MAD

Models & Algorithms
for Distributed systems

- 2/5 --

Today...

Runs/executions of a distributed system are
partial orders of events

We introduce

— logical clocks (Lamport, Fidge-Mattern)
— event structures

— distributed algorithms to build them

Then explore applications to
— money counting in a distributed transactional system

— the construction of snapshots

Runs of distributed systems

Context
We assume processes have UIDs {1,2,...,n}.

So far, we had an undirected interaction graph of processes
G=(V,E), where V={1,2,...,n}.

Processes are asynchronous (no global clock), don’t fail, messages eventually
reach their destination.

We now examine a run of such a distributed system, with local events in each
process P;, and message exchanges from P; to P (where allowed).

a b C d e f g
P1 ® ® Q O 7@—)
Pz / ‘-'I)
| . n /
P3 & o, O ®, >

“a chronogram view”
e = |local event at P,
a = sending of a message at P4, i = reception of this message at P,
channels need not be FIFO : see j>g and k->f
in each process, events are totally ordered (local clock)

the “physical time” can be seen as given by vertical slices
no one knows this physical time (we only know it exists... up to relativity!)

4

P B GG Ko @B b UNKTOWN
physical time

“a chronogram view”
e = |local event at P,
a = sending of a message at P4, i = reception of this message at P,
channels need not be FIFO : see j>g and k->f
in each process, events are totally ordered (local clock)

the “physical time” can be seen as given by vertical slices
no one knows this physical time (we only know it exists... up to relativity!)

5

unknown
physical time

(D)
-
-ﬁ-o-o-o- . EEEEEREEEEE EEEEEEEEE ey .-
oQ

)
3
5

()
>

Q

®

“a chronogram view”
e = |local event at P,
a = sending of a message at P4, i = reception of this message at P,
channels need not be FIFO : see j>g and k->f
in each process, events are totally ordered (local clock)

the “physical time” can be seen as given by vertical slices
no one knows this physical time (we only know it exists... up to relativity!)

6

b be ROk b s UNKNOW
physical time

“a chronogram view”

events can slide on their axis, and preserve their ordering in processes,
and the emission/reception ordering

this yields another possible (total) ordering of events in physical time,
resulting in the same final global state of the system,
but going through different intermediate global states

this advocates the modeling of a run as a partial order of events

B e G @Ko b g UNKROWT
physical time

Questions to address

* Q:how to (formally) define and handle a run as a partial order of events,
rather than a sequence ?

* Q:the physical time is lost : can we instead track/compute this partial order ?
* Q:can we compute one (or all) possible total ordering(s) ?
* Q:what are the possible intermediate (global) states along a run ?

Event structures

Warning
Runs of distributed systems can be modeled in numerous (quite often
uselessly complex) manners :
- one can start from communicating automata (Lynch)
- or more simply from processes with local actions, emissions and their
matching receptions (Lamport, Fidge, Raynal)
- or even more simply from partially ordered events... (Mattern,

Winskel, MacMillan, Nielsen, Engelfriet)
- ... this goes with simple to more complex proofs for similar results !

it is a finite DAG (directed acyclic graph) £ — (E7 %)
events are partitioned into n subsets (processes)
E=F 4. dE,
events in each F/; form a path : total ordering due to local clock

an event € € E; has at most one direct successor/predecessor
e/ ¢ E; : models emission/reception of a message

partial orderonevents: e < e’ iff ¢ =~ e’ in the DAG,
i.e. < isthe smallest partial order (= transitive+irreflexive) relation generated by —

a—b—-h—=1—m—>n = a<n

past of an event e = predecessors of e for <
future of an event e = successors of e for <

concurrency: ele’ iff e A€ and € Ke

alk hlc bl bt m clm

10

future of h

>

3¢
>

partial orderonevents: e < e’ iff ¢ =~ e’ in the DAG,
i.e. < isthe smallest partial order (= transitive+irreflexive) relation generated by —

a—b—-h—=>1—m—>n = a<n

past of an event e = predecessors of e for <
future of an event e = successors of e for <

concurrency: ele’ iff e A€ and € Ke

alk hlc bl bt m clm

11

cut not cut

a
P, O >
e
P2 o >
P3 e, >
k

Acutin £ = (E’ —>) is a subset [’ C F closed for the precedence relation <
Ve,e! ¢ E, ecE' Ne <e = € cF

Maximal events in a cut can be seen as a line/curve, cutting all threads, thus
defining a past (E’) and a future (E\E’). The line represents a possible “present.”

Interpretation: a cut identifies a possible global state of the distributed process,
that could be characterized by the current state of each process, and the
messages already sent but not yet received (“in flight” messages).

Remark: it is generally not possible to have cuts with no pending messages,
i.e. that do not separate emission from reception of a message.

