
An FPGA Configuration Stream Architecture
Supporting Seamless Hardware Accelerator

Migration

Christophe Huriaux, Olivier Sentieys, and Antoine Courtay
INRIA/IRISA – University of Rennes 1

christophe.huriaux@irisa.fr, olivier.sentieys@irisa.fr, antoine.courtay@irisa.fr

Abstract—This paper introduces a novel approach to hard-
ware task relocation in an FPGA-based reconfigurable fabric,
allowing offline design, routing, and unfinalized placement of
hardware IPs and dynamic placement of the corresponding bit-
streams at run-time. Our proposal relies on a custom dual-
context FPGA configuration memory organization in a shift-
register manner and on a dedicated bit-stream insertion controller
leading to a break-through in terms of adaptative capabilites of
the reconfigurable hardware. We show that using our custom
shift-register organization across the configuration memory, and
under some weak constraints, we can greatly reduce the overhead
implied by the 1-D to 2-D mapping of the shift-register onto the
logic fabric.

INTRODUCTION

Field Programmable Gate Arrays (FPGA) provide the flex-
ibilty, performance and power efficiency required by modern
applications in the growing market of integrated circuits,
in contrast with dedicated processors or Application-Specific
Integrated Circuits (ASIC) which require higher budget and
developement time.

Most of the available commercial FPGAs use an address-
able memory organized around an array of N -bits words
of Static RAM (SRAM) cells. Such configuration memory
is traditionally programmed by writing, to each word, the
corresponding bitstream data at runtime.

In the developing domain of Dynamically Partial Recon-
figuration (DPR), parts of the hardware can also be self-
reconfigured while the rest of the chip is still running. Dy-
namically reconfigurable hardware tends to add another layer
of flexibility, at the cost of more complex design stages.
This technique enables the fabric to be adaptive to various
computational tasks and to modifications of application context
and environment through hardware fabric reuse.

SRAM-based configuration memories will be relocated in
two-steps in the context of DPR [1]: each configuration word
of the relocatable area will be read from its original location
and then written to the new one, with a shutdown period of the
two areas during the relocation in order to prevent undesirable
side-effects.

These specific aspects of the SRAM memory array for
DPR introduce a non negligible overhead for time-multiplexing
applications where hardware IPs needs to be frequently loaded
and/or relocated on the logic fabric.

In this paper, we propose a new organization of the FPGA
configuration memory in a shift register manner (hereafter
named the scan-path, due to its similarities with the verification
world) which allows the logic fabric to ease task relocation
inside the configuration memory. At the cost of a small area
overhead, our memory organization proposal is able to perform
near-instant task switching thanks to a double layer memory.
The work presented in this paper mainly focuses on the
hardware design of the configuration memory.

This paper is organized as follows. In Section I, we briefly
discuss some of the dynamically reconfigurable hardware
architectures available solutions. In Section II we introduce our
proposed architecture. Some experimental results considering
different memory organizations are also presented. Finally, in
Section III, we give some insights on possible future work.

I. RELATED WORKS

The only commercially available fine-grained dynamically
reconfigurable architectures are found in FPGAs [2]. The
Xilinx Virtex-7 latest architecture allows to design a partially
reconfigurable system where slices could be reconfigured at
runtime under certain conditions. Reconfigurable locations
have to be defined during the design stage, which leads to
long bitstreams, dedicated to their final location in the fabric.

Different approaches have been proposed in the literature
to counterbalance the limitations of Xilinx FPGA [3] and offer
online task relocation to existing circuits, with important re-
configuration costs. Research topics also include more specif-
ically task relocation and defragmentation on Xilinx XC6200
partially reconfigurable FPGA [4] [1] which is, however, less
than ideal for relocation since the programming architecture
of the circuit is not designed for that purpose.

In contrast, other research tracks have been conducted
into the field of multicontext FPGA [5] [6] where each
configuration bit comprises in fact multiple memory cells.
This technology allows to independently program each of the
memory layers and then to switch between them. This method
has however a great impact on the overall area used by the
configuration memory.

