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Today…

• A new model for distributed systems: Petri nets

• Main features
– concurrency naturally (graphically) encoded
– runs easily encoded as partial orders of events
– languages encoded as branching processes and unfoldings

(tightly related to the formal notion of event structure)
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What do we have so far ?
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Model
• network of automata
• language = set of runs, a run = a sequence of events
• factorization
• a Mazurkiewicz trace : 

– one way to recover concurrency, a run becomes a partial order of events
– encoding of traces as tuples of local words

Algebra
• projection & product on (networks of) automata and languages
• rich properties          distributed/modular computations in this algebra
• working with factorized forms is like working with traces 
• application: distributed diagnosis, distributed planning 

A = A1 ⇥ ...⇥AN

L(A) = L(A1)⇥ ...⇥ L(AN ) ✓ ⌃⇤

w 2 w1 ⇥ ...⇥ wN

)
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Limitations
• the product of automata does not make concurrency visible

(creates concurrency diamonds), and leads to state explosion
• the natural sequential semantics (runs as sequences of events) does not 

capture well concurrency 
• traces are an indirect way to recover a true concurrency semantics from 

sequences, where “            and             ” is made equivalent to “           ”; 
one may need to distinguish these situations :
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Petri nets
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change of notation

• automaton
– transitions set
– one transition 

• new notation (Petri Net inspired)
– are finite sets of states (places), transitions, labels
– flow connects transitions and states
– preset                                                                                                    and sym. for postset
– labeling of transitions  

T ✓ S ⇥ ⌃⇥ S
t = (s,↵, s0) = (•t,�(t), t•)

A = (S, T,⌃, s0, SF )

A = (S, T,!, s0,�,⇤)
S, T,⇤

! ✓ (S ⇥ T ) [ (T ⇥ S)
8x 2 S [ T, •x = {y 2 S [ T : y ! x} x•

� : T ! ⇤

b

a

α
3 t2 t1

βγ
t
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Product
where 

• Places: 
– disjoint union (not the product !)
– initial places

• Transitions: a single copy of each private transition
– synchro on common labels
– private transitions in 1st comp.
– private transitions in 2nd comp.

• Flow: 
– is defined by                                                       and
– where                       and  

Ai = (Si, Ti,!i, s0,i,�i,⇤i)N = A1 ⇥A2 = (P, T,!, P0,�,⇤)

P = S1 ] S2

P0 = {s0,1, s0,2}

T = {(t1, t2) : �1(t1) = �2(t2)}
[ {(t1, ?) : �1(t1) 2 ⇤1 \ ⇤2}
[ {(?, t2) : �2(t2) 2 ⇤2 \ ⇤1}

(t1, t2)
• = t•1 ] t•2

•(t1, t2) =
•t1 ] •t2!

?• = ; •? = ;
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Remarks
• in general, as for the product of automata, the association of transitions is 

not one to one
• this definition of product extends to (safe) Petri nets…
• …and makes the product associative

Example

c
fe

d

b
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α
t3 t2 t1 t4 t5 t6t’1

α β β

t’4
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b

a d

e

5 t6t3 t2 t1 t4 t

A1 A2 A3
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Dynamics
in a Petri net                                                                    

• Marking: 
– a function
– assigns a number of tokens to each place
– notation :                      if places contain at most one token (safe net)

• Enabling of a transition
– transition                 is enabled at marking                      iff
– the resources/tokens needed by t are present in the current marking

• Firing of a transition 
– it changes the current marking   m into  m’ with 
– t consumes tokens in its present, and produces some in its postset

N = A1 ⇥A2 = (P, T,!, P0,�,⇤)

m : P ! N

m ✓ P

t 2 T m ✓ P •t ✓ m

m0 = m� •t+ t•

e

da

b

g

c
f

3 t2 t5 t6t4t1t
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True concurrency semantics
• sequential semantics

– a run = a sequence of transition firings, rooted at m0=P0
– imposes the interleaving of concurrent events
– different interleavings = different runs

• true concurrency semantics
– a run is a partial order of events
– encoded as another Petri net, without circuits, called a configuration
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Unfoldings
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A safe Petri net…

…and two of its configurations (runs), as partially ordered events
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Unfoldings
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A safe Petri net…

merging common prefixes yields an occurrence net
fc
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Occurrence net
• a special Petri net
• places are called conditions, transitions are called events
• the flow        is acyclic (partial ordering)
• and this partial order is well founded

• every condition has a unique cause or is minimal
and 

• no event is in self-conflict

O = (C,E,!, C0,�,⇤)

!

