
MAD
Models & Algorithms

for Distributed systems

-- 2/5 --

download slides at
http://people.rennes.inria.fr/Eric.Fabre/

1

Today…

• Runs/executions of a distributed system are
partial orders of events

• We introduce
– logical clocks (Lamport, Fidge-Mattern)
– event structures
– distributed algorithms to build them

• Then explore applications to
– money counting in a distributed transactional system
– the construction of snapshots

2

Runs of distributed systems
Context
• We assume processes have UIDs {1,2,…,n}.
• So far, we had an undirected interaction graph of processes

G=(V,E), where V={1,2,…,n}.
• Processes are asynchronous (no global clock), don’t fail, messages eventually

reach their destination.
• We now examine a run of such a distributed system, with local events in each

process Pi, and message exchanges from Pi to Pj (where allowed).

P1

P2

P3

a b c d e f g

h i j
k l

m n
o p 3

“a chronogram view”
• e = local event at P1
• a = sending of a message at P1, i = reception of this message at P2
• channels need not be FIFO : see jàg and kàf
• in each process, events are totally ordered (local clock)
• the “physical time” can be seen as given by vertical slices

no one knows this physical time (we only know it exists… up to relativity!)

P1

P2

P3

a b c d e f g

h i j
k l

m n
o p

time t

4

P1

P2

P3

a b c d e f g

h i j
k l

m n
o p

a m h b i n c d j e k o pf l g unknown
physical time

5

“a chronogram view”
• e = local event at P1
• a = sending of a message at P1, i = reception of this message at P2
• channels need not be FIFO : see jàg and kàf
• in each process, events are totally ordered (local clock)
• the “physical time” can be seen as given by vertical slices

no one knows this physical time (we only know it exists… up to relativity!)

unknown
physical time

P1

P2

P3

a b c d e f g

h i j
k l

m
n o p

a m h b i c n d e j o k pf l g

6

“a chronogram view”
• e = local event at P1
• a = sending of a message at P1, i = reception of this message at P2
• channels need not be FIFO : see jàg and kàf
• in each process, events are totally ordered (local clock)
• the “physical time” can be seen as given by vertical slices

no one knows this physical time (we only know it exists… up to relativity!)

“a chronogram view”
• events can slide on their axis, and preserve their ordering in processes,

and the emission/reception ordering
• this yields another possible (total) ordering of events in physical time,

resulting in the same final global state of the system,
but going through different intermediate global states

• this advocates the modeling of a run as a partial order of events

P1

P2

P3

a b c d e f g

h i j
k l

m
n o p

unknown
physical time

7

a m h b i c n d e j o k pf l g

P1

P2

P3

a b c d e f g

h i j
k l

m
n o

a m h b i c n d e j o k pf l g unknown
physical time

Questions to address
• Q : how to (formally) define and handle a run as a partial order of events,

rather than a sequence ?
• Q : the physical time is lost : can we instead track/compute this partial order ?
• Q : can we compute one (or all) possible total ordering(s) ?
• Q : what are the possible intermediate (global) states along a run ?

8

p

Event structures

(simple notion of) event structure
• it is a finite DAG (directed acyclic graph)
• events are partitioned into n subsets (processes)

• events in each form a path : total ordering due to local clock
• an event has at most one direct successor/predecessor

: models emission/reception of a message

E = (E,!)

E = E1] ..] En

Ei

e 2 Ei

e0 62 Ei

Warning
Runs of distributed systems can be modeled in numerous (quite often
uselessly complex) manners :

- one can start from communicating automata (Lynch)
- or more simply from processes with local actions, emissions and their

matching receptions (Lamport, Fidge, Raynal)
- or even more simply from partially ordered events... (Mattern,

Winskel, MacMillan, Nielsen, Engelfriet)
- … this goes with simple to more complex proofs for similar results !

