MAD

Models & Algorithms
for Distributed systems

- 3/5 --

Today...

A first formal model for distributed systems:
networks of automata

We recall the basics of automata and formal languages...
...then introduce

— the product of automata

— Mazurkiewicz traces as a first true concurrency semantics for
these systems

...and start studying
— algebraic properties of languages of networks of automata
— distributed computations on traces

1994-95

“World Scientific

Traces and trace languages

* the counterpart of formal languages,
handling runs as partial orders of events
instead of sequences

* recognizability/rationality :
asynchronous automata by Zielonka

e event structures as a central object

e adequate logics

* Antoni Mazurkiewicz as leading contributor

Preliminaries

Automaton A = (S5,T,3,s,,SF)
» finite state set S, initial state s,, final/marked states Sy (optional)
* finite label set (alphabet) ¥}

* transitionset T C S x X x S
notation for transitions t = (s, a, s')
e trajectory/run w = tt,...1,
- =, 1<i<n 1

(*t,0(t),1°)

1

— .tl = So, tv.z ESF

Preliminaries

Automaton A = (5,T,%,s,,SF)
» finite state set S, initial state s,, final/marked states Sy (optional)
* finite label set (alphabet) ¥}

* transitionset T C S x X x S
notation for transitions ¢ = (s, «, s)

e trajectory/run w = tt,...1, .
- =", 1<i<n 1

- %1 = s, tf,.l € Sgp

(*t,0(t),1°)

A is deterministic iff Vs, a, |{(s,,s') €T} <1

languageof A: L(A) = {o(w): w run of A}
where o (ty...t,) = o(t1)...0(tn) € B*

Alanguage £ C X * isregulariffitis the language of some automaton.

Thm : there exists a uniqgue minimal deterministic automaton recognizing
a given regular language. >

Projection of an automaton

Projection of A= (S,T,3,s,,Sr) on sub-alphabet ¥/ C %

./4/ — Hg/(A) — (S, T’, E/, S0, SF)
e in transitions, replace each label a € ¥\ ¥’ by ¢ (empty word)
* perform e-reduction (or e-closure), to the right or to the left

o

o

S G S 5
O———=0------ =0------ =0 —

* one may then determinize and minimize the result

Example A" =TIy, 4y(A)

Projection of an automaton

Projection of A= (S,T,3,s,,Sr) on sub-alphabet ¥/ C %
./4/ — Hg/(A) — (S, T’, E/, S0, SF)
e in transitions, replace each label a € ¥\ ¥’ by ¢ (empty word)

* perform e-reduction (or e-closure), to the right or to the left

S o

O———=0------ =0------ =0

—

O
O
O

* one may then determinize and minimize the result

Example A" =TIy, 4y(A)

Projection of a language

Projection of £ C X* on sub-alphabet Y C X
L =Ty (L) C (X)*
* onletters Iy (a) = a if a € ¥/ and IIyx/ () = € otherwise
* extension to words : IIy/ (uv) = s/ (u)lls (v)
e extension to languages, i.e. sets of words
* amounts to erasing letters of ¥\ X' in words of L

Projection of a language

Projection of £ C X* on sub-alphabet Y C X
L =Ty (L) C (X)*
* onletters Iy (a) = a if a € ¥/ and IIyx/ () = € otherwise
* extension to words : IIy/ (uv) = s/ (u)lls (v)
e extension to languages, i.e. sets of words
* amounts to erasing letters of ¥\ X' in words of L

Thm s [L(A)] = L[5 (A)]

Proof: exercise

Networks of automata

so far, processes were abstract machines, computing and communicating

towards a formal model of distributed system:
let’s put behaviors/purposes into processes

we want to be able to verify, analyze, control, diagnose, etc. such systems

: a (local) process becomes an automaton

Simplification

Let’s get rid of channels !

we add processes that represent channels
writing/reading on the channel becomes instantaneous
the process “channel” can delay the messages

it can also have behaviors (FIFO, lossy,...)

