MAD

Models & Algorithms for Distributed systems

-- 3/5 --

download slides at

http://people.rennes.inria.fr/Eric.Fabre/

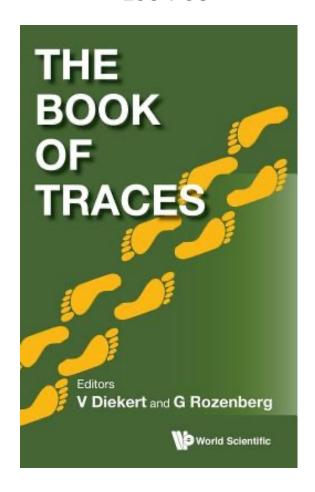
Today...

A first formal model for distributed systems:

networks of automata

- We recall the basics of automata and formal languages...
- ...then introduce
 - the product of automata
 - Mazurkiewicz traces as a first true concurrency semantics for these systems
- ...and start studying
 - algebraic properties of languages of networks of automata
 - distributed computations on traces

1994-95



Traces and trace languages

- the counterpart of formal languages, handling runs as partial orders of events instead of sequences
- recognizability/rationality : asynchronous automata by Zielonka
- event structures as a central object
- adequate logics
- Antoni Mazurkiewicz as leading contributor

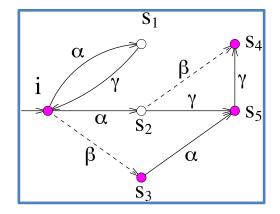
Preliminaries

Automaton $\mathcal{A} = (S, T, \Sigma, s_o, S_F)$

- finite state set S, initial state s_0 , final/marked states S_F (optional)
- finite label set (alphabet) Σ
- transition set $T\subseteq S\times \Sigma\times S$ notation for transitions $t=(s,\alpha,s')=({}^{\bullet}t,\sigma(t),t^{\bullet})$
- trajectory/run $\omega = t_1 t_2 ... t_n$

$$- t_i^{\bullet} = {}^{\bullet}t_{i+1}, \quad 1 \le i < n$$

$$- \quad {}^{\bullet}t_1 = s_0, \quad t_n^{\bullet} \in S_F$$



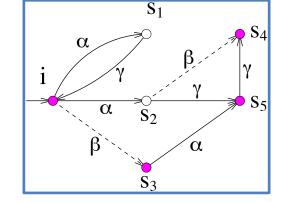
Preliminaries

Automaton $\mathcal{A} = (S, T, \Sigma, s_o, S_F)$

- finite state set S, initial state s_0 , final/marked states S_F (optional)
- finite label set (alphabet) Σ
- transition set $T \subseteq S \times \Sigma \times S$ notation for transitions $t = (s, \alpha, s') = ({}^{\bullet}t, \sigma(t), t^{\bullet})$
- trajectory/run $\omega = t_1 t_2 ... t_n$

$$- t_i^{\bullet} = {}^{\bullet}t_{i+1}, \quad 1 \le i < n$$

$$- \quad {}^{\bullet}t_1 = s_0, \quad t_n^{\bullet} \in S_F$$



- \mathcal{A} is deterministic iff $\forall s, \alpha, |\{(s, \alpha, s') \in T\}| \leq 1$
- language of \mathcal{A} : $\mathcal{L}(\mathcal{A}) = \{\sigma(\omega) : \omega \text{ run of } \mathcal{A}\}$ where $\sigma(t_1...t_n) = \sigma(t_1)...\sigma(t_n) \in \Sigma^*$
- A language $\mathcal{L} \subseteq \Sigma^*$ is regular iff it is the language of some automaton.
- Thm: there exists a unique minimal deterministic automaton recognizing a given regular language.

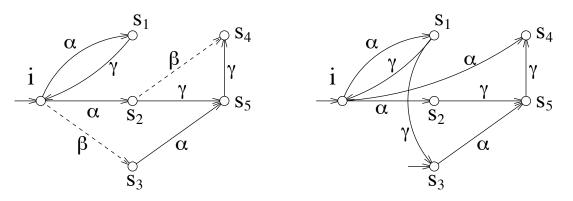
Projection of an automaton

Projection of
$$\mathcal{A}=(S,T,\Sigma,s_o,S_F)$$
 on sub-alphabet $\Sigma'\subseteq\Sigma$ $\mathcal{A}'=\Pi_{\Sigma'}(\mathcal{A})=(S,T',\Sigma',s_0,S_F)$