. . 12
Exercise: build an example.

a d
P, O & >
e
P2 PN >
P3 o, o, ®, >
k | m n

A linear extension of < is a total order < in E preserving < :
Ve,e! ¢ B, e<ée = e<¢

Obtained by recursively adding arcs ¢ — e’ for some pair of concurrent events,
ele’, then completing < by transitivity, until < becomes a total order.

“Thm”: any linear extension < of < is a possible execution order (in physical time)
for the events present in the event structure & = (E7 %)
Proof: trivial, as messages transit times are unknown. [See also later.]

Visually : how to build all such orderings ?
— imagine events are pearls on a necklace, made of n threads/strings, one per process
— pearls are free to move/along each string, but cannot overpass one another...
— ..butedges € — € (messages) must always point to the right (= to the future) 13

Remarks

We will see later how to encode sets of partial orders in convenient data
structures, in order to compute with them.

In modern computer science, event structures are studied per se.
They are simply event sets E (possibly infinite...) enriched with several
relations like

precedence, or causality

conflict : different possible outcomes/futures

alternative causes/predecessors of events

asymmetric causality (e can appear concurrently or after e’, but not before)
etc.

14

Logical clock

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,
computer networks, clock synchronization, multiprocess
systems

Historically
introduced by Lamport in ’78

was one of the contributions motivating
the Turing award

easy & pleasant to read, applications
described, but a little frustrating on

formalization and proofs.
Read it !

Objective

build one possible total ordering of events,

by attaching a logical time to them

do this with a distributed asynchronous
algorithm

15

Objective:
tag every event e with a logical clock value C(e), taken in some totally ordered set

these ticks should reflect one linear extension of < inrun £ = (E7 %)
Ve,e' € E, e<e = C(Ce) <C(e)
notice that it is sufficient to guarantee only
Ve,e! € E, e—¢e = C(Ce) <C(e)

and to make sure that C defines a total order.
we want compute these tags with a distributed algorithm

16

Algorithm:
if e € I; isanew eventin process P,
if 3¢’ € E;, e — e then C(e) =C(e) +1
otherwise C'(e) =1
if e € E; isthe sending of some message m from P; to P;

send C(m) = C(e) with message m (piggybacking)
if e € E; isthe reception of a message m tagged by C'(m)
make correction C'(e) := max(C(e),C(m) + 1)

d
P, P
e
P, al
P, 1

17

Algorithm:
if e € I; isanew eventin process P,
if 3¢’ € E;, ¢/ — e then C(e) =C(e') +1
otherwise C(e) =1
if e € E; isthe sending of some message m from P; to P

send C'(m) = C(e) with message m (piggybacking)
if e € E; isthereception of a message m tagged by C'(m)
make correction C'(e) := max(C(e),C(m) + 1)

Properties
clearlyensures Ve,e¢' € B, e—e = Ce) <C(e)
but events may not be totally ordered : concurrent events could have the same tag

a total order is obtained by appending indexito C(e) for e € E;
the total order is the lexicographic order on pairs (C'(e),)

each process can order its received messages in a unique manner
consistent with what all other processes do
and consistent with the causality of events in the run

however, this might not be the true order of message production in physical time...
...which anyway is lost forever !

Algorithm:
if e € I; isanew eventin process P,
if 3¢’ € E;, e — e then C(e) =C(e) +1
otherwise C'(e) =1
if e € E; isthe sending of some message m from P; to P;

send C(m) = C(e) with message m (piggybacking)
if e € E; isthe reception of a message m tagged by C'(m)
make correction C'(e) := max(C(e),C(m) + 1)

a b

)Q.

aekbflcgdhimn

19

Applications

* Shared objects/states
* Mutual exclusion (by broadcasting resource requests : read details in Lamport’s paper)
* Banking problem

determine the total amount of money circulating among a set of actors (banks)
local state = their current balance
messages = transactions (money sent)

Principle

tag events and messages with a logical time

assume all messages arrive, and message flows never stop
decide some logical time slice t at which counting takes place

then

all processes wait until they have an event greater than time t
collect the balance of each bank after the last event preceding time t

determine the amount of money “in flight” at time t between all pairs P, and P,
(i.e. sent by P; to P;, but not yet received by Pj)
easy :

* Pjknows how much it sent to P; before time t

* Pjknows how much it received from P; before time t

20

21

1 9
P4 S10 ®! QO
2
P, $20
P; $30—@
3 13

Before time 9

* P, sent $5+52=57 to P
* P3received S5 from P,
e S2arein flight

22

Applications

Definition of a snapshot (checkpoint), i.e. capture of a consistent global
state from where a (failing) distributed computation could restart

General idea : at some logical time t, all processes store

— their current state, and
— the content of messages that have been sent and are not yet received

similar to the banking problem, where “in flight” messages must also be
identified and stored.