9

• partial order on events : iff in the DAG,
i.e. is the smallest partial order (= transitive+irreflexive) relation generated by

• past of an event e = predecessors of e for
• future of an event e = successors of e for

• concurrency :

P1

P2

P3

a b c d

e f
g

h i

nk l m

e � e0 e !⇤ e0

� !
a ! b ! h ! i ! m ! n) a � n

�
�

e?e0 i↵ e ⌃ e0 and e0 ⌃ e

a?k h?c b?l b 6? m c?m
10

• partial order on events : iff in the DAG,
i.e. is the smallest partial order (= transitive+irreflexive) relation generated by

• past of an event e = predecessors of e for
• future of an event e = successors of e for

• concurrency :

P1

P2

P3

a b c d

e f
g

h i

nk l m

e � e0 e !⇤ e0

� !
a ! b ! h ! i ! m ! n) a � n

�
�

e?e0 i↵ e ⌃ e0 and e0 ⌃ e

a?k h?c b?l b 6? m c?m

past of h

future of h

concurrent with h

concurrent with h

11

• A cut in is a subset closed for the precedence relation

• Maximal events in a cut can be seen as a line/curve, cutting all threads, thus
defining a past (E’) and a future (E\E’). The line represents a possible “present.”

• Interpretation: a cut identifies a possible global state of the distributed process,
that could be characterized by the current state of each process, and the
messages already sent but not yet received (“in flight” messages).

• Remark: it is generally not possible to have cuts with no pending messages,
i.e. that do not separate emission from reception of a message.
Exercise: build an example.

P1

P2

P3

a b c d

e f
g

h i

nk l m

�E = (E,!) E0 ✓ E

8e, e0 2 E, e 2 E0 ^ e0 � e) e0 2 E0

cut not cut

12

• A linear extension of is a total order < in E preserving :

• Obtained by recursively adding arcs for some pair of concurrent events,
, then completing by transitivity, until becomes a total order.

• “Thm”: any linear extension < of is a possible execution order (in physical time)
for the events present in the event structure

Proof: trivial, as messages transit times are unknown. [See also later.]

• Visually : how to build all such orderings ?
– imagine events are pearls on a necklace, made of n threads/strings, one per process
– pearls are free to move along each string, but cannot overpass one another…
– … but edges (messages) must always point to the right (= to the future)

P1

P2

P3

a b c d

e f
g

h i

nk l m

� �
8e, e0 2 E, e � e0) e < e0

e ! e0

e?e0 � �

E = (E,!)
�

e ! e0

13

Remarks

• We will see later how to encode sets of partial orders in convenient data
structures, in order to compute with them.

• In modern computer science, event structures are studied per se.
They are simply event sets E (possibly infinite…) enriched with several
relations like
– precedence, or causality
– conflict : different possible outcomes/futures
– alternative causes/predecessors of events
– asymmetric causality (e can appear concurrently or after e’, but not before)
– etc.

14

Logical clock
Historically
• introduced by Lamport in ’78
• was one of the contributions motivating

the Turing award
• easy & pleasant to read, applications

described, but a little frustrating on
formalization and proofs.
Read it !

Objective
• build one possible total ordering of events,

by attaching a logical time to them
• do this with a distributed asynchronous

algorithm

15

Objective:
• tag every event e with a logical clock value C(e), taken in some totally ordered set
• these ticks should reflect one linear extension of in run

• notice that it is sufficient to guarantee only

and to make sure that C defines a total order.
• we want compute these tags with a distributed algorithm

� E = (E,!)
8e, e0 2 E, e � e0) C(e) < C(e0)

8e, e0 2 E, e ! e0) C(e) < C(e0)

16

Algorithm:
• if is a new event in process Pi

– if then
– otherwise

• if is the sending of some message m from Pi to Pj
– send with message m (piggybacking)

• if is the reception of a message m tagged by
– make correction

e 2 Ei

9e0 2 Ei, e
0 ! e C(e) = C(e0) + 1

C(e) = 1

e 2 Ei

C(m) = C(e)

