
MAD
Models & Algorithms

for Distributed systems

-- 5/5 --

download slides at
http://people.rennes.inria.fr/Eric.Fabre/

1

Today…

• A new model for distributed systems: Petri nets

• Main features
– concurrency naturally (graphically) encoded
– runs easily encoded as partial orders of events
– languages encoded as branching processes and unfoldings

(tightly related to the formal notion of event structure)

2

What do we have so far ?

3

Model
• network of automata
• language = set of runs, a run = a sequence of events
• factorization
• a Mazurkiewicz trace :

– one way to recover concurrency, a run becomes a partial order of events
– encoding of traces as tuples of local words

Algebra
• projection & product on (networks of) automata and languages
• rich properties distributed/modular computations in this algebra
• working with factorized forms is like working with traces
• application: distributed diagnosis, distributed planning

A = A1 ⇥ ...⇥AN

L(A) = L(A1)⇥ ...⇥ L(AN) ✓ ⌃⇤

w 2 w1 ⇥ ...⇥ wN

)

4

Limitations
• the product of automata does not make concurrency visible

(creates concurrency diamonds), and leads to state explosion
• the natural sequential semantics (runs as sequences of events) does not

capture well concurrency
• traces are an indirect way to recover a true concurrency semantics from

sequences, where “ and ” is made equivalent to “ ”;
one may need to distinguish these situations :

a � b b � a b ? a

α1t2

bcac

ad bd

β

β

γ γt αβ

a

b

t3t4 α

c

d

γ

*(t ,)2 c

*(t ,)2 d

(,t)4b*(,t)4a*
1 3(t ,t)

“I can go first” ^ “you can go first” 6) “we can go at the same time”

Petri nets

5

change of notation

• automaton
– transitions set
– one transition

• new notation (Petri Net inspired)
– are finite sets of states (places), transitions, labels
– flow connects transitions and states
– preset and sym. for postset
– labeling of transitions

T ✓ S ⇥ ⌃⇥ S
t = (s,↵, s0) = (•t,�(t), t•)

A = (S, T,⌃, s0, SF)

A = (S, T,!, s0,�,⇤)
S, T,⇤

! ✓ (S ⇥ T) [(T ⇥ S)
8x 2 S [T, •x = {y 2 S [T : y ! x} x•

� : T ! ⇤

b

a

α
3 t2 t1

βγ
t

6

Product
where

• Places:
– disjoint union (not the product !)
– initial places

• Transitions: a single copy of each private transition
– synchro on common labels
– private transitions in 1st comp.
– private transitions in 2nd comp.

• Flow:
– is defined by and
– where and

Ai = (Si, Ti,!i, s0,i,�i,⇤i)N = A1 ⇥A2 = (P, T,!, P0,�,⇤)

P = S1] S2

P0 = {s0,1, s0,2}

T = {(t1, t2) : �1(t1) = �2(t2)}
[{(t1, ?) : �1(t1) 2 ⇤1 \ ⇤2}
[{(?, t2) : �2(t2) 2 ⇤2 \ ⇤1}

(t1, t2)
• = t•1] t•2

•(t1, t2) =
•t1] •t2!

?• = ; •? = ;

7

Remarks
• in general, as for the product of automata, the association of transitions is

not one to one
• this definition of product extends to (safe) Petri nets…
• …and makes the product associative

Example

c
fe

d

b

a g

α
t3 t2 t1 t4 t5 t6t’1

α β β

t’4

fc

g

b

a d

e

5 t6t3 t2 t1 t4 t

A1 A2 A3

8

Dynamics
in a Petri net

• Marking:
– a function
– assigns a number of tokens to each place
– notation : if places contain at most one token (safe net)

• Enabling of a transition
– transition is enabled at marking iff
– the resources/tokens needed by t are present in the current marking

• Firing of a transition
– it changes the current marking m into m’ with
– t consumes tokens in its present, and produces some in its postset

N = A1 ⇥A2 = (P, T,!, P0,�,⇤)

m : P ! N

m ✓ P

t 2 T m ✓ P •t ✓ m

m0 = m� •t+ t•

e

da

b

g

c
f

3 t2 t5 t6t4t1t

9

True concurrency semantics
• sequential semantics

– a run = a sequence of transition firings, rooted at m0=P0
– imposes the interleaving of concurrent events
– different interleavings = different runs

• true concurrency semantics
– a run is a partial order of events
– encoded as another Petri net, without circuits, called a configuration

f

g

b

a

dc

a g e

b c
d

c

g

b

a d

e

. . .

t3 t2 t1 t4 t5 t6

t4t3

t1

t5t1

Unfoldings

10

A safe Petri net…

…and two of its configurations (runs), as partially ordered events

d

a g

d
cb

b

a f

c

a g

d
cb

ega

b

t1

t3

t1

t2

t6t4t3

t1

t5

fc

g

b

a d

e

5 t6t3 t2 t1 t4 t

Unfoldings

11

A safe Petri net…

merging common prefixes yields an occurrence net
fc

g

b

a d

e

5 t6t3 t2 t1 t4 t

b

a g

d
cb

b

a f

c

eg

d

t3

t1

t2

t6t4

t5t1

12

Occurrence net
• a special Petri net
• places are called conditions, transitions are called events
• the flow is acyclic (partial ordering)
• and this partial order is well founded

• every condition has a unique cause or is minimal
and

• no event is in self-conflict

O = (C,E,!, C0,�,⇤)

!