- in transitions, replace each label $\alpha \in \Sigma \setminus \Sigma'$ by ϵ (empty word)
- perform ε -reduction (or ε -closure), to the right or to the left

• one may then determinize and minimize the result

Example
$$\mathcal{A}' = \Pi_{\{\alpha,\gamma\}}(\mathcal{A})$$



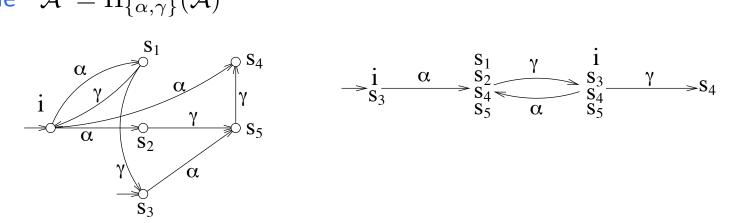
Projection of an automaton

Projection of
$$\mathcal{A}=(S,T,\Sigma,s_o,S_F)$$
 on sub-alphabet $\Sigma'\subseteq\Sigma$ $\mathcal{A}'=\Pi_{\Sigma'}(\mathcal{A})=(S,T',\Sigma',s_0,S_F)$

- in transitions, replace each label $\, lpha \in \Sigma \setminus \Sigma' \,$ by $\, \epsilon \,$ (empty word)
- perform ε -reduction (or ε -closure), to the right or to the left

one may then determinize and minimize the result

Example
$$\mathcal{A}' = \Pi_{\{\alpha,\gamma\}}(\mathcal{A})$$



Projection of a language

Projection of $\mathcal{L} \subseteq \Sigma^*$ on sub-alphabet $\Sigma' \subseteq \Sigma$

$$\mathcal{L}' = \Pi_{\Sigma'}(\mathcal{L}) \subseteq (\Sigma')^*$$

- on letters $\Pi_{\Sigma'}(\alpha)=\alpha$ if $\alpha\in\Sigma'$ and $\Pi_{\Sigma'}(\alpha)=\epsilon$ otherwise
- extension to words : $\Pi_{\Sigma'}(uv) = \Pi_{\Sigma'}(u)\Pi_{\Sigma'}(v)$
- extension to languages, i.e. sets of words
- ullet amounts to erasing letters of $\, \Sigma \setminus \Sigma' \,$ in words of $\, {\cal L} \,$

Projection of a language

Projection of $\mathcal{L} \subseteq \Sigma^*$ on sub-alphabet $\Sigma' \subseteq \Sigma$

$$\mathcal{L}' = \Pi_{\Sigma'}(\mathcal{L}) \subseteq (\Sigma')^*$$

- on letters $\Pi_{\Sigma'}(\alpha)=\alpha$ if $\alpha\in\Sigma'$ and $\Pi_{\Sigma'}(\alpha)=\epsilon$ otherwise
- extension to words : $\Pi_{\Sigma'}(uv) = \Pi_{\Sigma'}(u)\Pi_{\Sigma'}(v)$
- extension to languages, i.e. sets of words
- amounts to erasing letters of $\Sigma \setminus \Sigma'$ in words of $\mathcal L$

Thm
$$\Pi_{\Sigma'}[\mathcal{L}(\mathcal{A})] = \mathcal{L}[\Pi_{\Sigma'}(\mathcal{A})]$$

Proof: exercise

Networks of automata

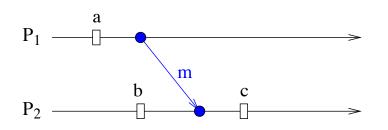
Objectives

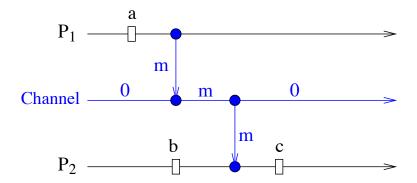
- so far, processes were abstract machines, computing and communicating
- towards a formal model of distributed system: let's put behaviors/purposes into processes
- we want to be able to <u>verify</u>, <u>analyze</u>, <u>control</u>, <u>diagnose</u>, etc. such systems
- idea: a (local) process becomes an automaton

Simplification

Let's get rid of channels!

- we add processes that represent channels
- writing/reading on the channel becomes instantaneous
- the process "channel" can delay the messages
- it can also have behaviors (FIFO, lossy,...)

