MADS

Emmanuelle Anceaume

Lesson 1: Bitcoin and its Distributed Ledger Technology

http://people.irisa.fr/Emmanuelle.Anceaume/

1/77



Bitcoin is a distributed cryptocurrency and payment system

It allows users to anonymously exchange goods against digital
currency

There are no centralized banking authority

All the valid transactions are recorded in a public distributed
ledger, the blockchain

Blockchain = organizes partially ordered transactions in a
totally ordered sequence with high probability

2/77



Ledger

Bob -> Alice B0.001
Chunk -> Sara B0.05
Eva -> Alice B0.009
Alice -> John B0.02
Bob -> Chunk BO0.7
Peter -> Bob B0.008
Bob -> Alice B0.05
Bob -> Alice B0.046
Bob -> Alice B0.008

3/77



Ledger

Bob -> Alice B0.001
Chunk -> Sara B0.05
Eva -> Alice B0.009
Alice -> John B0.02
Bob -> Chunk B0.7
Peter -> Bob B0.008
Bob -> Alice B0.05
Bob -> Alice B0.046
Bob -> Alice B0.008

So who maintains this ledger and makes sure no one is cheating ?
4,77



No centralized control
@ everyone maintains their own copy

of the ledger

@ everyone can see all the
transactions of the system

How synchronizing money transfers?

@ when Alice spends some money she
diffuses that information
everywhere

@ everyone updates its copy of the
ledger

How preventing account thief?
How preventing double-spending attacks ?
How is money created ?

5/77



Basic principles

e Crypto currency
e relies on cryptographic tools
@ Decentralized system
e peer-to-peer architecture
@ Trustless model
o does not require a central server to validate/abort financial
transactions but requires participants to be online
@ Anonymous users
o neither sellers nor buyers use their real identities to use
Bitcoins but if you are not careful your transactions can be tied
together

Satoshi Nakamoto. Bitcoin : A
Peer-to-Peer Electroni Cash System.
October 2008,

http ://nakamotoinstitute.org/bitcoin/




Bitcoin relies on a set of distributed algorithms
Secure
timestamping
Data

consistency

Communication
primitives

Cryptography

P2P
architecture

7/77



Content of this lesson

@ Crypto background
o hash functions
o digital signatures
e hash pointers
o Merkle trees
@ Bitcoin principles
o Peer-to-peer networks

e Transactions
o Blocks

8/77



Preliminaries on crypto

@ cryptographic hash functions
o digital signatures

o Merkle tree

9/77



hash functions

All currencies need some way to control supply and prevent
counterfeiting money

e Fiat currencies (Dollar, Euro, Yen, Yuan)
e central banks mint physical currency
o integrity of bank notes is guaranteed by anti-counterfeiting
features to physical currency
@ Digital currencies
e astringof «0» and «1»
e no central bank to prevent double-spending attacks
e heavy use of cryptography

10/77



Hash functions

A hash function is an algorithm that allows to compute a
fingerprint of fixed size from data of arbitrary size

H:0,1* — 0,1"
M s  H(M)

Applications : make easier the management of databases
@ rather than manipulating data of arbitrary size, a fingerprint is

associated to each data which makes operation easier
@ comparison, membership ...
Bloom filters = bit array

Count-min = Counting the number of occurrences of elements
Protecting data

11/77



Hash functions

A hash function satisfies the following properties
@ The input space is the set of string of arbitrarily length
e « hello world » and « hellohellohello world » are perfectly fine
inputs
@ The output space is a set of strings of fixed length
o H(« hello world ») = 000223
o H(« hellohellohello world ») = 130554
@ H is deterministic
@ H is efficiently computable

o Given a string s of length n the complexity to compute H(s) is
O(n)

In addition to these properties, crypto-hash functions have
additional requirements

12/77



Properties of cryptographic hash functions

@ Collision resistance

It must be difficult to find two inputs x and x’ such that
H(x) = H(X)

@ Second pre-image resistance

Given an input x, it must be difficult to find an input value
x" # x such that H(x") = H(x)

@ Pre-image resistance

Given z, it must be difficult to find an input value x such that
H(x) =z

13/77



Collision resistance

Find two inputs x and x’ such that H(x) = H(x")

O H(x)=H(y)

y O

14 /77



Collision resistance

collisions do exist

possible outputs
possible inputs

Image source: Bitcoin and Cryptocurrency Technologies.