8x 2 C [ E, |{y 2 C [ E : y !⇤ x}| < 1

8c 2 C, | •c|  1 C0 = {c 2 C,• c = ;}

x#x0 , 9e 6= e0 2 E, •e \ •e0 6= ;, e !⇤ x, e0 !⇤ x0

e e’

x’x

#
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concurrency 
represents nodes that can lie in the same configuration

co-set :  such that
represents resources (tokens) that are available at the same time
in some run/configuration 

cut : a maximal co-set for 
prefix : 

iff is a causally closed sub-net of       , containing        and     

x ? y , ¬(x !⇤ y) ^ ¬(y !⇤ x) ^ ¬(x#y)

X ✓ C 8c, c0 2 X, c ? c0

✓

O
0

O C0 E0•
O

0 = (C 0, E0,!0, C0,�
0,⇤) v O
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configuration : denoted , a conflict-free prefix of 
local configuration : [e] = smallest configuration containing event e,

= causal past of e

O

Lem : relating cuts and configurations
X is a cut of                                                         such that  X=max(C’)      ,O 9 = (C 0, E0, ...)
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Branching process
• a branching process of net         is a pair 

where       is an occurrence net, 
and                           a morphism of nets (a total function)

• f “labels” conditions/events of        by places/transitions of 
it turns a configuration of       into a run of

• parsimony :
• if  X = maximal conditions in configuration         (X forms a cut)

then  f(X)  is the marking of      produced by run 

(O, f)

f : O ! N

O

N

NO

O N
8e, e0 2 E, •e = •e0 ^ f(e) = f(e0) ) e = e0


N 

f

c c

a g

b
d

cb

b b bb d

egaa

t6t4t3 t3

t2 t1

t5t1t2t1t2

fc

g

b

a d

e

5 t6t3 t2 t1 t4 t
f



16

Unfolding

Proof : main idea is to define the union of branching processes,
a little technical, but not difficult (see refs. at the end of the lesson).

Algorithm (unfolding)
• init

– ,  isomorphic to        through  f
–

• repeat until stability (extension with a new event)
– for a coset and transition t such that 
– create event                   (if it does not already exist) such that
– create new conditions                                  and extend f so that     

Thm : there exists a unique branching process                        of         maximal for 
prefix inclusion        ,  it is called the unfolding of      

(UN , fN ) N
Nv

•e = X, f(e) = t

E = ;, != ;
C = C0 P0

X ✓ C f(X) = •t

e 2 E

X 0 = e• ⇢ C f(X 0) = t•
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Example

b c

ga a g

tt3 t2 t1 4
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Example
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t3 t2 t1 t4 t1
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Example

c
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t3 t2 t1 t4 t1
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Example

a a g

cbb
c

g

b

1 4 t1t2t3 t2 t t
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Application of the unfolding

Reachability/coverability test
• one wishes to know if there exists an accessible marking  m in net

where each place of               holds a token, i.e. 
• by creating in  a new transition t with 

this amounts to checking if  t is accessible

Questions
1. what is the complexity of this test ?
2. how far should one go in the computation of the unfolding ?

Q ✓ P Q ✓ m

Q = •t

N

N
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Proof: by reduction of SAT problems (at least 3-SAT)
example : encoding SAT problem

• The complexity of unfolding this net (before tf ) is polynomial, 
so the complexity of finding a co-set where  tf is firable is NP-hard.

• As building an unfolding requires finding co-sets, 
one must rely on SAT solvers (which modern unfolders do).

Thm : the reachability/coverability test (co-set construction) is NP-complete.

(x1 _ x2 _ x̄3) ^ (x̄1 _ x2)

falsetruefalsetrue true false

21x

OR

3

tf

OR clause 1

xx

clause 2



Finite complete prefix
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Idea:  A prefix                    is said to be complete if all reachable markings 
in        are represented as (the image of) a cut in     .
(One wishes to avoid useless repetitions of similar patterns in     )

More formally:                        is complete iff
– reachable marking in     ,  it appears in the prefix 

– i.e.  t firable from m, it appears as an event on top of marking m

O v UN

O

O

O v UN

8m N
9 2 O : m = Mark() = fN (max())

8t 2 T, m[tim0,

9,0
2 O : m = Mark(), 0 = � {e}, fN (e) = t

N
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How to build a finite complete prefix ?

