloud Computing - Part Il 10
g 2
Migration
IR otion
[

‘VM

e
o

woam

L

Presented by Majid Hajibaba

the data as well
Advanced Cloud Infrastructures

@ In a cloud environment we can rely on network-attached storage

[m] = =

@ But in a fog it is pointless to migrate an application without migrating

D¢

_ Another alternative: elasticitys e S CH I

@ We expect many fog applications to be elastic
» Easy support for dynamically adding/removing nodes

@ Can migration be just a special case of elasticity?
» Start with X pods
» Scale up to X + 1 pods, make sure the new pod is created at the right

location
» Scale down to X pods, make sure to choose which pod gets stopped

@ The hard parts:
» When can we issue the scale-down operation? Liveness probes
» What about the application state?

Advanced Cloud Infrastructures Live container migration 32 /45

© Data storage

o & = E DA
Advanced Cloud Infrastructures

Da

@ Where should we store fog user’s data?
» In the fog node where data were produced?
» Replicate in nearby nodes as well?
» Replicate in all nodes? In all sites?
i At least we need to make data available from everywhere (with decent
performance)

@ IPFS: the InterPlanetary File System
» Actually this is a data store rather than a file system: objects are
immutable
» Objects are stored locally and registered in a DHT to allow remote
access
» But IPFS is not aware of the fog topology

* If an object is available in another node of the same site, IPFS will not
prefer this location rather than another site

Advanced Cloud Infrastructures Data storage 34 /45

IPFS global DHT

Scale-Out NAS

@ Each node first checks if an object is present in the local NAS
@ Otherwise it locates it using the DHT, and copies it locally for further
usage

https://hal.archives-ouvertes.£r/hal-01483702

Advanced Cloud Infrastructures

https://hal.archives-ouvertes.fr/hal-01483702

g
g

IPFSalnnsI (default appm'ach) —

IPFS alonnaI (default apprn'ach) —
! IPFS on top of RozoFS

IPFS on top of RozoFS

=}

=3

:

1x 1MB 10 x 1IMB 100 x 1MB 1x1MB 10 x 1MB 100 x 1MB

o4
i

e

Amount of data sent between fog sites (MB)
Amount of data sent between fog sites (MB)

4
2

2
=4

(a) — Write (b) — Read

[m] = = =

Advanced Cloud Infrastructures

D¢

IPFS alone (default approach

. |
IPFS alone (default n 9 —
S alone (default approach) 1 IPFS on top of RazoFS)

PFS on top of RozoFS mzzzzrma

: 8 8

s 3

Amount of data sent between fog sites (MB)
=5
i

Amount of data sent between fog sites (MB)
5

,,,,,] 1 T
! I
01 o el el e . 0.1
0.01 0.01 EZE ﬁ %
1x1MB 10x1MB 100 x IMB 1x1MB 10x1MB 100 x IMB
(a) — First read (b) — Second read
o & = = = 9ac

Advanced Cloud Infrastructures

o Stream processing for loT fog applications

o & = E DA
Advanced Cloud Infrastructures

A A (SS g vé_

F ___cyber dimension = =
(c) g Do (d) = /Cloudl\)

| < s — -
Woml Partition

Fig. 1. Examples of typical Fog data streaming Applications.(a) IoT stream query and analytics, (b) Real-time event monitoring, (c) Networked Control
Systems (NCS) for Industrial automation, (d) Real-time Mobile Crowdsensing (MCS).

https://arxiv.org/abs/1705.05988

Advanced Cloud Infrastructures Stream processing for 10T fog applications 39 /45

https://arxiv.org/abs/1705.05988

_ Can we use stream processing idI

operator

http://researcher.watson.ibm.com/researcher/view_group.php?id=2531

@ The data analytics community builds interesting stream processing
platforms
» Storm, Spark, Flink etc.
> ldea:

* Define processing as a workflow of operators
* Let data “flow” through the operators
* Each operator keeps a window of data items

Advanced Cloud Infrastructures Stream processing for 10T fog applications 40 / 45

http://researcher.watson.ibm.com/researcher/view_group.php?id=2531

@ Problem: stream platforms were designed for computer clusters

» Lots of data to be processed
» Lots of resources
» Single location

Server Logs aFlink
Sensors
Transaction logs % kafka

https://www.confluent.io/blog/real-time-stream-processing-the-next-step-for-apache-flink/

Advanced Cloud Infrastructures Stream processing for 10T fog applications 41 / 45

https://www.confluent.io/blog/real-time-stream-processing-the-next-step-for-apache-flink/

Chall

Data source/sink placement
» According to the location(s) where data are produced and consumed
» Some stream processing systems (e.g., Spark require a shared file
system between all nodes)

@ Intermediate operator placement

» To optimize metrics such as processing latency, requested resources,
long-distance data volume, etc.

Operator elasticity

» Can we rescale stream processing operators dynamically?
» Easy if we accept to drop data, harder otherwise

@ Resource management
» Can operators use less than 1 full core each?

Advanced Cloud Infrastructures Stream processing for 10T fog applications 42 / 45

@ Conclusion

o & = E DA
Advanced Cloud Infrastructures

o Cloud data centers are very powerful and flexible
» But not all applications can use them (latency, traffic locality)

o If we evaporate a cloud, then we get a fog

» Extremely distributed infrastructure: there must be a server node close
to every end user

* Server nodes must be small, cheap, easy to add and replace
* Server nodes are very far from each other

@ This is only the beginning

» No satisfactory edge/fog platforms are available today
(we are not even close)
» There remains thousands of potential PhD research topics in this

. 9
domain &

Advanced Cloud Infrastructures Conclusion 44 / 45

The FogGuru European project is starting soon on similar issues: University
of Rennes 1, TU-Berlin, Elastisys (Umea, Sweden), U-Hopper (Trento,
Italy), Las Naves (Valencia, Spain)

We are looking for 8 ambitious and talented PhD students:
@ All positions co-supervised by one academic + one industrial supervisor

e Extensive doctoral training program (scientific, technical, soft-skills,
innovation & entrepreneurship)

International mobility

7 months at Las Naves to deploy technologies in the city center of
Valencia & get feedback from real end users

fogyguru

www.fogguru.eu

Advanced Cloud Infrastructures Conclusion 45 / 45

www.fogguru.eu

	Fog applications taxonomy
	From centralized clouds to decentralized fogs
	Container deployment in an edge-cloud server
	Live container migration
	Data storage
	Stream processing for IoT fog applications
	Conclusion