1
=
.
-
=
-—+o
=

Channel

1o
1o

b
P; 1

11

Simplification

Let’s get rid of channels !

we add processes that represent channels
writing/reading on the channel becomes instantaneous
the process “channel” can delay the messages

it can also have behaviors (FIFO, lossy,...)

12

Simplification

Let’s get rid of channels !
* we add processes that represent channels

» writing/reading on the channel becomes instantaneous
e the process “channel” can delay the messages

e it can also have behaviors (FIFO, lossy,...)

* what do we gain:
— homogeneity (1 object type instead of 2)
— synchrony of interactions
— without losing the global asynchrony of behaviors

 what do we lose:
— (finite number of messages) + one reading action per possible message
— channels are not anymore “passive” objects
— need to recall that actions of a component “channel” can not be enforced
— and that their state needs not be observable (one may have to estimate it from outside%3

III

Synchronous composition of processes
« Automata A; = (5;,T;,%;,5;0,5 F) fori=1,2

* Product A= A4, x A, = (5,T,%, sg, Sp) Where
— states S =57 x5, sg= (81’0,82’0), Sp = Sl,F X SQ,F
— labels ¥ =%, UX,
shared labels Y = ¥; N Y, define synchronized actions

14

Synchronous composition of processes
Automata A; = (5;,T;,%;, Si.0, 5. F) fori=1,2

Product 4 = A, x Ay = (5,T,%, sg, Sp) Where
states S =57 X Sy, sg = (81,0,82’()), Sp = Sl,F X SQ,F
— labels ¥ =%, UX,
shared labels Y = ¥; N Y, define synchronized actions
— transitions, for t; € T;, s; € S;
T = {(t1,t2) : o1(t1) = o2(t2) € X1 NXs} synchronized actions

H-J {(t17*82) : Ul(tl) SN \ 22} private moves in 4,
L"j {(*s,,t2) : 02(t2) € o\ X1} private movesin A4,

— flow relation given by *(¢1,%2) = (*t1,° t2) and (¢1,t2)® = (¢3,13)
where one can have t; = x5, and *(xs,) = s; = (%s,)°

15

Example

16

Network of automata
(or distributed automaton)

We call a network of automata a system A defined as

.A:.A1><...><.AN

interaction graph of a distributed automaton: G =(V ={1,..., N}, F)
— each node i stands for component A;
— edge i—j existsiff ¥, MY, # 0
caution:
— this model allows synchronous actions with more than 2 components
— if o € X; M X, N Xy thenaction v must be performed jointly by A;, Aj, Ay
— in general, all components declaring some shared label must contribute to fire it
The factorized form is a more compact description of the system
(exponential state space explosion with number of components)

17

Product of languages

Let £, L2 be languages, with £; C X7
let > = X; U, bethe union of their alphabets
let II; : ¥ — 37 be the canonical projections
The product £ = L1 x Lo is defined as

L= £1 X [,2 = Hl_l(ﬁl) M H;l(ﬁg)

it consists of words over 3 which projections through II;, II,
liein L1, Lo respectively

Example 3; = {a,b},Xs = {a,c, 0}
Ly = {abba}, Lo = {cacao}

L = L1 X Lo = {cabbcao, cabcbao, cacbbao}

18

Remarks (and homework)

e the product of two words can be several words
(interleaving of private letters)

* homework: what is the sizeof £L = L1 X L5 when X NYXy =0 ?
« homework: find an NSC for w; x wy = (), with words w; € 3}

* homework: design an algorithm to compute w; X ws

* Thm =7 x Lo=0 i I 5(L1) N1 2(L2) =0
proof : homework

Remarks (and homework)

e the product of two words can be several words
(interleaving of private letters)

* homework: what is the sizeof £L = L1 X L5 when X NYXy =0 ?
« homework: find an NSC for w; x wy = (), with words w; € 3}

* homework: design an algorithm to compute w; X ws

* Thm =7 x Lo=0 i I 5(L1) N1 2(L2) =0
proof : homework

Thm let A= A4; x...x Ay be anetwork of automata, then

L(A)=L(A1) X ... x L(AN)

proof : it is enough to check it for N=2
then proceed by double inclusion (exercise)

