
MADS

Emmanuelle Anceaume

Lesson 2: Bitcoin and its Distributed Ledger Technology
(cont’d)

http://people.irisa.fr/Emmanuelle.Anceaume/

1 / 87

Blockchain : a sequence of blocks

The blockchain is the data structure that implements the
distributed ledger
Each block contains transactions

The size of the block is limited to 1MB
In average (and today) there are 1, 700 transactions per block
(no more than 4, 000)

The number of blocks (today) is almost 500, 000 blocks
The first block (block 0) of the blockchain is the genesis block

2 / 87

Blockchain : a sequence of blocks

A block = the header and the body
the header = allows the unique identification of a block
the body = contains all the transactions of the block

3 / 87

Blockchain : a sequence of blocks

4 / 87

Blockchain : local view implementation

Any locally valid transaction is embedded within a block
Integrity proof : Merkle tree of the transactions in the block
Resilience to sybil attacks : Hashcash Proof-of-Work
Chaining with proof of integrity (fingerprint of the previous
block)

5 / 87

6 / 87

Merkle root

7 / 87

Proof-of-Work

8 / 87

Hashcash Proof-of-Work

string=HelloWorld !, nonce=0, difficulty=000

9 / 87

Hashcash Proof-of-Work

string=HelloWorld !, nonce=0, difficulty=000, 1
HelloWorld!0 : 3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a

10 / 87

Hashcash Proof-of-Work

string=HelloWorld !, nonce=1, difficulty=000, 4
HelloWorld!0 : 3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a
HelloWorld!1 : b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27

11 / 87

Hashcash Proof-of-Work

string=HelloWorld !, nonce=2, difficulty=000, 2
HelloWorld!0 : 3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a
HelloWorld!1 : b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27
HelloWorld!2 : 5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320

12 / 87

Hashcash Proof-of-Work

string=HelloWorld !, nonce=3, difficulty=000, 3
HelloWorld!0 : 3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a
HelloWorld!1 : b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27
HelloWorld!2 : 5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320
HelloWorld!3 : 9c5d769416aa0ca894abf22bd17bd30fbb6959291423ae1903a9f86a1fe7ce78
....

13 / 87

Hashcash Proof-of-Work

string=HelloWorld !, nonce=94, difficulty=000, 5
HelloWorld!0 : 3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a
HelloWorld!1 : b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27
HelloWorld!2 : 5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320
HelloWorld!3 : 9c5d769416aa0ca894abf22bd17bd30fbb6959291423ae1903a9f86a1fe7ce78
....
HelloWorld!94 : 7090a0e5d88cff635e42ea33fcd6091a058e9cdd58ab8cd5c21c1c70421e35c6

14 / 87

Hashcash Proof-of-Work

string=HelloWorld !, nonce=95, difficulty=000, 2
HelloWorld!0 : 3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a
HelloWorld!1 : b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27
HelloWorld!2 : 5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320
HelloWorld!3 : 9c5d769416aa0ca894abf22bd17bd30fbb6959291423ae1903a9f86a1fe7ce78
....
HelloWorld!94 : 7090a0e5d88cff635e42ea33fcd6091a058e9cdd58ab8cd5c21c1c70421e35c6
HelloWorld!95 : b74f3b2cf1061895f880a99d1d0249a8cedf223d3ed061150548aa6212c88d43

15 / 87

Hashcash Proof-of-Work

string=HelloWorld !, nonce=96, difficulty=000, 4
HelloWorld!0 : 3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a
HelloWorld!1 : b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27
HelloWorld!2 : 5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320
HelloWorld!3 : 9c5d769416aa0ca894abf22bd17bd30fbb6959291423ae1903a9f86a1fe7ce78
....
HelloWorld!94 : 7090a0e5d88cff635e42ea33fcd6091a058e9cdd58ab8cd5c21c1c70421e35c6
HelloWorld!95 : b74f3b2cf1061895f880a99d1d0249a8cedf223d3ed061150548aa6212c88d43
HelloWorld!96 : 447ca2fa886965af084808d22116edde4383cbaa16fd1fbcf3db61421b9990b9