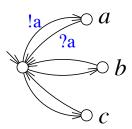


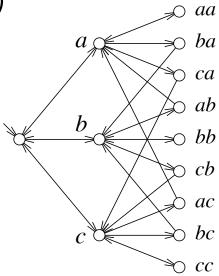


Simplification

Let's get rid of channels!

- we add processes that represent channels
- writing/reading on the channel becomes instantaneous
- the process "channel" can delay the messages
- it can also have behaviors (FIFO, lossy,...)

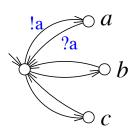


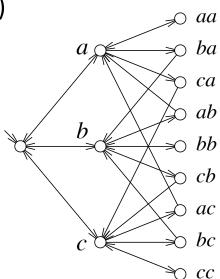


Simplification

Let's get rid of channels!

- we add processes that represent channels
- writing/reading on the channel becomes instantaneous
- the process "channel" can delay the messages
- it can also have behaviors (FIFO, lossy,...)





- what do we gain:
 - homogeneity (1 object type instead of 2)
 - synchrony of interactions
 - without losing the global asynchrony of behaviors
- what do we lose:
 - (finite number of messages) + one reading action per possible message
 - channels are not anymore "passive" objects
 - need to recall that actions of a component "channel" can not be enforced
 - and that their state needs not be observable (one may have to estimate it from outside)

Synchronous composition of processes

- Automata $\mathcal{A}_i = (S_i, T_i, \Sigma_i, s_{i,0}, S_{i,F})$ for i=1,2
- Product $\mathcal{A}=\mathcal{A}_1 imes \mathcal{A}_2=(S,T,\Sigma,s_0,S_F)$ where
 - states $S = S_1 \times S_2$, $S_0 = (s_{1,0}, s_{2,0})$, $S_F = S_{1,F} \times S_{2,F}$
 - labels $\Sigma=\Sigma_1\cup\Sigma_2$ shared labels $\Sigma=\Sigma_1\cap\Sigma_2$ define synchronized actions

Synchronous composition of processes

- Automata $\mathcal{A}_i = (S_i, T_i, \Sigma_i, s_{i,0}, S_{i,F})$ for i=1,2
- Product $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 = (S, T, \Sigma, s_0, S_F)$ where
 - states $S = S_1 \times S_2$, $S_0 = (s_{1,0}, s_{2,0})$, $S_F = S_{1,F} \times S_{2,F}$
 - labels $\Sigma=\Sigma_1\cup\Sigma_2$ shared labels $\Sigma=\Sigma_1\cap\Sigma_2$ define synchronized actions
 - transitions, for $t_i \in T_i$, $s_i \in S_i$

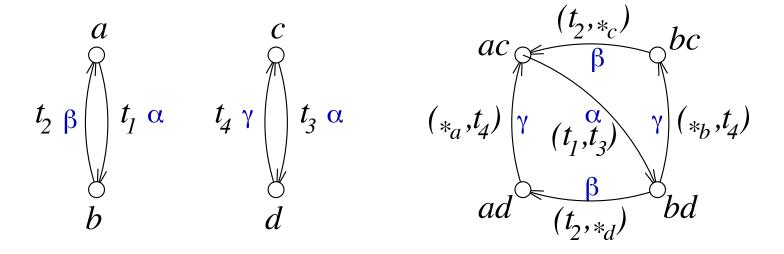
$$T = \{(t_1,t_2) \ : \ \sigma_1(t_1) = \sigma_2(t_2) \in \Sigma_1 \cap \Sigma_2\} \quad \text{ synchronized actions}$$

$$\biguplus \ \{(t_1,\star_{s_2}) \ : \ \sigma_1(t_1) \in \Sigma_1 \setminus \Sigma_2\} \quad \text{ private moves in } \mathcal{A}_1$$

$$\biguplus \ \{(\star_{s_1},t_2) \ : \ \sigma_2(t_2) \in \Sigma_2 \setminus \Sigma_1\} \quad \text{ private moves in } \mathcal{A}_2$$

- flow relation given by ${}^{\bullet}(t_1,t_2)=({}^{\bullet}t_1,{}^{\bullet}t_2)$ and $(t_1,t_2)^{\bullet}=(t_1^{\bullet},t_2^{\bullet})$ where one can have $t_i=\star_{s_i}$ and ${}^{\bullet}(\star_{s_i})=s_i=(\star_{s_i})^{\bullet}$