15 /77



Collision resistance

collisions do exist

possible outputs
possible inputs

Image source: Bitcoin and Cryptocurrency Technologies.

but can anyone find them ?

16 /77



Collision resistance property

Find two inputs x and x’ such that H(x) = H(x)

Generic attack (i.e., a technique capable of attacking any n-bit
hash function )

@ Choose 2"/2 random messages (birthday paradox)
@ Compute the hashed values and store them
@ Find one pair (x,x") such that H(x) = H(x')

17 /77



Birthday paradox

Birthday paradox is about the probability that, in a set of m
randomly chosen people, some pair of them will have the same
birthday.

e if m = 23 the probability to have collision is 50%
e if m =70 then p is equal to 99.9%

18/77



Birthday paradox

Let us first compute the probability that no two persons have the
same birthday. Let p’(m be this probability

365364 365 — (m—1)

/ _ i D S
P(m) = 35365 365
365! 1

(365 — m)! 365™
Thus the probability p(m) that there exists two persons having the
same birthday is

p(m) = 1-p/(m)=1-

m(m—1)
~ 1_ e 2x365

365! 1
(365 — m)! 365™

Thus

m(p)z\/2><365></n1_p

19/77



Birthday paradox

1
m(p) ~ \/2 X 365 x /n1
we get
m(0.5) = 23
In our case, the set of possible values is equal to 2" with n the

length of the binary string of the fingerprint
Thus

V21n2 2N/2
oN/2

12

m(0.5)

20/77



Collision resistance property

Find two inputs x and x’ such that H(x) = H(x)

Generic attack (i.e., a technique capable of attacking any hash
function)

@ Choose 2"/2 random messages
@ Compute the hashed values and store them
e Find one pair (x, x") such that H(x) = H(x')

If a computer calculates 10,000 hashes/s

e it would take 1027 years to output 228 hashes, and

o thus 10?7 years to produce a collision with probability 1/2
Astronomical number of computations!!

So far no hash functions have been proven to be collision resistant

21/77



Collision resistance property

To summarize :

Collision resistant hash functions allows us
@ to identify data by its hashed value (i.e digest, fingerprint)
o if H(x) = H(y) then it is safe to assume that x =y
@ Bitcoin :

e to identify blocks in the blockchain
o to make blocks resistant to tampering (modifying a single bit
changes the fingerprint)

22/77



Second-preimage resistance

Given an input x, it is difficult to find an input value x’ # x such
that H(x') = H(x)

Generic Attack : probabilistic search
@ Given x and its hashed value H(x) (n bits value)

e Randomly choose x; and compute z; = H(x;)

@ Proba(z; = H(x)) = 1/2"

@ Thus after having chosen 2" inputs it is likely that one can
find a pre-image x; # x such that H(x;) = H(x)

23/77



File integrity

Hash fonction H
filet > H( file1) = 3214 5670 ab67 0123 8760 2123 34BF 0A23

(256 bits)

Hash fonction H
file2 EE—— H( file2) = 0012 f592 1123 1905 bc34 5d71 5133 8421

(256 bits)

Property : It is difficult to build two files with same fingerprint

24 /77



Preimage resistance

Given z, find an input value x such that H(x) = z

Generic Attack : probabilistic search
@ Given a hashed value z

e Randomly choose x; and compute z; = H(x;)

e Proba(z; = z) =1/2"

@ Thus after having chosen 2" inputs it is likely that one can
find a pre-image x; such that H(x;) = z

25 /77



Passwords storage

@ In your machine, passwords are not stored. Only their hashed
value is stored

@ When you want to authenticate, the login pg computes the
hashed value, which is compared with the one stored in

/etc/passwd

Property : Given the hashed value y it must be difficult to find x
such that H(x) = H(password) =y

26 /77



Merkle-Damgard construction

| Message M | Padding |

[ v ] a2 ] EEEE

L | L L—
F F F F L H(M
v i H(M)

