
Advanced Cloud Infrastructures

From Data Centers to Fog Computing (part 2)
Guillaume Pierre

Master 2 CCS & SIF, 2017

Advanced Cloud Infrastructures 1 / 45

Source: Cisco

Advanced Cloud Infrastructures 2 / 45

Table of Contents

1 Fog applications taxonomy

2 From centralized clouds to decentralized fogs

3 Container deployment in an edge-cloud server

4 Live container migration

5 Data storage

6 Stream processing for IoT fog applications

7 Conclusion

Advanced Cloud Infrastructures Fog applications taxonomy 3 / 45

Computation o�oading

http://slideplayer.com/slide/5737709/

Parts of the application is o�oaded out of the mobile device

Advanced Cloud Infrastructures Fog applications taxonomy 4 / 45

http://slideplayer.com/slide/5737709/

Low-latency mediation between multiple users

(example application)

Advanced Cloud Infrastructures Fog applications taxonomy 5 / 45

https://youtu.be/dp6QhhExP30

IoT analytics

https://www.networkworld.com/article/3147085/internet-of-things/

which-iot-applications-work-best-with-fog-computing.html

Data processing is intelligently partitioned between fog nodes co-located
with IoT devices and the cloud.

This enables real-time tracking, anomaly detection, and collection of insights
from data captured over long intervals of time.

Advanced Cloud Infrastructures Fog applications taxonomy 6 / 45

https://www.networkworld.com/article/3147085/internet-of-things/which-iot-applications-work-best-with-fog-computing.html
https://www.networkworld.com/article/3147085/internet-of-things/which-iot-applications-work-best-with-fog-computing.html

System-level requirements

We can derive system-level requirements for a fog computing platform from
the reference applications:

1 A complete cloud-like service o�ering

2 Context-aware application/data placement and resource scheduling

3 Fog computing infrastructure management and control

4 E�cient software deployment

5 E�cient container live-migration

6 E�cient data storage

7 Software engineering methodologies and middlewares suitable for fog
computing scenarios

8 And many other open research topics. . .

Advanced Cloud Infrastructures Fog applications taxonomy 7 / 45

Table of Contents

1 Fog applications taxonomy

2 From centralized clouds to decentralized fogs

3 Container deployment in an edge-cloud server

4 Live container migration

5 Data storage

6 Stream processing for IoT fog applications

7 Conclusion

Advanced Cloud Infrastructures From centralized clouds to decentralized fogs 8 / 45

OpenStack overview

https://hal.inria.fr/hal-01273427

Advanced Cloud Infrastructures From centralized clouds to decentralized fogs 9 / 45

https://hal.inria.fr/hal-01273427

Core services of OpenStack

Advanced Cloud Infrastructures From centralized clouds to decentralized fogs 10 / 45

OpenStack Nova's architecture

Advanced Cloud Infrastructures From centralized clouds to decentralized fogs 11 / 45

Replacing Nova's MySQL DB with Redis

Replacing MySQL with Redis is not as easy as it sounds:
I Distributed locking system
I Support for atomic updates
I Create secondary index to support join queries
I . . .

Advanced Cloud Infrastructures From centralized clouds to decentralized fogs 12 / 45

Remaining challenges

The internal OpenStack message bus is based on RabbitMQ
I Simple, robust, perfect in a single data center environment
I Centralized architecture based on a single broker node
I Every message queue is mirrorred in every node

Problem: RabbitMQ is very sensitive to network latency!

⇒ Replace RabbitMQ with a P2P message bus (ActiveMQ, ZeroMQ). . .

Advanced Cloud Infrastructures From centralized clouds to decentralized fogs 13 / 45

Decentralized clouds 6= fogs

OpenStack is suitable for highly distributed clouds but not for fogs
I Lots of heavyweight processes
I VMs are not suitable for very small machines
⇒ Let's move to container-based technologies

Advanced Cloud Infrastructures From centralized clouds to decentralized fogs 14 / 45

Table of Contents

1 Fog applications taxonomy

2 From centralized clouds to decentralized fogs

3 Container deployment in an edge-cloud server

4 Live container migration

5 Data storage

6 Stream processing for IoT fog applications

7 Conclusion

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 15 / 45

Using a RPI as a cloud server

The RPI is quite a powerful machine
I 4-core ARM CPU
I GPU
I Excellent performance/price/energy ratio

But it also faces major performance challenges
I Limited memory (1GB)
I Slow disk I/O
I Slow network throughput