Example



Network of automata

(or distributed automaton)

We call a network of automata a system \mathcal{A} defined as

$$\mathcal{A} = \mathcal{A}_1 \times ... \times \mathcal{A}_N$$

- interaction graph of a distributed automaton: $G = (V = \{1,...,N\}, E)$
 - each node i stands for component \mathcal{A}_i
 - edge i-j exists iff $\sum_i \cap \sum_j \neq \emptyset$
- caution:
 - this model allows synchronous actions with more than 2 components
 - if $\alpha \in \Sigma_i \cap \Sigma_j \cap \Sigma_k$ then action α must be performed jointly by $\mathcal{A}_i, \mathcal{A}_j, \mathcal{A}_k$
 - in general, all components declaring some shared label must contribute to fire it
- The factorized form is a more compact description of the system (exponential state space explosion with number of components)

Product of languages

- Let $\mathcal{L}_1, \mathcal{L}_2$ be languages, with $\mathcal{L}_i \subseteq \Sigma_i^*$
- let $\Sigma = \Sigma_1 \cup \Sigma_2$ be the union of their alphabets
- let $\Pi_i: \Sigma^* \to \Sigma_i^*$ be the canonical projections
- The product $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2$ is defined as

$$\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2 = \Pi_1^{-1}(\mathcal{L}_1) \cap \Pi_2^{-1}(\mathcal{L}_2)$$

- it consists of words over Σ which projections through Π_1,Π_2 lie in $\mathcal{L}_1,\mathcal{L}_2$ respectively
- Example $\Sigma_1 = \{a, b\}, \Sigma_2 = \{a, c, o\}$ $\mathcal{L}_1 = \{abba\}, \mathcal{L}_2 = \{cacao\}$ $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2 = \{cabbcao, cabbao, cacbbao\}$

Remarks (and homework)

- the product of two words can be several words (interleaving of private letters)
- homework: what is the size of $\mathcal{L}=\mathcal{L}_1 imes\mathcal{L}_2$ when $\Sigma_1\cap\Sigma_2=\emptyset$?
- <u>homework</u>: find an NSC for $w_1 \times w_2 = \emptyset$, with words $w_i \in \Sigma_i^*$
- <u>homework</u>: design an algorithm to compute $w_1 \times w_2$
- Thm $\mathcal{L}=\mathcal{L}_1\times\mathcal{L}_2=\emptyset$ iff $\Pi_{1,2}(\mathcal{L}_1)\cap\Pi_{1,2}(\mathcal{L}_2)=\emptyset$ proof : homework

Remarks (and homework)

- the product of two words can be several words (interleaving of private letters)
- homework: what is the size of $\mathcal{L}=\mathcal{L}_1 imes\mathcal{L}_2$ when $\Sigma_1\cap\Sigma_2=\emptyset$?
- <u>homework</u>: find an NSC for $w_1 imes w_2 = \emptyset$, with words $w_i \in \Sigma_i^*$
- <u>homework</u>: design an algorithm to compute $w_1 \times w_2$
- Thm $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2 = \emptyset$ iff $\Pi_{1,2}(\mathcal{L}_1) \cap \Pi_{1,2}(\mathcal{L}_2) = \emptyset$ proof: homework

Thm let $\mathcal{A}=\mathcal{A}_1 imes... imes\mathcal{A}_N$ be a network of automata, then $\mathcal{L}(\mathcal{A})=\mathcal{L}(\mathcal{A}_1) imes... imes\mathcal{L}(\mathcal{A}_N)$

<u>proof</u>: it is enough to check it for N=2 then proceed by double inclusion (exercise)

- w_I = babbab, w_2 = acac over $\Sigma_1=\{a,b\},\ \Sigma_2=\{a,c\}$ resp. $w_1\times w_2=\{w\in\Sigma^*\ :\ \Pi_{\Sigma_1}(w)=w_1,\ \Pi_{\Sigma_2}(w)=w_2\}$
- one has $w_1 imes w_2
 eq \emptyset \Leftrightarrow \Pi_{\Sigma_2}(w_1) = \Pi_{\Sigma_1}(w_2)$
- Algorithm to build one such w: repeat until end of w_1 and w_2
 - interleave private parts of both words, until next synchro
 - place next synchro action of both words, if they match, otherwise return \emptyset