C(m)e 2 Ei

C(e) := max(C(e), C(m) + 1)

P1

P2

P3

a b c d

e f

g

h i

nk l m

1

1

(1)

1 2

2

(2)

2 3 4

(2)

3 4 5

(3) (5)

6 7

17

Properties
• clearly ensures
• but events may not be totally ordered : concurrent events could have the same tag
• a total order is obtained by appending index i to for

the total order is the lexicographic order on pairs
• each process can order its received messages in a unique manner

– consistent with what all other processes do
– and consistent with the causality of events in the run
– however, this might not be the true order of message production in physical time…

…which anyway is lost forever !

8e, e0 2 E, e ! e0) C(e) < C(e0)

C(e) e 2 Ei

(C(e), i)

18

Algorithm:
• if is a new event in process Pi

– if then
– otherwise

• if is the sending of some message m from Pi to Pj
– send with message m (piggybacking)

• if is the reception of a message m tagged by
– make correction

e 2 Ei

9e0 2 Ei, e
0 ! e C(e) = C(e0) + 1

C(e) = 1

e 2 Ei

C(m) = C(e)

C(m)e 2 Ei

C(e) := max(C(e), C(m) + 1)

P1

P2

P3

a b c d

e f

g

h i

nk l m

1.1

1.2

(1)

1.3 2.3

2.2

(2)

2.1 3.1 4.1

(2)

3.2 4.2 5.2

(3) (5)

6.3 7.3

a e k b f l c g d h i m n 19

Algorithm:
• if is a new event in process Pi

– if then
– otherwise

• if is the sending of some message m from Pi to Pj
– send with message m (piggybacking)

• if is the reception of a message m tagged by
– make correction

e 2 Ei

9e0 2 Ei, e
0 ! e C(e) = C(e0) + 1

C(e) = 1

e 2 Ei

C(m) = C(e)

C(m)e 2 Ei

C(e) := max(C(e), C(m) + 1)

Applications

• Shared objects/states
• Mutual exclusion (by broadcasting resource requests : read details in Lamport’s paper)
• Banking problem

– determine the total amount of money circulating among a set of actors (banks)
– local state = their current balance
– messages = transactions (money sent)

Principle
– tag events and messages with a logical time
– assume all messages arrive, and message flows never stop
– decide some logical time slice t at which counting takes place
then
– all processes wait until they have an event greater than time t
– collect the balance of each bank after the last event preceding time t
– determine the amount of money “in flight” at time t between all pairs Pi and Pj

(i.e. sent by Pi to Pj, but not yet received by Pj)
– easy :

• Pi knows how much it sent to Pj before time t
• Pj knows how much it received from Pi before time t

20

P1

P2

P3

1

2

3 6

5

4 7 9

8

10 11

12 13

$10

$20

$30

$5

$7

$2

$3

$2

21

P1

P2

P3

1

2

3 6

5

4 7 9

8

10 11

12 13

$10

$20

$30

$5

$3

$7

$2$2

$14

$6

$35

Before time 9
• P2 sent $5+$2=$7 to P3
• P3 received $5 from P2
• $2 are in flight

22

Applications

• Definition of a snapshot (checkpoint), i.e. capture of a consistent global
state from where a (failing) distributed computation could restart

• General idea : at some logical time t, all processes store
– their current state, and
– the content of messages that have been sent and are not yet received

• similar to the banking problem, where “in flight” messages must also be
identified and stored.

• Specific case of FIFO channels : see the Chandy-Lamport algorithm (‘85),
that uses a marker to separate past messages from new ones in a channel.

Worth reading :
important algorithm
+ historical interest.

Paper driven by examples,
not a formal presentation.