Product of two words

w; = babbab, w, = acac over ¥; = {a, b}, X2 = {a,c} resp.

w1 X wg = {w e X" Iy, (w) = wq, ly, (w) = wa}

onehas wi X wy #0 < Iy, (w1) =g, (ws)

Algorithm to build one such w : repeat until end of w; and w,

— interleave private parts of both words, until next synchro
— place next synchro action of both words, if they match, otherwise return 0

w; = babbab

w

W, = acac

21

Product of two words

* w; =babbab, w,=acac over ¥; = {a,b}, X2 = {a,c} resp.

w1 X wg = {w e X" Iy, (w) = wq, ly, (w) = wa}

 onehas w; xwy#0 < Iy, (wr) = lyg, (ws)

* Algorithm to build one such w : repeat until end of w; and w,

— interleave private parts of both words, until next synchro
— place next synchro action of both words, if they match, otherwise return 0

w; = babbab

b...

w

W, = acac

22

Product of two words
* w; =babbab, w,=acac over ¥; = {a,b}, X2 = {a,c} resp.

w1 X wg = {w e X" Iy, (w) = wq, ly, (w) = wa}

 onehas w; xwy#0 < Iy, (wr) = lyg, (ws)

* Algorithm to build one such w : repeat until end of w; and w,

— interleave private parts of both words, until next synchro
— place next synchro action of both words, if they match, otherwise return 0

w; = babbab
w = ba...

/

W, = acac

23

Product of two words
* w; =babbab, w,=acac over ¥; = {a,b}, X2 = {a,c} resp.

w1 X wg = {w e X" Iy, (w) = wq, ly, (w) = wa}

 onehas w; xwy#0 < Iy, (wr) = lyg, (ws)

* Algorithm to build one such w : repeat until end of w; and w,

— interleave private parts of both words, until next synchro
— place next synchro action of both words, if they match, otherwise return 0

w; = babbab

w = babbc...

W, = acac

24

Product of two words
* w; =babbab, w,=acac over ¥; = {a,b}, X2 = {a,c} resp.

w1 X wg = {w e X" Iy, (w) = wq, ly, (w) = wa}

 onehas w; xwy#0 < Iy, (wr) = lyg, (ws)

* Algorithm to build one such w : repeat until end of w; and w,

— interleave private parts of both words, until next synchro
— place next synchro action of both words, if they match, otherwise return 0

w; = babbab
w = babbc\é...

/

W, = acac

25

Product of two words
* w; =babbab, w,=acac over ¥; = {a,b}, X2 = {a,c} resp.

w1 X wg = {w e X" Iy, (w) = wq, ly, (w) = wa}

 onehas w; xwy#0 < Iy, (wr) = lyg, (ws)

* Algorithm to build one such w : repeat until end of w; and w,

— interleave private parts of both words, until next synchro
— place next synchro action of both words, if they match, otherwise return 0

w; = babbab

w = babbcabc

W, = acac

26

Towards true concurrency semantics

Problem for a distributed system runs/words are still sequences of events.
How to model the fact that private events in the
could occur in any order ?

Example A= A4, x A, with X; ={a,b}, X3 = {a,c}

A; “waits”
b /b b
A o o >
I T R A a
g —of—od .
o \c
T joint transition

local transition of A,

For the sequential semantics, runs bcabcba and bcacbba are different !
27

Towards true concurrency semantics

Problem for a distributed system runs/words are still sequences of events.
How to model the fact that private events in the
could occur in any order ?

Example A= A4, x A, with X; ={a,b}, X3 = {a,c}

A; “waits”

b b b
A l@‘/@ll >
A O A A
A, o—} o0& >

C \
T joint transition

local transition of A,

For the sequential semantics, runs bcabcba and bcacbba are different !