$$w_1 = babbab$$

$$w = \dots$$

$$w_2$$
 = acac

- w_I = babbab, w_2 = acac over $\Sigma_1=\{a,b\},\ \Sigma_2=\{a,c\}$ resp. $w_1\times w_2=\{w\in\Sigma^*\ :\ \Pi_{\Sigma_1}(w)=w_1,\ \Pi_{\Sigma_2}(w)=w_2\}$
- one has $w_1 imes w_2
 eq \emptyset \Leftrightarrow \Pi_{\Sigma_2}(w_1) = \Pi_{\Sigma_1}(w_2)$
- Algorithm to build one such w: repeat until end of w_1 and w_2
 - interleave private parts of both words, until next synchro
 - $-\hspace{0.1cm}$ place next synchro action of both words, if they match, otherwise return $\hspace{0.1cm}\emptyset$

$$w_1 = \mathbf{b}abbab$$

$$w = b...$$

$$w_2$$
 = acac

- w_I = babbab, w_2 = acac over $\Sigma_1=\{a,b\},\ \Sigma_2=\{a,c\}$ resp. $w_1\times w_2=\{w\in\Sigma^*\ :\ \Pi_{\Sigma_1}(w)=w_1,\ \Pi_{\Sigma_2}(w)=w_2\}$
- one has $w_1 \times w_2 \neq \emptyset \Leftrightarrow \Pi_{\Sigma_2}(w_1) = \Pi_{\Sigma_1}(w_2)$
- Algorithm to build one such w: repeat until end of w_1 and w_2
 - interleave private parts of both words, until next synchro
 - place next synchro action of both words, if they match, otherwise return

$$w_1 = babbab$$

$$w = ba...$$

$$w_2 = acac$$

- w_I = babbab, w_2 = acac over $\Sigma_1=\{a,b\},\ \Sigma_2=\{a,c\}$ resp. $w_1\times w_2=\{w\in\Sigma^*\ :\ \Pi_{\Sigma_1}(w)=w_1,\ \Pi_{\Sigma_2}(w)=w_2\}$
- one has $w_1 imes w_2
 eq \emptyset \Leftrightarrow \Pi_{\Sigma_2}(w_1) = \Pi_{\Sigma_1}(w_2)$
- Algorithm to build one such w: repeat until end of w_1 and w_2
 - interleave private parts of both words, until next synchro
 - place next synchro action of both words, if they match, otherwise return \emptyset

$$w_1 = babbab$$

$$w = babbc...$$

$$w_2$$
 = acac

- w_I = babbab, w_2 = acac over $\Sigma_1=\{a,b\},\ \Sigma_2=\{a,c\}$ resp. $w_1\times w_2=\{w\in\Sigma^*\ :\ \Pi_{\Sigma_1}(w)=w_1,\ \Pi_{\Sigma_2}(w)=w_2\}$
- one has $w_1 \times w_2 \neq \emptyset \Leftrightarrow \Pi_{\Sigma_2}(w_1) = \Pi_{\Sigma_1}(w_2)$
- Algorithm to build one such w: repeat until end of w_1 and w_2
 - interleave private parts of both words, until next synchro
 - $-\hspace{0.1cm}$ place next synchro action of both words, if they match, otherwise return $\hspace{0.1cm}\emptyset$

$$w_1 = babbab$$
 $w = babbca...$
 $w_2 = acac$

- w_I = babbab, w_2 = acac over $\Sigma_1=\{a,b\},\ \Sigma_2=\{a,c\}$ resp. $w_1\times w_2=\{w\in\Sigma^*\ :\ \Pi_{\Sigma_1}(w)=w_1,\ \Pi_{\Sigma_2}(w)=w_2\}$
- one has $w_1 imes w_2
 eq \emptyset \Leftrightarrow \Pi_{\Sigma_2}(w_1) = \Pi_{\Sigma_1}(w_2)$
- Algorithm to build one such w: repeat until end of w_1 and w_2
 - interleave private parts of both words, until next synchro
 - place next synchro action of both words, if they match, otherwise return \emptyset

$$w_1 = babbab$$

$$w = babbcabc$$

$$w_2 = acac$$

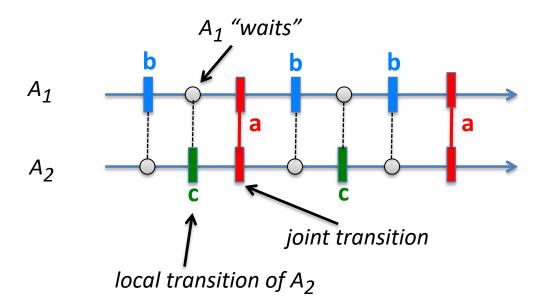
Towards true concurrency semantics

Problem for a distributed system runs/words are still sequences of events.