23

24

Chandy-Lamport snapshot

• Objective: determine a consistent global state, that is
– the current state (x) of each process at a consistent cut
– sequence of in-flight messages (→) in each channel (sent before cut, not yet received)

• Defines a state from which computations could restart in case of crash
• Could be a state that was never crossed by the current execution

P1

P2

P3

a b c d

e f
g

h i

nk l m

cut

x

x

x

25

• Assumptions
– Unidirectional FIFO lossless channels
– A communication path (possibly multi-hops) exists between any pair of processes
– One process initiates the snapshot
– Snapshot is stored in a distributed manner

• Principle:
– Flooding of a “cut” message from the initiator; this defines past and future
– Flushing of channel messages, using the FIFO assumption

a b c d

e f g

ji k

h

l

26

• Assumptions
– Unidirectional FIFO lossless channels
– A communication path (possibly multi-hops) exists between any pair of processes
– One process initiates the snapshot
– Snapshot is stored in a distributed manner

• Principle:
– Flooding of a “cut” message from the initiator; this defines past and future
– Flushing of channel messages, using the FIFO assumption

a b c d

e f g

ji k

h

A

l

B

C

27

• Assumptions
– Unidirectional FIFO lossless channels
– A communication path (possibly multi-hops) exists between any pair of processes
– One process initiates the snapshot
– Snapshot is stored in a distributed manner

• Principle:
– Flooding of a “cut” message from the initiator; this defines past and future
– Flushing of channel messages, using the FIFO assumption

a b c d

e f g

ji k

h

A

l

B

D

C

E

F

G

28

• Assumptions
– Unidirectional FIFO lossless channels
– A communication path (possibly multi-hops) exists between any pair of processes
– One process initiates the snapshot
– Snapshot is stored in a distributed manner

• Principle:
– Flooding of a “cut” message from the initiator; this defines past and future
– Flushing of channel messages, using the FIFO assumption

a b c d

e f g

ji k

h

A

l

B

D

C

E

F

G

29

• Assumptions
– Unidirectional FIFO lossless channels
– A communication path (possibly multi-hops) exists between any pair of processes
– One process initiates the snapshot
– Snapshot is stored in a distributed manner

• Principle:
– Flooding of a “cut” message from the initiator; this defines past and future
– Flushing of channel messages, using the FIFO assumption

a b c d

e f g

ji k

h

A

l

B

D

C

E

F

G

cut

cut

30

Chandi-Lamport algorithm

• Initiator P
– P turns from green to red, stores its current state

all subsequent messages from P are red
– P sends a “cut” message to each neighbor Q (first red message in channel P→Q)

• FIFO assumption: in each channel
– messages preceding “cut” are called green
– messages following “cut” are called red
– and similarly for processes: they change color when receiving “cut”

• Green process Q receives “cut” message from P
– This is the first “cut” message received by Q
– Q turns from green to red, stores its current state,

all subsequent messages from Q are red
– Q sends a “cut” message to each neighbor R (first red message in channel Q→R)
– Q starts recording green messages on each incoming channel S→Q,

preserving their ordering in each channel

• Red process Q receives a “cut” message from P
– This is not the first “cut” message received by Q
– Q stops recording green messages arriving on channel P→Q

31

Invariants + monotony (for proof of convergence)

• Messages in channels are green then red (when the first “cut” is sent) [FIFO]
• All “cut ” messages are causally related to the one of the initiator
• Each process ultimately receives a “cut” from each other process
• In-flight messages in channel P→Q are exactly those that

- follow the event “Q turns red”
- precede the event “Q receives “cut” from P”

Questions/homework
1. Make the convergence + correctness proof rigorous.
2. Prove that the FIFO assumption is necessary.
3. Why is it a distributed storage of a global state ?
4. Can one gather the global state at the initiator of the snapshot ?
5. Prove that the snapshot builds a global state that could possibly

have not been crossed by the actual (physical time) execution.
6. How can one have several possible initiators ?
7. How to restart computations from a snapshot ?
8. How to release the FIFO assumption ?

Vector clock

Historically
• introduced independently by Fidge (Aust.) and Mattern (Germ.) in ’88
• Fidge uses a slightly different construction, and is less formalized
• Mattern is a bit more formalized, and uses the notion of event structure.
• Read Mattern !