Traditional cloud systems were not designed for such environments
I The RPI is an extreme case, but researchers using other �small�

machines are facing exactly the same challenges

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 16 / 45

Using a RPI as a cloud server

The RPI is quite a powerful machine
I 4-core ARM CPU
I GPU
I Excellent performance/price/energy ratio

But it also faces major performance challenges
I Limited memory (1GB)
I Slow disk I/O
I Slow network throughput

Traditional cloud systems were not designed for such environments
I The RPI is an extreme case, but researchers using other �small�

machines are facing exactly the same challenges

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 16 / 45

Using a RPI as a cloud server

The RPI is quite a powerful machine
I 4-core ARM CPU
I GPU
I Excellent performance/price/energy ratio

But it also faces major performance challenges
I Limited memory (1GB)
I Slow disk I/O
I Slow network throughput

Traditional cloud systems were not designed for such environments
I The RPI is an extreme case, but researchers using other �small�

machines are facing exactly the same challenges

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 16 / 45

Generic operating system tuning: �le system parameters

SD Cards were designed to store photos, videos, etc.
I Small number of large �les
⇒ Large physical block sizes

But Linux �le systems expect small blocks by default

+ Tune the �le system for larger blocks
+ Align partitions on the erase block boundaries (multiples of 4MB)

http://3gfp.com/wp/2014/07/formatting-sd-cards-for-speed-and-lifetime/

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 17 / 45

http://3gfp.com/wp/2014/07/formatting-sd-cards-for-speed-and-lifetime/

Generic operating system tuning: swappiness

Swappiness is the kernel parameter that de�nes how much (and how often)

your Linux kernel will copy RAM contents to swap. This parameter's

default value is �60� and it can take anything from �0� to �100�. The higher

the value of the swappiness parameter, the more aggressively your kernel

will swap. https://www.howtoforge.com/tutorial/linux-swappiness/

What's the right swappiness value for us?

RPI-speci�c linux distributions set it to a very low value (e.g., 1)

We changed it to the maximum value: 100
I If your machine is going to swap anyway (because of small memory),

then better do it out of the critical path
I Also the �le system cache makes use of all the unused RAM
I Actually this results in less I/O. . .

https://hal.inria.fr/hal-01446483v1

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 18 / 45

https://www.howtoforge.com/tutorial/linux-swappiness/
https://hal.inria.fr/hal-01446483v1

Generic operating system tuning: swappiness

Swappiness is the kernel parameter that de�nes how much (and how often)

your Linux kernel will copy RAM contents to swap. This parameter's

default value is �60� and it can take anything from �0� to �100�. The higher

the value of the swappiness parameter, the more aggressively your kernel

will swap. https://www.howtoforge.com/tutorial/linux-swappiness/

What's the right swappiness value for us?

RPI-speci�c linux distributions set it to a very low value (e.g., 1)

We changed it to the maximum value: 100

I If your machine is going to swap anyway (because of small memory),
then better do it out of the critical path

I Also the �le system cache makes use of all the unused RAM
I Actually this results in less I/O. . .

https://hal.inria.fr/hal-01446483v1

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 18 / 45

https://www.howtoforge.com/tutorial/linux-swappiness/
https://hal.inria.fr/hal-01446483v1

Generic operating system tuning: swappiness

Swappiness is the kernel parameter that de�nes how much (and how often)

your Linux kernel will copy RAM contents to swap. This parameter's

default value is �60� and it can take anything from �0� to �100�. The higher

the value of the swappiness parameter, the more aggressively your kernel

will swap. https://www.howtoforge.com/tutorial/linux-swappiness/

What's the right swappiness value for us?

RPI-speci�c linux distributions set it to a very low value (e.g., 1)

We changed it to the maximum value: 100
I If your machine is going to swap anyway (because of small memory),

then better do it out of the critical path
I Also the �le system cache makes use of all the unused RAM
I Actually this results in less I/O. . .

https://hal.inria.fr/hal-01446483v1

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 18 / 45

https://www.howtoforge.com/tutorial/linux-swappiness/
https://hal.inria.fr/hal-01446483v1

Container deployment in a RPI

Let's deploy a very simple Docker container on the RPI3
I Standard ubuntu container (∼45MB) + one extra 51-MB layer

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 100 150 200 250
 0

 2000

 4000

 6000

 8000

 10000
N

e
tw

o
rk

 T
h
ro

u
g
h
p
u
t
(K

B
/s

)

D
is

k
 I
/O

 (
K

B
/s

)

Time(s)

Network and Disk activities during container deployment

Received(KB/s)
Disk Write(KB/s)

CPU usage(%)

Total deployment time: about 4 minutes!!!