How to model the fact that private events in the could occur in any order?

Example

$$\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$$
 with $\Sigma_1 = \{a, b\}, \ \Sigma_2 = \{a, c\}$



For the sequential semantics, runs bcabcba and bcacbba are different!

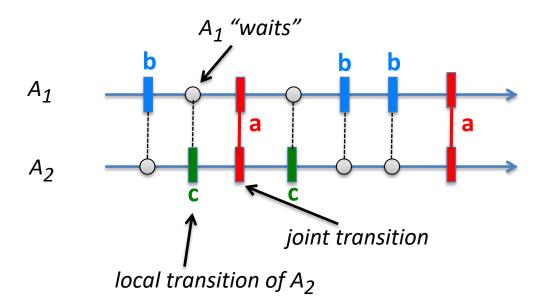
Towards true concurrency semantics

Problem for a distributed system runs/words are still sequences of events.

How to model the fact that private events in the could occur in any order?

Example

$$\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$$
 with $\Sigma_1 = \{a, b\}, \ \Sigma_2 = \{a, c\}$



For the sequential semantics, runs **bcabcba** and **bcacbba** are different!

Mazurkiewicz traces

Idea: define runs as equivalence relations of sequences, i.e. allow the permutation of successive events that live on different components

Dependency : on letters of $\Sigma = \cup_i \Sigma_i$ $\alpha \, D \, \beta \ \Leftrightarrow \ \exists i, \ \alpha, \beta \in \Sigma_i$ in any run of $\mathcal A$, these letters will be ordered by at least one component $\mathcal A_i$

Independence : complement of the dependency relation, denoted $\alpha~I~\beta$

Mazurkiewicz traces

Idea: define runs as equivalence relations of sequences, i.e. allow the permutation of successive events that live on different components

Dependency : on letters of $\Sigma = \cup_i \Sigma_i$

$$\alpha D \beta \Leftrightarrow \exists i, \alpha, \beta \in \Sigma_i$$

in any run of ${\mathcal A}$, these letters will be ordered by at least one component ${\mathcal A}_i$

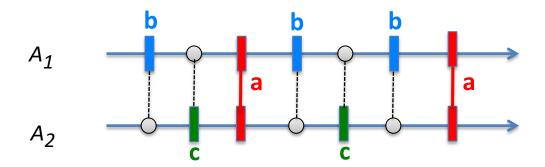
Independence : complement of the dependency relation, denoted α I β Equivalence relation on words in $\mathcal{L}(\mathcal{A})$

$$w\alpha\beta w' \equiv w\beta\alpha w' \Leftarrow \alpha I\beta$$

we consider the equivalence relation on words generated by this property

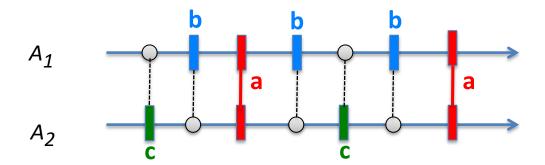
Trace of a word w, denoted [w]: it is the equivalence class of w for \equiv it is also the set of sequences obtained by successively permuting consecutive independent letters

Example $\Sigma_1 = \{a, b\}, \ \Sigma_2 = \{a, c\}$ one has $b \ I \ c$



[bcabcba] = { bcabcba, cbabcba, bcacbba, bcabbca, cbabbca }

Example $\Sigma_1 = \{a, b\}, \ \Sigma_2 = \{a, c\}$ one has $b \ I \ c$



[bcabcba] = { bcabcba, cbabcba, bcacbba, bcabbca, cbabbca }

Concurrency: consider events α and β in word $w = u \alpha v v' \beta u'$ where u,v,u',v' are subwords