27 /77



Additional Properties (Bitcoin)

e Hiding
Given z, find the input value x such that H(x) = z
@ Puzzle-friendliness

Given z, find an input value x’ that H(rx") = z with r some
random number

28 /77



A hash pointer is a pointer to where the information is stored
together with a cryptographic hash value of the information

—{_45etb ] 6736a 16781
infon
H(bloc)=6736a H(bloc)=1b781 H(bloc)=56ac3

29 /77



Hash pointers allows the construction of a log data structure that
allows the detection of any manipulation

—{_45etb ] 6736a 16781
infon
H(bloc)=6736a H(bloc)=1b781 H(bloc)=56ac3

30/77



Hash pointers allows the construction of a log data structure that
allows the detection of any manipulations

—{_45etb ] 6736a 16781
iﬂ)(_n_
H(bloc)=6736a H(bloc)=1b781 H(bloc)=56ac3

31/77



Hash pointers allows the construction of a log data structure that
allows the detection of any manipulations

—{4Betb | ko] (b8t |
iﬂ)(_n_
H(bloc)=6736a H(bloc)=1b781 H(bloc)=56ac3

32/77



Hash pointers allows the construction of a log data structure that
allows the detection of any manipulations

— - 4Betb ] 06z ] X
iﬂ)(_n_
H(bloc)=6736a H(bloc)=1b781 H(bloc)=56ac3

v By only keeping the hash pointer of the head of the data
structure, we have a tamper-evident hash of a possibly very
long list 33777



Hash tree : Merkle Tree

A Merkle treel is a tree of hashes

o Leaves of the tree are data blocks
@ Nodes are the hashes of their children

@ Root of tree is the fingerprint of the tree

1. Merkle, R. C. (1988). "A Digital Signature Based on a Conventional En-
cryption Function". Advances in Cryptology - CRYPTO '87:

34 /77



Hash tree : Merkle Tree

h=h(hgllhy)

T

hg =h(hgo gy ) hy=h(hyglihyy)

N T

hoo =h(hooo oot ) ho1 =h(hoyg 1 hge ) hyg=h(hygg 1 hyp1) hyy=h(hy1q1hy10)

AN N N S

hoog =hB0)  hggy =h(b1) hyio=h(2)  hoyy=h(d3)  hygg=hb4)  hig;=hb5) hy1o=h(b6)

l l l l l l l

N ECT D U I T e ECH R e

35/77



Hash tree : Merkle Tree

v Checking the integrity of the n data blocks of the tree

e easy due to collision resistance property of crypto. hash
functions

@ Data blocks membership
o checked with log n pieces of information and in log n operations

36 /77



Hash tree : Merkle Tree

h=h(hgllhy)

T

hg =h(hgo gy ) hy=h(hyglihyy)

N T

hoo =h(hooo oot ) ho1 =h(hoyg 1 hge ) hyg=h(hygg 1 hyp1) hyy=h(hy1q1hy10)

AN N N S

hoog =hB0)  hggy =h(b1) hyio=h(2)  hoyy=h(d3)  hygg=hb4)  hig;=hb5) hy1o=h(b6)

l l l l l l l

N ECT D U I T e ECH R e

37/77



Hash tree : Merkle Tree

| know the root of the Merkle tree, and | would like to know
whether data block bs belongs to the tree?

Question : How can | do that without looking for the full tree?

38/77



Hash tree : Merkle Tree

h=h(hgllhy)

39/77



Hash tree : Merkle Tree

h=h(hgllhy)

hot1 = h(63)

40/77



Hash tree : Merkle Tree

h=h(hgllhy)

hoq =h(ho1o 1 hoe1)

N

ho10=h(b2)  hgyq =h(b3)

=

41/77



Hash tree : Merkle Tree

hoo =h(hggo ' o1 ) ho1 =h(hoyg 1 hge )

N

ho10=h(b2)  hgyq =h(b3)

=

42/77



Hash tree : Merkle Tree

h=h(hgllhy)

hg =h(hgo gy )

N

hoo =h(hggo ' o1 ) ho1 =h(hoyg 1 hge )