Naive idea:
– apply the unfolding algorithm, and stop at event  e when the marking produced 

by [e] is already present in the prefix:

– this makes  e a cut-off event, on top of which no more event will be added

Problem:    it generally yields an incomplete prefix…
example : stop events in red, firing of t5 not seen

9 2 O : Mark() = Mark([e])

a

b c

f

b c

eded

ff

ed

cb

a

t3

t1 t2

t4

t5

e1 e2

e3 e5 e6

e7 e8t5 t5

t3 t4t4t3

t2t1

e4
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Solution: break the symmetry, by favoring some configurations for extension

Adequate order : on (local) configurations [e]
– well founded partial order (finite number of predecessors)
– refines prefix inclusion : 
– preserved by isomorphic extensions : 

Examples
1. take for       the prefix inclusion 
2. defined by the number of events (total order, proposed by McMillan)
3. take for       the lexicographic order, when net         is made of several components,

by ordering components, and counting events in each component, 
as in Mattern’s vector clocks (partial order, proposed by Esparza) 

�

 @ 0 )  � 0

 � 0 ^ Mark() = Mark(0) ) � e � 0 � e0 where fN (e) = fN (e0)

@�

� N

�
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Cut-off event : event e is a cut-off event in the BP             of       iff
there exists another event e’ in             such that

Example (continued)
– assume                         , which makes  e5 a cut-off event
– this entails                                     , by isomorphic extension 
– , which would make  e4 a cut-off event, is false,

as this would entail                                      by isomorphic extension, which is false

(O, f)
N(O, f)

Mark([e0]) = Mark([e]) ^ [e0] � [e]

[e3] � [e5]
[e3, e4] � [e5, e6]

[e6] � [e4]
[e6, e5] � [e4, e3]

a
a

b

f

c b c

eded

f

ed

cb

f

4t3

t1 t2

t4

t5

e1 e2

e3 e5 e6

e8t5

t3 t4t4t3

t2t1

e

e7 t5
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Proof : see references at the end of the lesson ;
finiteness and completeness are proved separately, 
and heavily rely on properties of adequate orders.

Thm the prefix                   obtained by stopping the unfolding algorithm at 
cut-off events is finite and complete [McMillan, Esparza].  

O v UN
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Proof : see references at the end of the lesson ;
finiteness and completeness are proved separately, 
and heavily rely on properties of adequate orders.

Thm the prefix                   obtained by stopping the unfolding algorithm at 
cut-off events is finite and complete [McMillan, Esparza].  

O v UN

Thm if the adequate order        used to buid the FCP                    is a total
order, then the number of non-cut-off events in        is bounded by
the number of reachable markings in      .  

O v UN�
O

N

Proof : for two events                     such that                                   
either                       or                           holds, 
so one of these events is a cut-off  

Mark([e]) = Mark([e0])e, e0 2 O

[e] � [e0] [e0] � [e]
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Application to deadlock checking

Deadlock : a marking of      where no more transition can be firedN

Thm Let                     be a finite complete prefix.                   
There is no deadlock in        iff every configuraion can be 
extended into a configuration                       that contains 
a cut-off event. [McMillan]

O v UN
 v O

 v 0
v O

N

Proof : (sketch of) 
• a maximal configuration with no cut-off can’t be extended : 

the terminal marking is a dead-end
• conversely, at a cut-off, one reaches a marking that is present and extended 

elsewhere in the prefix, which means that a continuation is possible



Take home messages

(Safe) Petri nets 
• are a natural model for concurrent systems
• can be built by product, as networks of automata
• admit natural (built in) true concurrency semantics for their runs
• sets of runs can be handled by branching processes (unfoldings)

instead of languages 

Extra results
• by restricting branching processes to events, one gets

(prime) event structures 
a complete theory of event structures exists

• one can define a product on unfoldings, and

projections exists as well, which enables distributed computations based 
branching processes, or on other structures (e.g. event structures). 
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U(N1 ⇥ ...⇥NK) = U(N1)⇥ ...⇥ U(NK)

E = (E,!,#)
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