16 / 87

Hashcash Proof-of-Work

string=HelloWorld !, nonce=97, difficulty=000, 6
HelloWorld!0 : 3f6fc92516327a1cc4d3dca5ab2b27aeedf2d459a77fa06fd3c6b19fb609106a
HelloWorld!1 : b5690c48c2d0a09481186aaa99e4e090901ff2ac4d572e6706dfd30eefc22a27
HelloWorld!2 : 5b6fd9c27fcb54ca23404d9428f081b7c9280ba6370e33a6a20b16f40ce76320
HelloWorld!3 : 9c5d769416aa0ca894abf22bd17bd30fbb6959291423ae1903a9f86a1fe7ce78
....
HelloWorld!94 : 7090a0e5d88cff635e42ea33fcd6091a058e9cdd58ab8cd5c21c1c70421e35c6
HelloWorld!95 : b74f3b2cf1061895f880a99d1d0249a8cedf223d3ed061150548aa6212c88d43
HelloWorld!96 : 447ca2fa886965af084808d22116edde4383cbaa16fd1fbcf3db61421b9990b9
HelloWorld!97 : 000ba61ca46d1d317684925a0ef070e30193ff5fa6124aff76f513d96f49349d

17 / 87

Block generation

Bitcoin minting = creating blocks
Computationally hard. . .
. . . but far from being impossible
Result : easy to check
Goal : find a valid PoW for the current blockchain
Average generation time : 10 minutes

18 / 87

Blockchain construction

1

Block !

1

Block !

1

Block !

1

Block !

1

Block !

1

Block !

1

Block !

A B C D E F G

(B0,⊥)

B1

B2

B3

B4

B5

B6

B7

B8

(B0,⊥)

B1

B2

B3

B4

B5

B6

(B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥)

Thanks to Romaric
19 / 87

Blockchain construction

2 5 3 3 4 1 2

Block ! Block ! Block ! Block ! Block ! Block ! Block !

A B C D E F G

(B0,⊥)

B1

B2

B3

B4

B5

B6

B7

B8

(B0,⊥)

B1

B2

B3

B4

B5

B6

(B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥)

19 / 87

Blockchain construction

1

Block !

6

Block !

3

Block !

4

Block !

5

Block !

1

Block !

3

Block !

A B C D E F G

(B0,⊥)

B1

B2

B3

B4

B5

B6

B7

B8

(B0,⊥)

(B1,B)

B2

B3

B4

B5

B6

(B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥) (B0,⊥)

19 / 87

Blockchain construction

5 1 3 5 1 4 3

Block ! Block ! Block ! Block ! Block ! Block ! Block !

A B C D E F G

(B0,⊥)

(B1,B)

B2

B3

B4

B5

B6

B7

B8

(B0,⊥)

(B1,B)

B2

B3

B4

B5

B6

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

(B0,⊥)

(B1,B)

19 / 87

Blockchain construction

5 4 2 3 2 1 1

Block ! Block ! Block ! Block ! Block ! Block ! Block !

A B C D E F G

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

B6

B7

B8

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

B6

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

19 / 87

Transient inconsistencies

6 3 5 5 4 6 5

Block !

Block ! Block ! Block ! Block !

Block !

Block !

A B C D E F G

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B6,A)

B7

B8

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

B6

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′
6,F)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

19 / 87

Transient inconsistencies

1 3 6 5 4 2 6

Block ! Block !

Block !

Block ! Block ! Block !

Block !
A B C D E F G

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B6,A)

(B7,G)

B8

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′
6,F)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′
6,F)

(B ′
7,C)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′
6,F)

(B ′
7,C)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B6,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B ′
6,F)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,E)

(B6,A)

(B7,G)

19 / 87

The longest chain is locally kept by every node

6 3 2 5 4 2 4

Block !

Block ! Block ! Block ! Block ! Block ! Block !

A B C D E F G

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B8,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B8,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B8,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

(B8,A)

(B0,⊥)

(B1,B)

(B2,E)

(B3,C)

(B4,A)

(B5,B)

(B6,A)

(B7,G)

19 / 87

Does Pow solves the consensus problem ?

It is frequently argued that because the set of miners succeed in
reaching an agreement on the next block to append to the
blockchain, Bitcoin solves the consensus problem in an
asynchronous distributed system

In the remaining of the class we will see that in an asynchronous
system there is no protocol that solves the consensus problem even
if a single node may crash

20 / 87

Asynchronous systems
Terminology

We consider distributed systems where processes can
communicate and synchronize by exchanging messages
(message-passing model).
The system is composed of n processes usually denoted
Π = {p1, . . . , pn}.
The system is asynchronous because there exists no bound :

neither on the relative speeds of processes
nor on the communications speed.