8x 2 C [E, |{y 2 C [E : y !⇤ x}| < 1

8c 2 C, | •c|  1 C0 = {c 2 C,• c = ;}

x#x0 , 9e 6= e0 2 E, •e \ •e0 6= ;, e !⇤ x, e0 !⇤ x0

e e’

x’x

#

13

concurrency
represents nodes that can lie in the same configuration

co-set : such that
represents resources (tokens) that are available at the same time
in some run/configuration

cut : a maximal co-set for
prefix :

iff is a causally closed sub-net of , containing and

x ? y , ¬(x !⇤ y) ^ ¬(y !⇤ x) ^ ¬(x#y)

X ✓ C 8c, c0 2 X, c ? c0

✓

O
0

O C0 E0•
O

0 = (C 0, E0,!0, C0,�
0,⇤) v O

14

configuration : denoted , a conflict-free prefix of
local configuration : [e] = smallest configuration containing event e,

= causal past of e

O

Lem : relating cuts and configurations
X is a cut of such that X=max(C’) ,O 9 = (C 0, E0, ...)

15

Branching process
• a branching process of net is a pair

where is an occurrence net,
and a morphism of nets (a total function)

• f “labels” conditions/events of by places/transitions of
it turns a configuration of into a run of

• parsimony :
• if X = maximal conditions in configuration (X forms a cut)

then f(X) is the marking of produced by run

(O, f)

f : O ! N

O

N

NO

O N
8e, e0 2 E, •e = •e0 ^ f(e) = f(e0)) e = e0


N 

f

c c

a g

b
d

cb

b b bb d

egaa

t6t4t3 t3

t2 t1

t5t1t2t1t2

fc

g

b

a d

e

5 t6t3 t2 t1 t4 t
f

16

Unfolding

Proof : main idea is to define the union of branching processes,
a little technical, but not difficult (see refs. at the end of the lesson).

Algorithm (unfolding)
• init

– , isomorphic to through f
–

• repeat until stability (extension with a new event)
– for a coset and transition t such that
– create event (if it does not already exist) such that
– create new conditions and extend f so that

Thm : there exists a unique branching process of maximal for
prefix inclusion , it is called the unfolding of

(UN , fN) N
Nv

•e = X, f(e) = t

E = ;, != ;
C = C0 P0

X ✓ C f(X) = •t

e 2 E

X 0 = e• ⇢ C f(X 0) = t•

17

Example

b c

ga a g

tt3 t2 t1 4

18

Example

c

ga

b c

a g

b

t3 t2 t1 t4 t1

19

Example

c

ga

b c

a g

b

t3 t2 t1 t4 t1

20

Example

a a g

cbb
c

g

b

1 4 t1t2t3 t2 t t

21

Example

b
c

g

b

a a g

cb

4 t2 t1t3 t2 t1 t

22

Example

b

a

b c

ga

cb

ga

tt3 t2 t1 t4 t2

t3

1

23

Example

b c

ga

c

g

b
b

a

a

tt3 t2 1
t4 t2

t3

t1

24

Example

cb

b c
c

g

b

a

b

ga

a

t3 t2 t1 t4 t2

t3

t1

t1

25

Example

b

b
c

g

b

aa

a

cb

g

a

c

t3 t2 t1 t4 t2

t3 t3

t1

t1

26

Example

cb

c

g

b

a

g

b

ga

a

cb

a

t3 t2 t1 t4 t2

t3 t3 t4

t1

t1

27

Example

b

a

cc

g

b

b c

ga

a

b

a

b

c

g

t3 t2 t1 t4 t2

t3 t3 t4

t1 t1

t1

28

Application of the unfolding

Reachability/coverability test
• one wishes to know if there exists an accessible marking m in net

where each place of holds a token, i.e.
• by creating in a new transition t with

this amounts to checking if t is accessible

Questions
1. what is the complexity of this test ?
2. how far should one go in the computation of the unfolding ?

Q ✓ P Q ✓ m

Q = •t

N

N

29

Proof: by reduction of SAT problems (at least 3-SAT)
example : encoding SAT problem

• The complexity of unfolding this net (before tf) is polynomial,
so the complexity of finding a co-set where tf is firable is NP-hard.

• As building an unfolding requires finding co-sets,
one must rely on SAT solvers (which modern unfolders do).

Thm : the reachability/coverability test (co-set construction) is NP-complete.

(x1 _ x2 _ x̄3) ^ (x̄1 _ x2)

falsetruefalsetrue true false

21x

OR

3

tf

OR clause 1

xx

clause 2

Finite complete prefix

30

Idea: A prefix is said to be complete if all reachable markings
in are represented as (the image of) a cut in .
(One wishes to avoid useless repetitions of similar patterns in)

More formally: is complete iff
– reachable marking in , it appears in the prefix

– i.e. t firable from m, it appears as an event on top of marking m

O v UN

O

O

O v UN

8m N
9 2 O : m = Mark() = fN (max())

8t 2 T, m[tim0,

9,0
2 O : m = Mark(), 0 = � {e}, fN (e) = t

N

31

How to build a finite complete prefix ?