28

Mazurkiewicz traces

Idea: define runs as equivalence relations of sequences, i.e. allow the
permutation of successive events that live on different components

Dependency : on lettersof ¥ = U; X;
aDpf < di, o, €
in any run of A, these letters will be ordered by at least
one component A;

Independence : complement of the dependency relation, denoted o I 3

29

Mazurkiewicz traces

Idea: define runs as equivalence relations of sequences, i.e. allow the
permutation of successive events that live on different components

Dependency : on lettersof ¥ = U; X;
aDpf < di, o, €
in any run of A, these letters will be ordered by at least
one component A;

Independence : complement of the dependency relation, denoted o I
Equivalence relation on words in £(.A)
waobw = whaw <« alfB
we consider the equivalence relation on words generated
by this property
Trace of a word w, denoted [w]: it is the equivalence class of w for =

it is also the set of sequences obtained by successively
permuting consecutive independent letters

30

Example X, = {a,b}, X5 ={a,c} onehas b1Ic

b b b
SN B O S B G B A
A, OI CIO >
C C

[bcabcba]= { bcabcba, cbabcba, bcacbba, cbacbba, bcabbca, cbabbca }

31

Example X, = {a,b}, X5 ={a,c} onehas b1Ic

b b b
4 —o———t—o— >
A T I A B
A, IC 5'\)} >
C C

[bcabcba]= { bcabcba, cbabcba, bcacbba, cbacbba, bcabbca, cbabbca }

32

Concurrency: consider events « and f inword w=u avv’ fu’

where u,v,u’v’ are subwords

o and [are concurrent events in w, denoted o | 3, iff
w=uavv fu

b
= uv ’U,Ul

= uvfavu

Causality ...otherwise, and /3 are causally related, denoted o < 3
b b b
Aj l Q l @ l >
o la a
AZ O I C I O >
C C

33

Concurrency: consider events « and f inword w=u avv’ fu’
where u,v,u’v’ are subwords

o and [are concurrent events in w, denoted o | 3, iff
w=uavv fu

b
= uv ’U,U/

= uvBav u

Causality ...otherwise, and /3 are causally related, denoted o < 3
b b b
4 — oo >
. I . a
AZ O I C l O >
C C

A trace as a partial order : let w = ejes...€e,

then < defines a partial order on {€1, ..., €n}
[different occurrences of the same letter are distinguished]

34

Concurrency: consider events « and f inword w=u avv’ fu’
where u,v,u’v’ are subwords

o and [are concurrent events in w, denoted o | 3, iff
w=uavv fu
_ \éég// /
= Uv vV Uu
= uvBav u

Causality ...otherwise, and /3 are causally related, denoted o < 3

b

b b
v I L
T B ’

A trace as a partial order : let w = ejes...€e,

then < defines a partial order on {€1, ..., €n}
[different occurrences of the same letter are distinguished]

35

Thm:let w =ejes...e,, then [w] is obtained as the set of all
linear extensions of ({eq,...,en}, <)

Proof : exercise (almost by construction/definition)

Consequence: a (Mazurkiewicz) trace is equivalently described
as a partial order of events

b

b b
v Ial 4
1
C C

Aj

intuitively, one can consider it as a necklace with several
threads, one per process, and pearls placed on either one
or several threads, and free to move along it

36

Thm : Consider the network of automata A = A; x ... x Ay
let the w; € L(A;) be words in each component,
let w € wy X ... X wy , then

(w] = w1 X ... x wy C L(A)

Proof : exercise (hint: proceed by double inclusion)

Consequence: a (Mazurkiewicz) trace [w] is equivalently described
as a tuple of local words (wjy,...,wy), one per component

b b b
v — I L
v ’

[bcabcba | = { bcabcba, cbabcba, bcacbba, cbacbba, bcabbca, cbabbca }
={ babba} X {caca}

The encoding of a trace as a tuple is similar to Mattern’s vector clock ! .

Take home messages

In a network of automata

* one can define true concurrency semantics,
where runs are partial orders of events

* encoding of these runs as products of sequences
» factorized representations are more compact

Next time
» distributed/modular algorithms to compute with these partial orders
e applications to multi-agent diagnosis & planning

38