N

ho10=h(b2)  hgyq =h(b3)

=

43/77



Hash tree : Merkle Tree

h=h(hgllhy)
hg =h(hgg Il hgy ) hy=h(hygllhyy)
hoo =h(hggo I hgg1 ) ho1 =h(hgyq gq1)

N

ho10=h(b2)  hgyq =h(b3)

=

4477



Hash tree : Merkle Tree

h=h(hgllhy)
hg =h(hgg Il hgy ) hy=h(hygllhyy)
hoo =h(hggo I hgg1 ) ho1 =h(hgyq gq1)

N

ho10=h(b2)  hgyq =h(b3)

=

45 /77



Hash tree : Merkle Tree

| know the root of the Merkle tree, and | would like to know
whether data block bs belongs to the tree?

Question : How can | do that without looking for the full tree?

| need log n pieces of information and log n hash operations

46 /77



Digital signature primitive

A digital signature is just like a signature on a document

@ Only the creator of the document can sign, but anyone can
verify it
@ Signature is tied to a particular document

How can we build such a digital signature?

47 /77



Digital signature

Three functions :
o (sk,px) := generateKeys(keysize)
e s : private signing key
e py : public verification key

@ sig := sign(sk, message)

e isValid := verify(px, message, sig)

48 /77



Digital signature

Requirements :

@ The verify operation must return true when fed with valid
signatures

verify(pk,message, sign(sx, message))=true
@ The signature scheme is unforgeable

An adversary that knows p, and can choose any messages to
be signed cannot produce a verifiable signature for another
message

49 /77



Digital signature

Alice

H(M)

— H(M) =01011011

=sig

(M, sig)

Bob

—  HW)

VER(p_k,sig) =ver

if (ver = H(M)) then sig is valid
50 /77



Digital signature

@ The algorithms to generate keys and sign must have access to
a good source of randomness

@ Signing the hash of a message is as safe as signing the
message itself
In Bitcoin, the signature scheme is ECDSA (Elliptic Curve Digital
Signature Algorithm)?
private key = 256 bits
Public key = 512 bits
Message = 256 bits

o
o
o
@ signature = 512 bits

2. Johnson, Don, Alfred Menezes, and Scott Vanstone. The elliptic curve digi-
tal signature algorithm (ECDSA) . International Journal of Information Security
1.1 (2001) : 36aAR63

51/77



Using verification public key as an identity

Idea : use the verification key of a signature as an identity

@ If you see a msg such that the signature verifies under py (i.e.
verify(pk, msg, sig)= true) then on can see py as a party
saying statements by signing them

@ To speak on behalf of p, one must know s;

@ So there is an identity in the system such that only a single
one can speak for it which is what we want for a signature

v/ By looking at public keys as identities you can generate as
many identities as you want !

52 /77



Using verification public key as an identity

e Create new identities :
o Eric creates a new pair (sk,pk)
e py is the public name Eric uses
o Eric is the only person that can speak on behalf of p, because
he knows s
o py is sufficient | nobody needs to know that Eric created it
e Creation of identities as often as you want !
e no central authority in charge of registering new identities !
o this is the way Bitcoin creates identities (called addresses)
e address = Hash(public key)

53 /77



Using verification public key as an identity

Some words on privacy
@ no relationships between p; based identities and real identities

@ by using the same py (identity) an adversary can infer some
relationships based on the activity of py

54 /77



What is Bitcoin ?
Secure
timestamping

Agreement

Data
consistency

Cryptography

P2P
architecture

Communication
primitives

55 /77



Bitcoin ingredients : Computational puzzles

Bitcoin are created (minted) and valued independently of any other
currencies

@ To acquire value a digital currency must be scarce by design
e Minting money requires solving a computational problem

@ This is not a new idea : Dwork and Naor in 19923 proposed
pricing functions

3. C. Dwork and M. Naor, « Pricing via Processing or Combatting Junk
Mail », Proceedings of the 12th Annual International Cryptology (Crypto 92),
pp 138-147

56 /77



Bitcoin ingredients : Computational puzzles

Main principles
@ Sending an email requires solving a computation problem
@ Absence of proof = no delivery
@ Moderate effort if unfrequent email, prohibitive otherwise
Computational puzzle are helpful if

@ each puzzle unique (e.g. email depends on both sender,
recipient, time)

@ the solution of a puzzle should be easy to verify

@ solving a puzzle should not decrease the time for solving
another one

o difficulty of puzzles should vary according to
hardware/environment features

57 /77



Bitcoin ingredients : ledger

The blockchain : a ledger in which all Bitcoin transactions are
securely recorded.