Naive idea:
– apply the unfolding algorithm, and stop at event e when the marking produced

by [e] is already present in the prefix:

– this makes e a cut-off event, on top of which no more event will be added

Problem: it generally yields an incomplete prefix…
example : stop events in red, firing of t5 not seen

9 2 O : Mark() = Mark([e])

a

b c

f

b c

eded

ff

ed

cb

a

t3

t1 t2

t4

t5

e1 e2

e3 e5 e6

e7 e8t5 t5

t3 t4t4t3

t2t1

e4

32

Solution: break the symmetry, by favoring some configurations for extension

Adequate order : on (local) configurations [e]
– well founded partial order (finite number of predecessors)
– refines prefix inclusion :
– preserved by isomorphic extensions :

Examples
1. take for the prefix inclusion
2. defined by the number of events (total order, proposed by McMillan)
3. take for the lexicographic order, when net is made of several components,

by ordering components, and counting events in each component,
as in Mattern’s vector clocks (partial order, proposed by Esparza)

�

 @ 0)  � 0

 � 0 ^ Mark() = Mark(0)) � e � 0 � e0 where fN (e) = fN (e0)

@�

� N

�

33

Cut-off event : event e is a cut-off event in the BP of iff
there exists another event e’ in such that

Example (continued)
– assume , which makes e5 a cut-off event
– this entails , by isomorphic extension
– , which would make e4 a cut-off event, is false,

as this would entail by isomorphic extension, which is false

(O, f)
N(O, f)

Mark([e0]) = Mark([e]) ^ [e0] � [e]

[e3] � [e5]
[e3, e4] � [e5, e6]

[e6] � [e4]
[e6, e5] � [e4, e3]

a
a

b

f

c b c

eded

f

ed

cb

f

4t3

t1 t2

t4

t5

e1 e2

e3 e5 e6

e8t5

t3 t4t4t3

t2t1

e

e7 t5

34

Proof : see references at the end of the lesson ;
finiteness and completeness are proved separately,
and heavily rely on properties of adequate orders.

Thm the prefix obtained by stopping the unfolding algorithm at
cut-off events is finite and complete [McMillan, Esparza].

O v UN

35

Proof : see references at the end of the lesson ;
finiteness and completeness are proved separately,
and heavily rely on properties of adequate orders.

Thm the prefix obtained by stopping the unfolding algorithm at
cut-off events is finite and complete [McMillan, Esparza].

O v UN

Thm if the adequate order used to buid the FCP is a total
order, then the number of non-cut-off events in is bounded by
the number of reachable markings in .

O v UN�
O

N

Proof : for two events such that
either or holds,
so one of these events is a cut-off

Mark([e]) = Mark([e0])e, e0 2 O

[e] � [e0] [e0] � [e]

36

Application to deadlock checking

Deadlock : a marking of where no more transition can be firedN

Thm Let be a finite complete prefix.
There is no deadlock in iff every configuraion can be
extended into a configuration that contains
a cut-off event. [McMillan]

O v UN
 v O

 v 0
v O

N

Proof : (sketch of)
• a maximal configuration with no cut-off can’t be extended :

the terminal marking is a dead-end
• conversely, at a cut-off, one reaches a marking that is present and extended

elsewhere in the prefix, which means that a continuation is possible

Take home messages

(Safe) Petri nets
• are a natural model for concurrent systems
• can be built by product, as networks of automata
• admit natural (built in) true concurrency semantics for their runs
• sets of runs can be handled by branching processes (unfoldings)

instead of languages

Extra results
• by restricting branching processes to events, one gets

(prime) event structures
a complete theory of event structures exists

• one can define a product on unfoldings, and

projections exists as well, which enables distributed computations based
branching processes, or on other structures (e.g. event structures).

37

U(N1 ⇥ ...⇥NK) = U(N1)⇥ ...⇥ U(NK)

E = (E,!,#)

References

38

About prefix construction
1. An unfolding algorithm for synchronous products of transition systems, Esparza and

Romer, proceedings of CONCUR’99, pp 2-20
2. An improvement of McMillan’s unfolding algorithm, Esparza and Romer, LNCS 1055, pp

87-106, 1996
3. Canonical prefixes of Petri net unfoldings,Khomenko, Koutny and Vogler, Acta

Informatica 40, pp 95-118, 2003

More oriented to model-checking applications
1. Model checking using net unfoldings, Esparza, Science of Computer Programming 23,

pp 151-195, 1994
2. Reachability analysis unsing net unfoldings,Schroter and Esparza
3. Deadlock checking using net unfoldings, Melzer and Romer, LNCS 1254, pp 352-363,

1997
4. Using net unfoldings to avoid the state explosion problem in the verification of

asynchronous circuits, McMillan, LNCS 663, pp 164-174, 1992