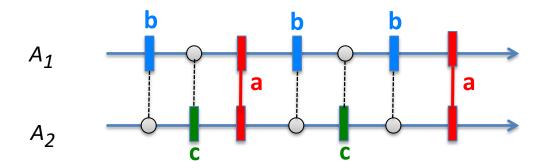
lpha and eta are concurrent events in w, denoted $\alpha\perp\beta$, iff

$$w = u \alpha v v' \beta u'$$

$$\equiv u v \alpha \beta v' u'$$

$$\equiv u v \beta \alpha v' u'$$

Causality ...otherwise, α and β are causally related, denoted $\alpha \prec \beta$



Concurrency: consider events α and β in word $w = u \alpha v v' \beta u'$ where u,v,u',v' are subwords

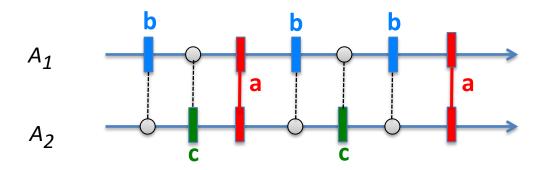
lpha and eta are concurrent events in w, denoted $\alpha\perp\beta$, iff

$$w = u \alpha v v' \beta u'$$

$$\equiv u v \alpha \beta v' u'$$

$$\equiv u v \beta \alpha v' u'$$

Causality ...otherwise, α and β are causally related, denoted $\alpha \prec \beta$



A trace as a partial order : let $w=e_1e_2...e_n$ then \prec defines a partial order on $\{e_1,...,e_n\}$ [different occurrences of the same letter are distinguished] Concurrency: consider events α and β in word $w = u \alpha v v' \beta u'$ where u,v,u',v' are subwords

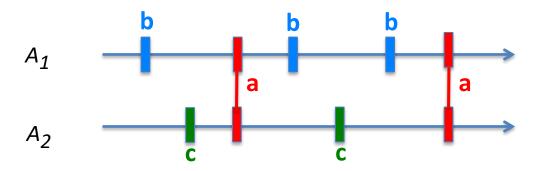
lpha and eta are concurrent events in w, denoted $\alpha\perp\beta$, iff

$$w = u \alpha v v' \beta u'$$

$$\equiv u v \alpha \beta v' u'$$

$$\equiv u v \beta \alpha v' u'$$

Causality ...otherwise, α and β are causally related, denoted $\alpha \prec \beta$

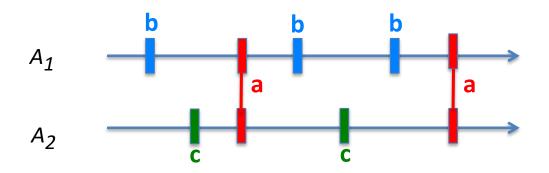


A trace as a partial order : let $w=e_1e_2...e_n$ then \prec defines a partial order on $\{e_1,...,e_n\}$ [different occurrences of the same letter are distinguished]

Thm : let $w=e_1e_2...e_n$ then [w] is obtained as the set of all linear extensions of $(\{e_1,...,e_n\},\prec)$

<u>Proof</u>: exercise (almost by construction/definition)

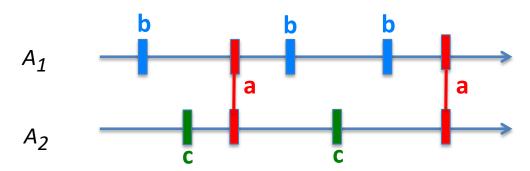
Consequence: a (Mazurkiewicz) trace is equivalently described as a partial order of events



intuitively, one can consider it as a necklace with several threads, one per process, and pearls placed on either one or several threads, and free to move along it Thm : Consider the network of automata $\mathcal{A}=\mathcal{A}_1 \times ... \times \mathcal{A}_N$ let the $w_i \in \mathcal{L}(\mathcal{A}_i)$ be words in each component, let $w \in w_1 \times ... \times w_N$, then $[w]=w_1 \times ... \times w_N \subseteq \mathcal{L}(\mathcal{A})$

<u>Proof</u>: exercise (hint: proceed by double inclusion)

Consequence: a (Mazurkiewicz) trace [w] is equivalently described as a tuple of local words $(w_1,...,w_N)$, one per component



The encoding of a trace as a tuple is similar to Mattern's vector clock!

Take home messages

In a network of automata

- one can define true concurrency semantics, where runs are partial orders of events
- encoding of these runs as products of sequences
- factorized representations are more compact

Next time

- distributed/modular algorithms to compute with these partial orders
- applications to multi-agent diagnosis & planning