Specific case of FIFO channels : see the Chandy-Lamport algorithm (‘85),
that uses a marker to separate past messages from new ones in a channel.

Distributed Snapshots: Determining Global
States of Distributed Systems

K. MANI CHANDY

:lrr‘\cliversnty of Texas at Austin Worth reading :
LESLIE LAMPORT important algorithm
Stanford Research Institute + historical interest.

Paper driven by examples,
This paper presents an algorithm by. which a process in.a df'sl{ibuted system determines a global not a forma/ presen tation_
state of the system during a computation. Many problems in distributed systems can be cast in terms

of the problem of detecting global states. For instance, the global state detection algorithm helps to
solve an important class of problems: stable property detection. A stable property is one that persists:
once a stable property becomes true it remains true thereafter. Examples of stable properties are
“computation has terminated,” “the system is deadlocked” and “all tokens in a token ring have
disappeared.” The stable property detection problem is that of devising algorithms to detect a given 23
stable property. Global state detection can also be used for checkpointing.

Chandy-Lamport snapshot

Objective: determine a consistent global state, that is
— the current state (x) of each process at a consistent cut
— sequence of in-flight messages (=) in each channel (sent before cut, not yet received)

Defines a state from which computations could restart in case of crash
Could be a state that was never crossed by the current execution

d
P, O >
P, >
P3

24

Assumptions
— Unidirectional FIFO lossless channels
— A communication path (possibly multi-hops) exists between any pair of processes
— One process initiates the snapshot
— Snapshot is stored in a distributed manner
Principle:
— Flooding of a “cut” message from the initiator; this defines past and future
— Flushing of channel messages, using the FIFO assumption

a b C d
A\ o\ A)
e fo hv N
[| k
A 4 A W —>

25

* Assumptions
— Unidirectional FIFO lossless channels
— A communication path (possibly multi-hops) exists between any pair of processes
— One process initiates the snapshot
— Snapshot is stored in a distributed manner
* Principle:
— Flooding of a “cut” message from the initiator; this defines past and future
— Flushing of channel messages, using the FIFO assumption

o

sl

Assumptions
— Unidirectional FIFO lossless channels
— A communication path (possibly multi-hops) exists between any pair of processes
— One process initiates the snapshot
— Snapshot is stored in a distributed manner
Principle:
— Flooding of a “cut” message from the initiator; this defines past and future
— Flushing of channel messages, using the FIFO assumption

A a D b C F d
_O\ / O = @ O —
/ B E

1\ P
C{ﬁ |
4 N

O~
2

¢/

(Bm

27

Assumptions
— Unidirectional FIFO lossless channels
— A communication path (possibly multi-hops) exists between any pair of processes
— One process initiates the snapshot
— Snapshot is stored in a distributed manner
Principle:
— Flooding of a “cut” message from the initiator; this defines past and future
— Flushing of channel messages, using the FIFO assumption

f'>>
\o
Qo
)
sl
O
v

Qm

/)
o‘é/
O

28

Assumptions
— Unidirectional FIFO lossless channels
— A communication path (possibly multi-hops) exists between any pair of processes
— One process initiates the snapshot
— Snapshot is stored in a distributed manner
Principle:
— Flooding of a “cut” message from the initiator; this defines past and future
— Flushing of channel messages, using the FIFO assumption

O
\

29

Chandi-Lamport algorithm

Initiator P
— P turns from green to red, stores its current state
all subsequent messages from P are red
— P sends a “cut” message to each neighbor Q (first red message in channel P->Q)
FIFO assumption: in each channel
— messages preceding “cut” are called green

— messages following “cut” are called red
— and similarly for processes: they change color when receiving “cut”

Green process Q receives “cut” message from P
— This is the first “cut” message received by Q
— Qturns from green to red, stores its current state,
all subsequent messages from Q are red
— Qsends a “cut” message to each neighbor R (first red message in channel Q—>R)
— Qstarts recording green messages on each incoming channel S-Q,
preserving their ordering in each channel

Red process Q receives a “cut” message from P
— This is not the first “cut” message received by Q
— Q stops recording green messages arriving on channel P-Q

30

Invariants + monotony (for proof of convergence)

Messages in channels are green then red (when the first “cut” is sent) [FIFO]
All “cut ” messages are causally related to the one of the initiator
Each process ultimately receives a “cut” from each other process

In-flight messages in channel P->Q are exactly those that
follow the event “Q turns red”
precede the event “Q receives “cut” from P”

Questions/homework
Make the convergence + correctness proof rigorous.
Prove that the FIFO assumption is necessary.
Why is it a distributed storage of a global state ?
Can one gather the global state at the initiator of the snapshot ?
Prove that the snapshot builds a global state that could possibly
have not been crossed by the actual (physical time) execution.
How can one have several possible initiators ?
How to restart computations from a snapshot ?
How to release the FIFO assumption ?