@ This is not a new idea : Haber and Stornetta (1991)*
proposed a method for secure timestamping of digital
documents (rather than digital money)

4. S. Haber and W.S Stornetta, « How to Time-Stamp a Digital Document »,
Journal on Cryptology (1991) 3(2) pages 99-111

58 /77



Bitcoin ingredients : ledger

@ Give an idea of when a document has been created
@ Provide the order of creation of documents
@ Integrity of each (previous) document

o Total ordering relies on the trusted server

gl

@ Bitcoin : get ride of central authority while guaranteeing a
total ordering of the transactions

59 /77



Bitcoin relies on a set of distributed algorithms
Secure
timestamping
Data

consistency

Communication
primitives

Cryptography

P2P
architecture

60/77



Bitcoin ingredients

e Participating entities
e Users, Miners and Bitcoin nodes
@ Data structures

o Addresses
e Transactions
e Blockchain

61/77



The Bitcoin Network

A P2P network of a large number of nodes
Each node implements different functions
e routing, keeping the blockchain, verifying the transactions,
mining
The Bitcoin runs over TCP

Nodes can join and leave the system at any time

The network is not structured

v/ The main purpose of the P2P network is to maintain and
verify the distributed ledger

62/77



The Bitcoin Network

Node

/ Miner A
Q : x

— Node Node
Bitcoin addr o o -
User A Blockchair Blockchai
Nod Node
ode
Blockchain
—_— | ~
: - : Node
Node ——
/ ‘ Blockchair i
ﬁ Bitcoin network
Miner B tech

63/77



The wallet

In Bitcoin, each user uses a wallet
@ A wallet stores all the keys generated by the user

o Keys : (s, px)
o s, must be a random number (flip a coin)
e py is generated from sy

@ In a transaction, the recipient of a payment is represented by a
bitcoin address which is the fingerprint of a public key

o Each time a user wishes to create a transaction, it generates a
new address

64 /77



Bitcoin transaction

@ A transaction is the data structure that allows a user A to
transfer bitcoins to user B (bitcoin address of B)

@ A transaction consists in 300 to 400 bytes

@ A transaction does not contain any confidential information

65 /77



Input and output lists

@ A transaction contains two types of information

o The input list
e The output list

Transaction as Double-Entry Bookkeeping

Inputs Value : Outputs Value
Input 1 0.10 BTC - Qutput 1 0.10 BTC
Input 2 0.20 BIC . Output2 0.20 BTC
Input 3 0.10 BTC = Qutput 3 0.20 BTC
Input 4 0.15 BTC :
Total Inputs: 0.55BTC Total Outputs: 0.50 BTC

Inputs 0.55BTC

- Qutputs 0.50BTC
Difference 0.05 BTC (implied transaction fee)

66 /77



Valid Transaction

Validity checked by anyone — presence of a trusted third party
superflous

Transaction 7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a82999f6f18

INPUTS From OUTPUTS To
Fom previge tamsacions e s s bic +Output 40 Alce’s Address """ 0.1000 BIC (spent)
Transaction Fees: 0.0005 BTC
Transaction 0627052b628912f2703066a912ea577f2ce4dajdeda5a5fhd8a57286c345¢2f2
INPUTS From OUTPUTS To
:7957aiiferSO\KI}IZ\ZﬁdSBaZaEﬂaOdBW49a41d8(1)d;;13§a6538399916f18 01 (-Ju;pflt-#(-l Bob's Address " 0.0T50BTC (-sp-en-t)-
R ESSEEE LR e L Ll a wm) “Output #1 Afice’s Addye(change) 0.0845 BTC (unspeni)
v 0.0005 BTC
Transaction 2bbac8bb3a57a2363407ac8c16a67015ed2e88 f58cf90299e0744d3ded
v NeUTSRrom ___________ QUTPUTS To
.oezmszbaﬂssw éf(z);’osaesasueas7m(e4da4ms-asgb;sasnssms(m 0 | Output #0 Gopesh's Address 0.0100 BTC (unspent)
e e e e e q Output #1 Bob”s Address (change) 0.0845 BTC (unspent)
Transaction Fees: 0.0005 BTC