+ Can we make that faster?

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 19 / 45

Container deployment in a RPI

Let's deploy a very simple Docker container on the RPI3
I Standard ubuntu container (∼45MB) + one extra 51-MB layer

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 100 150 200 250
 0

 2000

 4000

 6000

 8000

 10000
N

e
tw

o
rk

 T
h
ro

u
g
h
p
u
t
(K

B
/s

)

D
is

k
 I
/O

 (
K

B
/s

)

Time(s)

Network and Disk activities during container deployment

Received(KB/s)
Disk Write(KB/s)

CPU usage(%)

Total deployment time: about 4 minutes!!!

+ Can we make that faster?

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 19 / 45

How Docker deploys a new container image

A container image is composed of multiple layers
I Each layer complements or modi�es the previous one
I Layer 0 with the base OS, layer 1 with extra con�g �les, layer 2 with

the necessary middleware, layer 3 with the application, layer 4 with a
quick-and-dirty �x for some wrong con�g �le, etc.

What takes a lot of time is bringing the image from the external
repository to the raspberry pi

I Starting the container itself is much faster

Deployment process:
1 Download all layers simultaneously
2 Decompress and extract each layer to disk sequentially
3 Start the container

Question: What's wrong with this?

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 20 / 45

How Docker deploys a new container image

A container image is composed of multiple layers
I Each layer complements or modi�es the previous one
I Layer 0 with the base OS, layer 1 with extra con�g �les, layer 2 with

the necessary middleware, layer 3 with the application, layer 4 with a
quick-and-dirty �x for some wrong con�g �le, etc.

What takes a lot of time is bringing the image from the external
repository to the raspberry pi

I Starting the container itself is much faster

Deployment process:
1 Download all layers simultaneously
2 Decompress and extract each layer to disk sequentially
3 Start the container

Question: What's wrong with this?

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 20 / 45

Sequential layer download

Observation: parallel downloading delays the time when the �rst
download has completed

Idea: let's download layers sequentially. This should allow the
deployment process to use the bandwidth and disk I/O simultaneously

Time

Download layer 1

Download layer 2

Download layer 3

Extract layer 1

Extract layer 2Download layer 2

Extract layer 3

Standard Docker deployment

Time

Download layer 1

Download layer 2

Download layer 3

Extract layer 1

Extract layer 2Download layer 2

Extract layer 3

Our proposal

Performance gains:
I ∼ 3 � 6% on fast networks
I ∼ 6 � 12% on slow (256 kbps) networks
I Best gains with several big layers + slow networks

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 21 / 45

Sequential layer download

Observation: parallel downloading delays the time when the �rst
download has completed

Idea: let's download layers sequentially. This should allow the
deployment process to use the bandwidth and disk I/O simultaneously

Time

Download layer 1

Download layer 2

Download layer 3

Extract layer 1

Extract layer 2Download layer 2

Extract layer 3

Standard Docker deployment

Time

Download layer 1

Download layer 2

Download layer 3

Extract layer 1

Extract layer 2Download layer 2

Extract layer 3

Our proposal

Performance gains:
I ∼ 3 � 6% on fast networks
I ∼ 6 � 12% on slow (256 kbps) networks
I Best gains with several big layers + slow networks

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 21 / 45

Let's speed up the decompression part

Image layers are always delivered in compressed form, usually with gzip

I Docker calls gunzip to decompress the images
I But gunzip is single-threaded while RPis have 4 CPU cores!

Let's use a multithreaded gunzip implementation instead

Performance improvement: ∼15 � 18% on the entire deployment
process

I Much more if we look just at the decompression part of the process. . .

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 22 / 45

Let's speed up the decompression part

Image layers are always delivered in compressed form, usually with gzip

I Docker calls gunzip to decompress the images
I But gunzip is single-threaded while RPis have 4 CPU cores!

Let's use a multithreaded gunzip implementation instead

Performance improvement: ∼15 � 18% on the entire deployment
process

I Much more if we look just at the decompression part of the process. . .

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 22 / 45

Let's pipeline the download, decompression and extraction
processes

Idea: let's split the download/decompress/extract process into three
threads per layer

I And pipeline the three parts: start the decompression and extract
processes as soon as the �rst bytes are downloaded

+ Intersting thread synchronization exercise. . .

Download Decompress Extract

Download Decompress Extract

Download Decompress Extract

Layer 0

Layer 1

Layer 2

Performance improvement: ∼ 20 � 55%

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 23 / 45

Let's pipeline the download, decompression and extraction
processes

Idea: let's split the download/decompress/extract process into three
threads per layer

I And pipeline the three parts: start the decompression and extract
processes as soon as the �rst bytes are downloaded

+ Intersting thread synchronization exercise. . .