Vector clock

Timestamps in Message-Passing Systems That Preserve the Partial Ordering
Colin J. Fidge

Department of Computer Science, Australian National University, Canberra, ACT.

ABSTRACT

Timestamping is a common method of totally ordering events in concurrent programs.
However, for applications requiring access to the global state, a total ordering is inappro-
priate. This paper presents algorithms for timestamping events in both synchronous and
asynchronous message-passing programs that allow for access to the partial ordering in-
herent in a parallel system. The algorithms do not change the communications graph or
require a central timestamp issuing authority.

Historically
introduced independently by Fidge (Aust.) and Mattern (Germ.) in 88
Fidge uses a slightly different construction, and is less formalized
Mattern is a bit more formalized, and uses the notion of event structure.
Read Mattern !

32

Vector clock

Virtual Time and Global States of Distributed Systems *
Friedemann Mattern

Department of Computer Science, University of Kaiserslautem

D 6750 Kaiserslautern, Germany

Abstract

A distributed system can be characterized by the fact
that the global state ts distributed and that a common
trme base does not exist. However, the notion of time
ts an tmportant concept i every day life of our decen-
tralized “real world” and helps to solve problems like
getting a conststent population census or determining
the potential causality between events. We argue that a
linearly ordered structure of trme ts not (always) ade-
quate for distributed systems and propose a generalized
non-standard model of time which consists of vectors
of clocks. These clock-vectors are partially ordered and
form a lattice. By using titmestamps and a stmple clock
update mechanism the structure of causality s repre-
sented tn an tsomorphic way. The new model of time
has a close analogy to Minkowskt’s relativistic space-
time and leads among others to an interesting character-
wzatton of the global state problem. Finally, we present
a new algorithm to compute a consistent global snapshot
of a distributed system where messages may be recetved
out of order.

Objective

recover all possible consistent total
orderings of events in a distributed run

track the causality relations among
events of a distributed system, with a
distributed algorithm

33

A drawback of Lamport’s logical time

* not all total orderings of events are accessible

* |ogical time is totally ordered : how to capture only causality ?
Ve, e B, e<ée = Ce) <C(e)
 one would like to have :

Ve,e' e B, e<ée <= VC(e)<VC(e)

[see later for a definition of <]

Fidge-Mattern’s idea
* one local clock C; per process P;
* clock ticks are tuples/vectors VC(e) = (Ci(e),...,Cp(e)) € N”

Algorithm:

if e € E; isanew eventin process P;
if 3¢’ € E;, ¢ — e then VC(e) = (Cy(¢),....,Ci(e") +1,...,Cr(e"))
otherwise VC(e) = (0,...,0,1,0,...,0) with 1 on the it coordinate

if e € E; isthe sending of some message m from P; to P;
send VC(m)=VC(e) with message m (piggybacking)

if e € E; isthe reception of a message m tagged by VC'(m)
make correction Vk, Cj(e) = maz(Cy(e),Cr(m)) in VCl(e) 34

35

Thm: “The event structure £ = (E, —) and Mattern’s vector clock values on it
generate isomorphic trellises of event subsets.” [Mattern’88]

Ve,e' e B, e<e <« VC(e)<VC(e)

Proof

one defines VC(e) < VC(e') by Vi, C;(e) < C’(9
and VC(e) < VCO(€) by VC(e) < V() A VC(e) £ V()

the theorem expresses that the partial order due to the DAG & = (E, —>)
and the one derived from vector clock values are identical

proof of —> is the same as for Lamport’s logical clock (by construction)
proof of «— is more involved (see hint below)

37

An equivalent version of Mattern’s vector clock
(one to one correspondence)

a @ b ab ¢ abc d abed

" ® %F’b éf/g-ef —n—

p e . f. g . hab jab
2 ——— Q@ —@refl—Qrefe efgh ﬁefghl >
\-e \éfg efghi
_ —
s kg-k \ISEI efgh|>0efgh|—>

The text recoding of the Vector Clock captures exactly all events
that are causal predecessors of some given event in the DAG.
[Lamport’s clock was placing more predecessors in the past of some event.]

38

Applications

distributed debugging : to keep track of the causality of events
snapshots (storage of consistent global states), when channels are not
FIFO (Chandy-Lamport not applicable)

39

Take home messages

runs of distributed systems

e are partial orders (causal relations) of events
* better encoded as event structures
* this partial order can be tracked by distributed algorithms

e thisis the starting point of more elaborate functions (snapshots, mutual
exclusion, detection of stable properties,...)

next time
* processes as automata
* models for distributed systems
* true concurrency semantics to capture causality/parallelism

40