67 /77



Bitcoin Transaction

77777777 -

2042522042143

68/77



Unspent Transactions Output (UTXO)

@ In Bitcoin there are no accounts (as maintained in a bank)

@ There are only UTXOs
@ In a transaction

e an input refers to an UTXO
e an output creates an UTXO

69 /77



Bitcoin Transaction

70/77



Transaction 08f794a8a28d8ba58daef1337ce4a88171f931dd858477db3889df
adef5b917a from block 438070:
0100000001bab4aab4af3cab6247589210f47e3c617bad219f84b61c8b8724381
cd2c448349010000006a47304402201e0b0555330b9babdc689aecebecf04643
91a882c41a6650ab66f803179860a1802207d1b46c45d37e8a88fee49c3e02ad
b9cd3ccb4bb96ca313135e00a5c01f71a6b012102374f390070a14763707fe93
10a73eaf2b2221734d0ff0a0684078571e2al2e9efeffffff0237b9190000000000
1976a9143d5b9da23ff21a211f101ee2adec37d6b797db7c88ac40420f000000
00001976a9144ce03f31d4bdbc2932f14cea99f4d96edcdbef0c88ac35af0600

71/77



Decoded:

@ Header: ver=1, vin.size=1, vout.size=2, nLockTime=438069
o Inputs:
o ID: 4983442ccd814372b8c8614bf81942bal7c6e3470f21897524a63cafb4
aab4ba
o Index: 1 (input value: 0.03098035BTC)
e scriptSig:

e Signature: 304402201e0b0555330b9babdc689aeebecf0464391a882c41a
6650ab66f803179860a1802207d1b46c45d37e8a88fee49c3e02adb9cd3cc
b4bb96ca313135e00a5c01f71a6b[ALL]

o Key: 02374f390070a14763707fe9310a73eaf2b2221734d0ff0a068407857
le2al2e9e

o nSeq: 4294967294

72/77



Decoded (ctd):

@ Outputs:
oen: 0

value: 0.01685815BTC
ScriptPubKey: OP_DUP OP_HASH160 3d5b9da23ff21a211f101ee2adec37
d6b797db7c OP_EQUALVERIFY OP_CHECKSIG

value: 0.01000000BTC
ScriptPubKey: OP_DUP OP_HASH160 4ce03f31d4bdbc2932f14cea99f4d9
6edcdbefOc OP_EQUALVERIFY OP_CHECKSIG

73/77



Bitcoin Transactions

@ Bitcoin relies on a (limited) script language to lock inputs and
to unlock outputs
@ To lock an output, the script provides all the conditions to
spend the output
o fingerprint of the public key H(py)
e conditions for a miner to spend its output
@ To unlock an input, the script provides all the conditions to
spend the output
o public key H(p, ) together with the signature of the s,

74 /77



Bitcoin Transactions

Transaction T

Input -
Output
OP_DUP OP_HASH160 <pubKeyHash>
OP_EQUALVERIFY OP_CHECKSIG
Transaction T'
Input
<sig> <pubKey>
Output  ----
pubHashA>
<pubKey> <pubKey>
P_DUP P_HASH P_EQUALVERIFY
<pubKey> OP_DU <pubKey> OP_HAS <pubKey> OFREQU, <pubKey>
q e > -
<sig> <sig> <sig> <sig>

OP_CHECKSIG
—» iftrue empty

75/ 77



Validation of transactions

@ Each node validates the transactions it receives
e For each input,
o the node checks that the script returns true
o the UTXO has not been already spent
@ If the input is not valid, the node does not propagate the
transaction

o Node stores the validated transactions in the « Transactions
pool »

76 /77



Any questions ?