21 / 87

Asynchronous Systems
Why such a model ?

It is extremely simple
If a problem can be solved in asynchronous systems, it can be
solved in more constrained model (like synchronous systems or
partially synchronous systems)
A solution to a problem P in this model can always be used
directly in a more demanding model M

It will then benefit from the good properties exhibited by
model M
While at the same time being robust enough to tolerate
violations of the properties exhibited by model M

22 / 87

Consensus
Informal specification

In this problem processes are trying to reach a consensus.
Each process initially proposes a value v taken from a given
set of value V .
At the end of the protocol, all processes agree on a single
value, called the decided value, or decision.
This value must have been proposed by one of the processes.

23 / 87

Consensus
Specification

Each process has an initial value and at the end of the protocol, the
following must hold :

Termination : All correct processes must eventually decide a
value.
Integrity : At most one decision per process.
Agreement : All processes that decide (correct or not) must
decide the same value.
Validity : The value decided by a process must have been
initially proposed. Distributed

24 / 87

A simple consensus algorithm

1 propose(vi) // algorithm run by process p_i
2 {
3 local_state = vi
4 send (i , vi) to all processes
5 wait until n − 1 different messages of the

form (j , vj) have been received
6 di ← δ((1, v1), . . . , (n, vn) ∪ (i , vi))
7 return decide(di)
8 }

25 / 87

FLP impossibility result [FLP85]

Theorem (FLP impossibility result)

There exists no deterministic algorithm that solves the binary
consensus problem in the presence of even if a single faulty process a

a. M. Fischer, N. Lynch, and M. Paterson. « Impossibility of distributed
consensus with one faulty process ». Journal of the ACM, 32(2) : 374-382, 1985

Binary consensus : processes have solely two possible input values
« 0 » and « 1 »

26 / 87

Asynchronous Broadcast System

An asynchronous broadcast system consists of a set of processes
1, . . . , n and a broadcast channel.

Each process pi has a one-bit input register xpi , and output
register ypi with values in {0, 1, b}
The state of process pi comprises the value of xpi , the value of
ypi (and its program counter, and its internal storage...)
Initial state of pi : xpi = 0 or xpi = 1 and ypi = b

Decision states : ypi = 0 or ypi = 1
Transition function

deterministic
cannot change the decision value (ypi is writable only once)

27 / 87

Processes communicate by exchanging messages

Processes communicate by sending messages
A message is a pair (p,m) where p is the recipient of m and m
is some message value.
The message system maintains a message buffer of messages
that have been sent but not yet delivered
It provides two operations

send(p,m) : places (p,m) in the message buffer
receive(p) :

delete some message (p,m) from the buffer and returns m to
p
we say that (p,m) is delivered
or return null and leave the buffer unchanged

28 / 87

Processes communicate by exchanging messages

Thus the message system acts in a non deterministic way
receive(p) can return null even though a message (p,m)
belongs to the buffer
however if queried infinitely many times, every message (p,m)
is eventually delivered

29 / 87

Configuration

A configuration (or global state) of the system consists of the
internal state of each process and the content of the message
buffer

C = (s,B) with s = (s1, s2, . . . , sn)

An initial configuration is a configuration in which each process
starts at an initial state and the message buffer is empty

30 / 87

Step

A step takes one configuration to another and consists of an atomic
set of actions by a single process p

Let C = (s,B) be a configuration
p performs receive(p) on the message buffer in B of C
p delivers a value m ∈ {M, null}
based on its local state in C and m, p enters a new state and
sends a finite number of messages
C .e denotes the resulting configuration. We say that e can be
applied to C

31 / 87

Step

Since processes are deterministic
the step is completely determined by C and e = (p,m)

in the following the step e is also called an event (so an event
can be though as the receipt of m by p)

32 / 87

Schedule

A schedule from a configuration C is a finite or infinite
sequence σ of events that can be applied in turn from C .
This sequence of steps is called a run.
If σ is finite then the resulting configuration is denoted by
C .σ. We say that it is reachable from C . A configuration
reachable from an initial configuration is said accessible.
In the following we only consider accessible configurations

33 / 87

Decision value

A configuration C has decision value v if some process p is in
a decision state (i.e. yp = 0 or yp = 1)

34 / 87

Correct consensus protocol P

A consensus protocol is partially correct is
It does not exist an accessible configuration which has more
than one decision value
For each value v ∈ {0, 1}, some accessible configuration has
decision value v

A process is non faulty in a run provided it takes an infinite number
of steps. It is faulty otherwise
A run is admissible provided that at most one process is faulty and
all messages have been delivered
A run is a deciding run provided that some process reaches a
decision in that run
A consensus protocol is correct despite a single fault if is partially
correct and every admissible run is a deciding run

35 / 87

Main result

Theorem
No consensus protocol is correct in spite of one fault

36 / 87

All the following slides have been made in collaboration with
Frédéric Tronel (Centrale-Supélèc).