Our approach aims at reducing the time penalty induced
by dynamic reconfiguration and task migration on a recon-
figurable hardware. Thanks to a novel design of the FPGA
configuration memory and dedicated controllers, a given In-
tellectual Property (IP) bitstream can be reused for multiple
insertions and locations.

Memory

Controller

T1

(a)

Controller

(b)

T1

(c)

Fig. 1. The three steps for task insertion in our proposed architecture: (a) IP download from memory (b) Decompression and bit-stream serialization (c) Final
placement

II. CURRENT WORK

A. Hardware architecture

The proposed architecture is designed to be partially re-
configurable: only a portion of the chip can be reconfigured
while the remaining logic elements can pursue their operations
normally. This behavior is achieved thanks to a virtual split-up
of the whole logic fabric into several domains whose sizes are
fixed during the design stage of the architecture, as shown on
Fig. 1a.

data

load

(a)

clock

load

DFF

Latch

(b)

Fig. 2. (a) Overview of the double-layer memory. (b) A double-context cell.

Each of these domains contains an independant configura-
tion memory which holds the state of the logic and routing
elements. While traditional memories of this kind are mostly
based on a SRAM grid with word-adressing for read and write
operations, our architecture introduces a set of configuration
bits organized as a shift-register where each of the D Flip-
Flop (DFF) of the register is doubled with an SRAM cell
materializing the real configuration bit as depicted by Fig. 2b.
Once the shift-register is fully populated with the task content,
the configuration held by the DFF is loaded in a single
clock cycle into the SRAM cell of the second memory layer
retaining the real configuration bits, as shown on Fig. 2a. This
mechanism helps to reduce the reconfiguration costs in terms
of configuration domain downtime, but it increases the area
footprint of each double memory cell.

This double context memory is thus able to receive a bit-
stream without requiring an outage of the functional memory
array, which allows to load an IP configuration wihtin a cycle
once the shift-register has been loaded. The main consequence
of these memories is the implied area overhead. We ran
simulations and synthesis of different custom double layer
memories with up to 16K cells using a 65nm technology and
extracted area information from the results. Table I shows the
extra area needed compared to a single layer SRAM memory
typically used in FPGA, and compared to hybrid memory
described in a Xilinx patent [7] which eliminates the need
for a regular array of address lines in the SRAM memory.

Memory organization Area overhead
w.r.t single SRAM w.r.t. Xilinx hybrid

Double SRAM +101,8% +38,5%
Double layer scan-path +74,8% +20%

TABLE I. AREA OVERHEAD OF A DOUBLE-LAYER CONFIGURATION
MEMORY.

The double SRAM is the basic implementation of a dual
layer memory: a first layer is word-addressed and can be
loaded to a second layer, thus the area needed is substantially
twice as large as the single layer version. Due to the lack of
addressing lines in our organization proposal the area overhead
of the DFF shift-register is counter-balanced, which leads to a
25% smaller area overhead in comparison to a double SRAM
memory. This memory organization offers easier layout for the
same reason, it also has stronger optimization possibilities in
terms of energy comsumption for future work.

The domains of the logic fabric have thus a single entry-
point through which the entire bit-stream of an IP will be
input. This IP bit-stream is stored in memory in an unfinalized
and compressed form which allows to place the hardware task
at any given location of the logic fabric without the need of
online routing. A dedicated piece of hardware is responsible
for on-the-fly devirtualization of the virtual bit-stream into a
placeable IP bit-stream, which is inserted into the shift-register
with additional padding in order to perform a good alignment
of the task on the logic fabric, as depicted by Fig. 1b and 1c.

B. Configuration stream organization

The overall efficiency of the architecture in terms of
relocation possibilities strongly depends on the shift-register
organization among the configuration memory cells. Since the
goal is to insert a 1-D bit-stream (bit sequence) into a 2-D
memory matching the logic element position. Our proposal
takes part of existing fractal designs known as space-filling
curves which realize a mapping from a curve in the unit
interval [0; 1[into the unit square [0; 1[×[0; 1[.