Download Decompress Extract

Download Decompress Extract

Download Decompress Extract

Layer 0

Layer 1

Layer 2

Performance improvement: ∼ 20 � 55%

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 23 / 45

Let's combine all three techniques

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 100 150 200 250
 0

 2000

 4000

 6000

 8000

 10000

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(K
B

/s
)

D
is

k
 I

/O
 (

K
B

/s
)

Time(s)

Network and Disk activities during container deployment

Received(KB/s)
Disk Write(KB/s)

CPU usage(%)

Before

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60
 0

 2000

 4000

 6000

 8000

 10000

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(K
B

/s
)

D
is

k
 I

/O
 (

K
B

/s
)

Time(s)

Network and Disk activities during container deployment

Received(KB/s)
Disk Write(KB/s)

CPU usage(%)

After

Combined performance gain: 17 � 73%
I Lowest gains obtained with low (256 kbps) networks. The network is

the bottleneck, not many local optimizations are possible
I When using a �decent� network connection: ∼ 50 � 73% gains

Advanced Cloud Infrastructures Container deployment in an edge-cloud server 24 / 45

Table of Contents

1 Fog applications taxonomy

2 From centralized clouds to decentralized fogs

3 Container deployment in an edge-cloud server

4 Live container migration

5 Data storage

6 Stream processing for IoT fog applications

7 Conclusion

Advanced Cloud Infrastructures Live container migration 25 / 45

Why do we need migration?

1 Resources are �xed but users are mobile

2 Churn

3 Workload �uctuations

4 Consolidation

5 Competing applications

Advanced Cloud Infrastructures Live container migration 26 / 45

Live migration was initially designed for VMs

https://www.slideshare.net/mhajibaba/

cloud-computing-principles-and-paradigms-5-virtual-machines-provisioning-and-migration-services

Advanced Cloud Infrastructures Live container migration 27 / 45

https://www.slideshare.net/mhajibaba/cloud-computing-principles-and-paradigms-5-virtual-machines-provisioning-and-migration-services
https://www.slideshare.net/mhajibaba/cloud-computing-principles-and-paradigms-5-virtual-machines-provisioning-and-migration-services

Performance (on a very fast infrastructure)

Advanced Cloud Infrastructures Live container migration 28 / 45

Live migration in LXC containers

The new LXD container system supports live migration
I Checkpoint/restart based on CRIU-2.0
I Requires a very recent Linux kernel
I Still announced as very experimental. . .
I . . . and the mixed 64-bit (hardware) + 32-bit (OS) con�guration of

Raspberry PIs is very confusing for CRIU

Advanced Cloud Infrastructures Live container migration 29 / 45

A possible alternative: DMTCP

DMTCP (Distributed MultiThreaded CheckPointing) checkpoints
processes in user space

I It also checkpoints open �le descriptors, PID, sockets, etc.
I And it replaces them with a �dummy� at the destination node to avoid

name clashes

+ No kernel support required!
I And a container is nothing more than a group of processes. . .
I We �just� need support for statically-linked executables and for Linux

namespaces

http://dmtcp.sourceforge.net/

Advanced Cloud Infrastructures Live container migration 30 / 45

http://dmtcp.sourceforge.net/

Migrating the application's data

In a cloud environment we can rely on network-attached storage

But in a fog it is pointless to migrate an application without migrating
the data as well

Advanced Cloud Infrastructures Live container migration 31 / 45

Another alternative: elasticity-based migration

We expect many fog applications to be elastic
I Easy support for dynamically adding/removing nodes

Can migration be just a special case of elasticity?
I Start with X pods
I Scale up to X + 1 pods, make sure the new pod is created at the right

location
I Scale down to X pods, make sure to choose which pod gets stopped

The hard parts:
I When can we issue the scale-down operation? Liveness probes
I What about the application state?

Advanced Cloud Infrastructures Live container migration 32 / 45

Table of Contents

1 Fog applications taxonomy

2 From centralized clouds to decentralized fogs

3 Container deployment in an edge-cloud server

4 Live container migration

5 Data storage

6 Stream processing for IoT fog applications

7 Conclusion

Advanced Cloud Infrastructures Data storage 33 / 45

Data storage in fog platforms

Where should we store fog user's data?
I In the fog node where data were produced?
I Replicate in nearby nodes as well?
I Replicate in all nodes? In all sites?