37 / 87

Valence of configurations

The core of FLP argument is a strategy allowing the adversary
(who controls the scheduling) to steer the execution away from any
configuration in which the processes reach agreement.

The strategy relies on the notion bivalence.

38 / 87

Valence of configurations

Let C be any configuration. Let V be the set of decision values of
configurations reachable from C

1 If V = {0} then C is said to be univalent or 0-valent
2 If V = {1} then C is said to be univalent or 1-valent
3 If V = 0, 1 then C is said to be bivalent

An execution σ is 0-valent if 0 is the only value that can ever be
decided by any process in σ.

An execution σ is bivalent if 0 appears in a decide state and 1
appears in a decide state

39 / 87

Strategy of the adversary

Any configuration where some process decides is not bivalent.
So if the adversary can keep the protocol in a bivalent
configuration forever, then it can prevent the processes from
ever deciding.

Strategy :
1 Make the protocol start in a bivalent configuration C0 (we

must prove that such a configuration always exists)
2 Choose only bivalent successor configurations (we must prove

that it is always possible)

40 / 87

Bivalent initializations

Lemma
Any consensus protocol that tolerates at least one faulty process
has at least one bivalent configuration.

What does it means ?
The final decision cannot be determined from just the inputs
If there are not failures, then it is simple to build a consensus
algorithm that have only univalent configurations

41 / 87

There exists at least one bivalent configuration

Proof : By contradiction.
Suppose that all the initial configurations are univalent.

42 / 87

There exists at least one bivalent configuration

Proof : By contradiction.
Suppose that all the initial configurations are univalent.

43 / 87

There exists at least one bivalent configuration

Proof : By contradiction.
Suppose that all the initial configurations are univalent.

44 / 87

There exists at least one bivalent configuration

Proof : By contradiction.
Suppose that all the initial configurations are univalent.

45 / 87

There exists at least one bivalent configuration

Proof : By contradiction.
Suppose that all the initial configurations are univalent.

46 / 87

There exists at least one bivalent configuration

Proof : By contradiction.
Suppose that all the initial configurations are univalent.

!

decide
0

process p does not take a steps
all processes must eventually decide

(1-failure tolerant protocol)

Since !"is 0-valent the decision state is 0

47 / 87

There exists at least one bivalent configuration

Proof : By contradiction.
Suppose that all the initial configurations are univalent.

!

decide
0

both runs are identical
except for the initial value of pi.

Thus all the remaining processes
must behave the same way and thus the decision state must be 0.

This is a contradiction since the execution is 1-valent

decide
1

process pi does not take a steps
all processes must eventually decide

(1-failure tolerant protocol)

Since !"is 0-valent the decision state is 0

!

48 / 87

Bivalent extension

Bivalent extension Lemma

Let C be a bivalent configuration of the protocol, and let
e = (p,m) be an event that is applicable to C .

Let C be the set of configurations reachable from C without doing
e and without failing any process.

Let D be the set of configurations of the form C ′.e where C ′ ∈ C.

Then D contains a bivalent configuration.

Note that step e is always applicable in C since
e is applicable to C
C is the set of configurations reachable from C
and messages can be delayed arbitrarily long

49 / 87

Proof of the bivalent extension lemma

The proof is by contradiction
1 We assume that D contains only univalent configurations
2 We prove that D contains both 0-valent and 1-valent

configurations D0 and D1

3 We prove that C contains two configurations C0 and C1 that
resp. lead to D0 and D1 by applying step e

4 We derive a contradiction

50 / 87

Proof of the bivalent extension lemma

We start from a bivalent configuration C (C exists by the first
lemma)

C

{0,1}

51 / 87

D contains both 0-valent and 1-valent configurations

There must exist a 0-valent configuration E0 reachable from C
(recall that C is bivalent)