(a) (b) (c)

Fig. 3. Examples of shift-register dispositions : (a) Naive (snake), (b) Z-order,
(c) Hilbert

Space-filling curves have already been heavily studied
for their properties in other research fields. Our proposed
architecture will use the geometrical capabilities in order to
build the shift register (based on such a fractal construction
scheme). These fractal organizations allow a more scalable
way to deal with the insertion of IPs in the shift register. As
an example, Z-order and Hilbert fractal curves are by nature
composed of a single shape repeated at different scales as seen
in Fig. 3b and Fig. 3c. They will eventually lead to more
relocation possibilities by only shifting the register to move
the task into its domain.

C. Task relocation

As stated in the previous section, it is possible to take part
of especially crafted scan-path organizations to enhance the
relocation possibilities of a given domain. We can show that,
using the naive snake-like shift-register disposition (depicted
in Fig. 3a) among homogeneous configuration cells and con-
sidering a task with dimension w × h logic cells which has
been originally placed at position (x, y) in a logic fabric of
W ×H logic cells, the migration possibilities of this task will
be limited to a set ∆ of destination coordinates, where

∆ = (x, y + 2k) ∀k ∈
[
0,
bH − h− yc

2

]
.

It means that the task can only be migrated in the same
column without requiring either a costly mirror and/or rotation
transform or a complete regeneration of the shift-register. The
later operation is also very costly because it forces all the
running logic of a given domain to be shut-down, and then
to reload each of the running IPs from the memory. A new
domain bit-stream needs therefore to be built, mixing the logic
cells configuration bits of each running hardware task at the
good position before the insertion of this data into the scan-
path.

A tradeoff has to be found between the domain size and
the logic fabric versatility in order to balance

• the relocation possibilities of a task,

• the cost of a full shift-register rebuild when a shift-
only task migration could not be determined.

D. Scan-path complexity considerations

Fig. 4. Mapping from 2-D binary coordinates to a 1-D offset

Each of the studied fractal organization has its own pros
and cons, e.g. the Z-order curve has the strong advantage to
only require wired logic to map a 1-D offset of the bit-stream
to the 2-D coordinates in the logic fabric, as shown on Fig. 4.
For a given 2-D coordinate (x; y) = [(2; 3)]10 = [(10; 11)]2

the corresponding 1-D offset in the shift-register is trivially
determined by interleaving the x and y components bits
offset = [1110]2 = [14]10.

It is thus a good candidate for a fast on-the-fly shift-
register content elaboration. The drawback of this curve is
its composition, by nature, of very long lines which cross an
entire domain and therefore increase the critical-path of the
shift-register (a consequence which is balanced by the size of
the domain).

On the other hand, like all of the Peano space-filling curves,
the Hilbert curve has a fairly complex mapping from 1-D to
2-D relying on a set of recursive equations defined by

xh(0) = 0, xh(1) = 1,

xh(t

4) = yh(t)
2

xh(t+1
4) = xh(t)

2

xh(t+2
4) = 1+xh(t)

2

xh(t+3
4) = 2−yh(t)

2

(1)

and

yh(0) = 0, yh(1) = 0,

yh(t

4) = x(t)
2

yh(t+1
4) = 1+y(t)

2

yh(t+2
4) = 1+y(t)

2

yh(t+3
4) = 1−x(t)

2

(2)

.

Although optimizations could be reused [8], building a
hardware implementation is more subject to resource waste.
However, the cells have a better distribution in the plan in
comparison to the Z-order curve. This organization also offers
rotations of a given bit-stream with only shifts of the configu-
ration memory, which leads to more relocation possibilities if
the logic fabric is fairly regular.

E. Performance analysis

We analyzed the performance of the three studied shift-
register organizations in terms of

• number of operations (i.e. the real number of shifts
needed to place an IP),

• relocations possibilities without regenerating the bit-
stream, considering either straight placement or in-
cluding rotated tasks.