32

Vector clock

Objective
• recover all possible consistent total

orderings of events in a distributed run
• track the causality relations among

events of a distributed system, with a
distributed algorithm

33

A drawback of Lamport’s logical time
• not all total orderings of events are accessible
• logical time is totally ordered : how to capture only causality ?

• one would like to have :

Fidge-Mattern’s idea
• one local clock Ci per process Pi
• clock ticks are tuples/vectors

8e, e0 2 E, e � e0) C(e) < C(e0)

8e, e0 2 E, e � e0 () V C(e) � V C(e0)

V C(e) = (C1(e), ..., Cn(e)) 2 Nn

Algorithm:
• if is a new event in process Pi

– if then
– otherwise with 1 on the ith coordinate

• if is the sending of some message m from Pi to Pj
– send with message m (piggybacking)

• if is the reception of a message m tagged by
– make correction in

e 2 Ei

9e0 2 Ei, e
0 ! e

e 2 Ei

e 2 Ei

V C(e) = (C1(e
0), ..., Ci(e

0) + 1, ..., Cn(e
0))

V C(e) = (0, ..., 0, 1, 0, ..., 0)

V C(m) = V C(e)

8k, Ck(e) = max(Ck(e), Ck(m))

V C(m)
V C(e) 34

[see later for a definition of]�

P1

P2

P3

a b c d

e f g h i

nk l m

1
0
0

2
0
0

2
0
0

3
2
0

4
2
0

0
2
0

0
1
0

0
2
0

0
3
0

2
4
0

2
5
02

5
0

0
3
0

0
1
0

0
0
1

0
1
2

2
5
3

2
5
4

35

Thm: “The event structure and Mattern’s vector clock values on it
generate isomorphic trellises of event subsets.” [Mattern’88]

8e, e0 2 E, e � e0 () V C(e) � V C(e0)

Proof
• one defines by
• and by

• the theorem expresses that the partial order due to the DAG
and the one derived from vector clock values are identical

• proof of is the same as for Lamport’s logical clock (by construction)
• proof of is more involved (see hint below)

V C(e) � V C(e0) 8i, Ci(e)  Ci(e
0)

V C(e) � V C(e0) V C(e) � V C(e0) ^ V C(e) 6= V C(e0)

E = (E,!)

)
(

E = (E,!)

36

P1

P2

P3

a b c d

e f g h i

nk l m

1
0
0

2
0
0

2
0
0

3
2
0

4
2
0

0
2
0

0
1
0

0
2
0

0
3
0

2
4
0

2
5
02

5
0

0
3
0

0
1
0

0
0
1

0
1
2

2
5
3

2
5
4

37

P1

P2

P3

a b c d

e f g h i

nk l m

a
.
.

ab
.
.

ab
.
.

abc
ef
.

abcd
ef
..

ef
.

.
e
.

.
ef
.

.
efg
.

ab
efgh
.

ab
efghi
.

ab
efghi
.

.
efg
.

.
e
.

.

.
k

.
e
kl

ab
efghi
klm

ab
efghi
klmn

The text recoding of the Vector Clock captures exactly all events
that are causal predecessors of some given event in the DAG.
[Lamport’s clock was placing more predecessors in the past of some event.]

38

An equivalent version of Mattern’s vector clock
(one to one correspondence)

Applications

• distributed debugging : to keep track of the causality of events
• snapshots (storage of consistent global states), when channels are not

FIFO (Chandy-Lamport not applicable)

39

Take home messages

runs of distributed systems
• are partial orders (causal relations) of events
• better encoded as event structures
• this partial order can be tracked by distributed algorithms
• this is the starting point of more elaborate functions (snapshots, mutual

exclusion, detection of stable properties,…)

next time
• processes as automata
• models for distributed systems
• true concurrency semantics to capture causality/parallelism

40

