MAD

Models & Algorithms
for Distributed systems

- 4/5 --

Today...

Playing with networks of automata

A recap of their algebraic properties
Extra properties, enabling distributed computations

Applications
— distributed diagnosis
— distributed planning

What do we have so far ?

Projection operators

on words and languages II;, ;1 (abcbcba) = abbba

b b
on automata 0@1)9 a £ ? a

hm Ty [L(A4)] = £[Ts(A)]

Product operators on languages and on automata

When 2 words w;, w, match on common letters, any word w in their product
is also a word of the product automaton.

Thm £(A1 X ... X AN) — E(Al) X ... X ﬁ(AN)

Conseguence : computations on languages (infinite objects) can be
turned into computations on automata (finite objects)

Traces = runs seen as partial orders, equivalent to a product of local words
they can thus be encoded/represented as tuples of (local) words

|w]
multiple (equivalent) words

concurrent events interleaved
partial ordering not visible

w1 X ... X wy where w; € 37

single tuple of words
factored form of a trace : more compact
partial order easily readable

—+4—

>

O . . Nen

Remark: VYw € w; X .. xwy onehas II;(w)=w;

More algebraic properties

Reduced languages

a distributed/modular automaton A= A4; x ... x Ay
onehas L(A;) C X7 and L(A)=L(A)) x...x L(Ax) C X"

by definition, one has | £; = IL[L(A)] C L(A;)

these words represent behaviors of Ai that remain possible
once this component is connected to the rest of the system

More algebraic properties

Reduced languages

a distributed/modular automaton A= A4; x ... x Ay
onehas L(A;) C X7 and L(A)=L(A)) x...x L(Ax) C X"

by definition, one has | £; = IL[L(A)] C L(A;)

these words represent behaviors of Ai that remain possible
once this component is connected to the rest of the system

Thm L(A)=L(A]) X ... x L(AN)

— [,’1 X ... X 53\] € |_ minimal factored form

Proof : O isobvious, soonly C must be proved
any word w € L(A) satisfies w € w1 X ... X wy
for some w; € L(A;)
and one has w; = II;(w) so w; € L;

Example
L; = {abb, ababa, baba} L5 = {cc, cac, aca}
L’7 = {abb, baba} L5 ={cac, aca}

L=L;xLy, ="y xL’5 = {cabbc, cabch, cacbb, babca, bacba }

Objective

* given the distributed automaton A = A4; x ... x Ay

« we want to compute the reduced languages L; = IL[L(A)] C L(A;)
* without computing A nor £(A) which are huge objects

* Interest
— check system design more easily (deadlocks/liveness, reachability, safety...)
— eliminate spurious behaviors, debugging
— select runs that match some property (e.g. use in diagnosis and planning)

A central property

Thm let £; C X7 ,i=1,2, let Y C ¥
if ¥’ DX, NX, then

Hg/(ﬁl X ,CQ) = Hg/(ﬁl) X Hg/(ﬁg)

* Proof : exercise, by double inclusion ; assume first that ¥/ = ¥3; N X,
* necessityof X' DY, N,

gqy

v

>

b
l
X
I
d

d
I
N I{a)
b

= ||

Consequence 1

Cor:take Y = X; D X1 N Yy, one has
HE1 <£1 X £2) = ,Cl X H21m22 (EQ)

Consequence L[| =1IIx [L(A)] =1Ig, [L(A; X A3)]
= IIx, [L(A1) x L(A2)]
= £(A1) X Tz, [£(A2)]

[
message

— the reduced language of A; combines its local language with a message from
the other component A,

— the message contains information about possible actions of A, on shared
letters

— these synchronization possibilities are used to filter out behaviors of A; that
are not compatible with any run of A,

A1 © O A,

o
message

10

Example
° Elz{aabaaaﬁ}a 22:{04767’7}
* computations performed on automata instead of languages

11

Example
° Elz{aabaaaﬁ}a 22:{6%67’7}
* computations performed on automata instead of languages

D, A&~ D
é A :
a 8 a,/ N B o B
o | B

12

Example
° Elz{aabaaaﬁ}a 22:{6%67’7}
* computations performed on automata instead of languages

a B a’ B o B
e b ip o

“ b o B

: Y

04

13

Example
° Elz{aabaaaﬁ}a 22:{04767’7}
* computations performed on automata instead of languages

14

Example
° Elz{aabaaaﬁ}a 22:{6%67’7}
* computations performed on automata instead of languages