+ At least we need to make data available from everywhere (with decent
performance)

IPFS: the InterPlanetary File System
I Actually this is a data store rather than a �le system: objects are

immutable
I Objects are stored locally and registered in a DHT to allow remote

access
I But IPFS is not aware of the fog topology

F If an object is available in another node of the same site, IPFS will not

prefer this location rather than another site

Advanced Cloud Infrastructures Data storage 34 / 45

Scale-out NAS

Each node �rst checks if an object is present in the local NAS

Otherwise it locates it using the DHT, and copies it locally for further
usage

https://hal.archives-ouvertes.fr/hal-01483702

Advanced Cloud Infrastructures Data storage 35 / 45

https://hal.archives-ouvertes.fr/hal-01483702

Accessing local objects

Advanced Cloud Infrastructures Data storage 36 / 45

Accessing remote objects

Advanced Cloud Infrastructures Data storage 37 / 45

Table of Contents

1 Fog applications taxonomy

2 From centralized clouds to decentralized fogs

3 Container deployment in an edge-cloud server

4 Live container migration

5 Data storage

6 Stream processing for IoT fog applications

7 Conclusion

Advanced Cloud Infrastructures Stream processing for IoT fog applications 38 / 45

Many Fog/IoT application process data streams

https://arxiv.org/abs/1705.05988

Advanced Cloud Infrastructures Stream processing for IoT fog applications 39 / 45

https://arxiv.org/abs/1705.05988

Can we use stream processing middlewares in the fog?

http://researcher.watson.ibm.com/researcher/view_group.php?id=2531

The data analytics community builds interesting stream processing
platforms

I Storm, Spark, Flink etc.
I Idea:

F De�ne processing as a work�ow of operators
F Let data ��ow� through the operators
F Each operator keeps a window of data items

Advanced Cloud Infrastructures Stream processing for IoT fog applications 40 / 45

http://researcher.watson.ibm.com/researcher/view_group.php?id=2531

Stream platforms were designed for big data processing

Problem: stream platforms were designed for computer clusters
I Lots of data to be processed
I Lots of resources
I Single location

https://www.confluent.io/blog/real-time-stream-processing-the-next-step-for-apache-flink/

Advanced Cloud Infrastructures Stream processing for IoT fog applications 41 / 45

https://www.confluent.io/blog/real-time-stream-processing-the-next-step-for-apache-flink/

Challenges for adapting stream processing to fogs

Data source/sink placement
I According to the location(s) where data are produced and consumed
I Some stream processing systems (e.g., Spark require a shared �le

system between all nodes)

Intermediate operator placement
I To optimize metrics such as processing latency, requested resources,

long-distance data volume, etc.

Operator elasticity
I Can we rescale stream processing operators dynamically?
I Easy if we accept to drop data, harder otherwise

Resource management
I Can operators use less than 1 full core each?

Advanced Cloud Infrastructures Stream processing for IoT fog applications 42 / 45

Table of Contents

1 Fog applications taxonomy

2 From centralized clouds to decentralized fogs

3 Container deployment in an edge-cloud server

4 Live container migration

5 Data storage

6 Stream processing for IoT fog applications

7 Conclusion

Advanced Cloud Infrastructures Conclusion 43 / 45

Conclusion

Cloud data centers are very powerful and �exible
I But not all applications can use them (latency, tra�c locality)

If we evaporate a cloud, then we get a fog
I Extremely distributed infrastructure: there must be a server node close

to every end user
F Server nodes must be small, cheap, easy to add and replace
F Server nodes are very far from each other

This is only the beginning
I No satisfactory edge/fog platforms are available today

(we are not even close)
I There remains thousands of potential PhD research topics in this

domain

Advanced Cloud Infrastructures Conclusion 44 / 45

Shameless announcement

The FogGuru European project is starting soon on similar issues: University
of Rennes 1, TU-Berlin, Elastisys (Umeå, Sweden), U-Hopper (Trento,
Italy), Las Naves (Valencia, Spain)

We are looking for 8 ambitious and talented PhD students:

All positions co-supervised by one academic + one industrial supervisor

Extensive doctoral training program (scienti�c, technical, soft-skills,
innovation & entrepreneurship)

International mobility

7 months at Las Naves to deploy technologies in the city center of
Valencia & get feedback from real end users

www.fogguru.eu

Advanced Cloud Infrastructures Conclusion 45 / 45

www.fogguru.eu

	Fog applications taxonomy
	From centralized clouds to decentralized fogs
	Container deployment in an edge-cloud server
	Live container migration
	Data storage
	Stream processing for IoT fog applications
	Conclusion