Since we are targeting a shift-register based architecture
(i.e. with a single input and a single output), we cannot
arbitrarily place a given task data at a specified (x; y) origin
without adding padding bits whose sole purpose is to align
the 1-D data inserted in the 2-D fabric. In the case of a single
task placed on the fabric, these padding bits are useless and
add unnecessary cycles to the task placement. If two tasks are
placed close together, the reconfiguration controller may need
to fetch data from the two tasks when inserting each one on
the fabric, ultimately leading to an increased placement time.

Therefore, our results take this overhead into account: it
has to be interpreted as the number of additional bits required

0	

25	

50	

75	

100	

125	

150	

175	

200	
0;
0	

2;
0	

4;
0	

6;
0	

8;
0	

10
;0
	

12
;0
	

1;
1	

3;
1	

5;
1	

7;
1	

9;
1	

11
;1
	

0;
2	

2;
2	

4;
2	

6;
2	

8;
2	

10
;2
	

12
;2
	

1;
3	

3;
3	

5;
3	

7;
3	

9;
3	

11
;3
	

0;
4	

2;
4	

4;
4	

6;
4	

8;
4	

10
;4
	

12
;4
	

1;
5	

3;
5	

5;
5	

7;
5	

9;
5	

11
;5
	

0;
6	

2;
6	

4;
6	

6;
6	

8;
6	

10
;6
	

12
;6
	

1;
7	

3;
7	

5;
7	

7;
7	

9;
7	

11
;7
	

0;
8	

2;
8	

4;
8	

6;
8	

8;
8	

10
;8
	

12
;8
	

1;
9	

3;
9	

5;
9	

7;
9	

9;
9	

11
;9
	

0;
10
	

2;
10
	

4;
10
	

6;
10
	

8;
10
	

10
;1
0	

12
;1
0	

1;
11
	

3;
11
	

5;
11
	

7;
11
	

9;
11
	

11
;1
1	

0;
12
	

2;
12
	

4;
12
	

6;
12
	

8;
12
	

10
;1
2	

12
;1
2	

O
ve
rh
ea
d	
(b
its
)	

Loca2on	 (x;y)	

Snake	 T=4	
Z-‐Order	 T=4	
Hilbert	 T=4	

Fig. 5. Overhead of the insertion of a 4× 4 task in a 16× 16 fabric

to insert a task at a specific condition. Figure 5 summarizes
this overhead in the case of a 4 × 4 task inserted at all
possible positions of a 16× 16 fabric. This graph depicts the
performances of the three scan-path organizations and raises
the weaknesses of each one.

The naive snake organization offers poor performances as
its overhead is always non-zero and oscillate in a sawtooth
manner as the task moves from a line to another. Hilbert and
z-order curves have a much complex behavior, though. Even
if local maxima of the graph implies a much greater overhead
than the snake organization, these curves offer nonetheless a lot
more zero or near-to-zero overhead location possibilities. Addi-
tionally, the fractal curves have a stronger scalability, whereas
the minimum overhead implied by the snake organization is
linearly dependent of the fabric size for a given task size.

In the following results, we have done the assumption that
weak constraints could be defined in order to ensure good
performances: particularly, we assume that the granularity of
the task location may be decreased in order to promote lower
overheads. In the case of Hilbert and z-order curves, a good
constraint is to limit the task to an even size only, and to place
the tasks onto boundaries which are a multiple of the task size
(e.g. a 4×4 task should be placed at x positions 0, 4, 8, 12 and
so on). Although not mandatory this constraint greatly reduces
the overhead as stated earlier, as the boundary comes closer
to the task size (up to zero overhead when the boundary and
task size match exactly as shown on Table II).