D _— D,
:) :
a P a B « B
o

15

Example
° Elz{aabaaaﬁ}a 22:{6%67’7}
* computations performed on automata instead of languages

//é\\ é /é\
. N s ~
N // N
\

16

Example
° Elz{aabaaaﬁ}a 22:{04767’7}
* computations performed on automata instead of languages

D, D,
a /// 0“[‘)) o . ““ ﬁ
: :
o b o
b
Y
04

17

Application 1

Distributed planning

compute a pair/tuple of compatible words/runs/sequences of actions, one per
component

computations are distributed, by message passing

the resulting global plan is a tuple of local plans, i.e. a Mazurkiewicz trace,
i.e. a partial order of actions, where actors sync. by rendez-vous

the resulting plan can be executed in a distributed manner

D] D2’
a /// 0“ [3 a /’// ‘Q“ ﬁ
: :
o, b o Y
b
Y
(0

18

Application 2

Distributed diagnosis
— some actions are observable in each component : Ei,o C >

— the global system A =A; x... x Ay performs some hidden run w
one only observes its signature in each component

— compute a pair/tuple of compatible words/runs/sequences of actions, one per
component 0; = Iy, (w)

— objective = recover all global runs matching distributed observations 0y, ..., oy

S
=

b a/ P
b

El,o — {b} C {afab70575} — El z32,0 — {7} - {Oz?Bv’y} — 22

Application 2
Method

— synchronize runs of the distributed system with distributed observations

— observe that observations are a partial order, as well as runs of the system
(they are handled in factorized form)

— idea: compute local diagnoses, then reduce them !

D=L(A; X A3) X (01 X 02)
= [L(A1) X 01] X [L(A2) X 09]

= Dl X DQ

= D; x D,
O A A 0,
b v \B o, B Y

20

Application 2
Method

— synchronize runs of the distributed system with distributed observations

— observe that observations are a partial order, as well as runs of the system
(they are handled in factorized form)

— idea: compute local diagnoses, then reduce them !

D=L(A; X A3) X (01 X 02)
= [L(A1) X 01] X [L(A2) X 09]

= Dl X DQ
= D; x D,
D, D,
a B oc/// B

21

Application 2
Method

— synchronize runs of the distributed system with distributed observations

— observe that observations are a partial order, as well as runs of the system
(they are handled in factorized form)

— idea: compute local diagnoses, then reduce them !

D=L(A; X A3) X (01 X 02)
= [L(A1) X 01] X [L(A2) X 09]

= Dl X DQ

N /

= D} X Dy

Dy D,
a //// "“‘[3 o 0“‘ B
. 3
o b o .
b

Y

Consequence 2

>/ DY MYy = sz(ﬁl X £,2> = sz(ﬁl) X sz(ﬁg)

Aq > A2 As
O © O

Case of 3 components, with ¥, NY3 C X, (oreven £, NE3 =0)

 Mergerule:

— Iy, [L(A)] = IIs, [L(A1) x L£(A3) x L(A3)]
= L(Az) x s, [L(A1) x L(A3)]
= L(A2) x IIs, [L(A;1)] x IIs, [L(A3)]
= L(A2) X Iy, A5, [L(A1)] X Ig,Ax, [L(A3)]

— combines messages of lateral components with local language
— messages inform about possible words on shared letters

23

Consequence 2

>/ DY MYy = sz(ﬁl X £2> = sz(ﬁl) X sz(ﬁg)

A1 Ar 4 As
O @ O

Case of 3 components, with ¥, N YXs C X, (oreven ¥, NY5=10)
* Propagationrule: uses (2, UX;)N (T2 UX3) =3,
Ly =1y, [L(A)] = Ig, [L(A1) x L(A2) x L(A3)]
= L(Ay) x IIg, [L(A2) x L(A3)]
= L(A1) x Iy, s, us, [L(A2) x L(As)]]
(A1) x I, [IIs, [L(A2) x L(A3)]]

— messages propagate from extremities

— they are progressively combined to local component, reduced and forwarded

24

Take home messages

Computing on runs of a distributed system

* should be done on the factorized form
(captures concurrency, more compact)

* this can be done in a distributed/modular way, by message passing

Next time
* Petri nets : a new model for distributed/concurrent systems

* unfoldings/event structures : a new representation for (sets of) runs
in a true concurrency semantics

25