Organization Mean overhead Relocation
Even pos. Task mult. Straight w/ rotation

Snake +225% +225% 4 7
Z-order +150% 0% 16 16
Hilbert +180% 0% 6 16

TABLE II. PERFORMANCE ANALYSIS WITH 4× 4 TASKS IN A 16× 16
FABRIC

The fabric size versus task size ratio have a strong impact
in the relocation performance: In order to ensure better perfor-
mances relatively to a naive scan-path organization, the fabric
size have to be at least thrice as large as the maximum task
size, as depicted by Tables II and III

Organization Relocation
Straight w/ rotation

Snake 3 5
Z-order 4 4
Hilbert 1 3

TABLE III. PERFORMANCE ANALYSIS WITH 8× 8 TASKS IN A 16× 16
FABRIC

The improved locality of 2-D coordinates and 1-D offsets
of space-filling curves is a good property to reduce the inser-
tion overhead. In order to compare them, we define t1 and t2
two bitstream offsets, X1 = (x1; y1) and X2 = (x2; y2) their
corresponding 2-D coordinates on the fabric given a specific
shift register organization, and ~T12 and ~X12 the respective 1-D
and 2-D vectors of the previously defined component.

In the case of the naive scan-path, the distance ‖ ~T12‖ is
not necessarily close to ‖ ~X12‖, and this is a frequent case at
the border of the fabric. Considering the Z-order curve we can
show that this locality is greatly improved, but there is still a
problem in the ”Z” breaked line, and it gets worse when the
fabric is scaled up. The Hilbert curve does not have this locality
problem, for every given ‖ ~X12‖ the corresponding ‖ ~T12‖ will
have the same order of magnitude. Considering this property,
the resulting ”ready to insert” bitstream will have a higher
compactness: there will be little to no need to insert padding
bits in order to match the 2-D geometry of the shift-register.

III. CONCLUSION

In this paper we have proposed a novel configuration
memory architecture which uses a double context shift-register

to hold the configuration data in order to balance the area
overhead of the multi-context memory and the improved
flexibility. An actual performance gain is added with a custom
design of the shift-register organization on the 2-D plan which
rely on an application of space-filling curves. Those curves
have interesting properties when applied to the design of our
configuration stream memory, especially when we look at the
the overhead of padding bits which needs to be added into the
stream. When inserting a given IP, the locality induced by the
Hilbert curve helps to greatly reduce the number of those bits
(and thus of computation needed) in most cases.

We have shown that under some weak constraints on the
task placement, the bit padding overhead required to match
the 2-D geometry of the fabric could be greatly reduced
while using our proposed shift-register architecture, leading to
better results than the naive snake-like organization. The fractal
organizations also leads to a better scalability which is a strong
advantage when targetting real hardware implementation.

Our further research will focus on the integration of relocat-
able tasks within a heterogenous context by taking advantage
of the fractal shift-register organization and defining variably
shaped domains at runtime in order to balance the lower
relocation possibilities introduced by heterogeneous resources.

ACKNOWLEDGMENT

This research is sponsored by the European Commission
under the 7th Framework program within the FlexTiles project
(FPT ICT-288248) and by the French Ministry of Research.

REFERENCES

[1] K. Compton, Z. Li, J. Cooley, S. Knol, and S. Hauck, “Configuration
relocation and defragmentation for run-time reconfigurable computing,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 10, no. 3, pp. 209 –220, June 2002.

[2] K. Compton and S. Hauck, “Reconfigurable computing: a survey of
systems and software,” ACM Computer Survey, vol. 34, no. 2, pp. 171–
210, June 2002.

[3] H. Kalte and M. Porrmann, “Replica2pro: task relocation by bitstream
manipulation in virtex-ii/pro fpgas,” in the Proceedings of the 3rd
conference on Computing frontiers, ser. CF ’06. ACM, 2006, pp. 403–
412.

[4] XC6200: Advance Product Specification, Xilinx, Inc., 1996.
[5] A. DeHon, “DPGA utilization and application,” in the Proceedings of

the 1996 ACM fourth international symposium on Field-programmable
gate arrays. ACM, 1996, pp. 115–121.

[6] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-
multiplexed fpga,” in the Proceedings of the 5th Annual IEEE Symposium
on FPGAs for Custom Computing Machines. IEEE, 1997, pp. 22–28.

[7] P. Rau, A. Ghia, and S. Menon, “Configuration memory architecture for
FPGA,” April 2001, US Patent 6,222,757.

[8] A. Butz, “Alternative algorithm for Hilbert’s space-filling curve,” IEEE
Transactions on Computers, vol. 100, no. 4, pp. 424–426, 1971.