C
{0,1}

E0
0-valent

52 / 87

D contains both 0-valent and 1-valent configurations

There must exist a 1-valent configuration E1 reachable from C
(recall that C is bivalent)

C
{0,1}

E0
0-valent

E1
1-valent

53 / 87

D contains both 0-valent and 1-valent configurations

Case 1 : If Ei belongs to C (that is step e is not applied along σi)
then e can be applied to Ei

C
{0,1}

E0
0-valent

E1
1-valent

e"∉"#0 e"∉"#1

C

e e

54 / 87

D contains both 0-valent and 1-valent configurations

Let Di be the configuration reached from Ei by application of step
e. Di is i-valent since Di belongs to D and by assumption D
contains only univalent configurations.

C
{0,1}

E0
0-valent

E1
1-valent

e"∉"#0 e"∉"#1

C

e e

D0 D1

D

0-valent 1-valent

55 / 87

D contains both 0-valent and 1-valent configurations

case 2 : Ei does not belong to C (that is step e has been applied
along σi).

C

{0,1}

E0
0-valent

E1
1-valent

e"∈"#0 e"∈"#1

56 / 87

D contains both 0-valent and 1-valent configurations

Thus there is a configuration Ci ∈ C such that step e is applied to
Ci and Di = Ci .e, with DiD.

C

{0,1}

E0
0-valent

E1
1-valent

e

C0

D0

C1

C

e

D1
D

57 / 87

D contains both 0-valent and 1-valent configurations

By assumption D contains only univalent configurations. Thus Di is
univalent and since Di lead to Ei which is i-valent, Di is i-valent.

C

{0,1}

E0
0-valent

E1
1-valent

e

C0

D0

C1

C

e

D1
D

0-valent 1-valent

58 / 87

D contains both 0-valent and 1-valent configurations

So far we have shown that D contains both 0-valent and 1-valent
configurations.

Definition :
Configurations C0 and C1 are neighbor if one results from the
other by application of a single step.

We want to prove that C contains two neighbor configurations C0
and C1 that lead to D0 and D1 in D

59 / 87

What do we want to prove ?

60 / 87

Two neighbor configurations C0 and C1 in C exist

Let C be a bivalent configuration, and C0 reachable from C that
leads to D0 a 0-valent configuration of D by applying step e

CC0

e =(m,p)

D0
0-valent

61 / 87

Two neighbor configurations C0 and C1 in C exist

Since step e is applicable from C then one can apply this step all
along the path from C to C0

CC0

e =(m,p)

D0

0-valent

e e e e e

62 / 87

Two neighbor configurations C0 and C1 in C exist

All these configurations belong to D. Hence they are all univalent.
Some of them can be 0-valent as is D0

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent

63 / 87

Two neighbor configurations C0 and C1 in C exist

If one of them is 1-valent, we are done. We have found the hook we
were looking for.

CC0

e =(m,p)

D0
0-valent

C'0 C'1

e e e e e

D'0 D'1

0-valent 0-valent 1-valent

e'

64 / 87

Two neighbor configurations C0 and C1 in C exist

Otherwise all of them of 0-valent.

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

65 / 87

Two neighbor configurations C0 and C1 in C exist

Then consider C1 a configuration in C reachable from C that leads
to D1 a 1-valent configuration in D by applying step e

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

e

66 / 87

Two neighbor configurations C0 and C1 in C exist

Since step e is applicable from C then one can apply this step all
along the path from C to C1

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

67 / 87

Two neighbor configurations C0 and C1 in C exist

All these configurations belong to D. Hence they are all univalent.
Some of them can be 1-valent as is D1

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

1-valent

68 / 87

Two neighbor configurations C0 and C1 in C exist

If one of them is 0-valent, we are done. We have found the hook we
were looking for.

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C'0 C'1 C1

D1

1-valent

ee

D'1

e e e e

D'0

1-valent0-valent

e'

69 / 87

Two neighbor configurations C0 and C1 in C exist

Otherwise all of them of 1-valent.

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

1-valent1-valent1-valent

70 / 87

Two neighbor configurations C0 and C1 in C exist

The hook we are looking for is located at configuration C . Let us
apply step e to C

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

1-valent1-valent1-valent

e

71 / 87

Two neighbor configurations C0 and C1 in C exist

Either this configuration of D is 0-valent, and thus we can identify
the hook we were looking for

CC0

e =(m,p)

D0

0-valent

e e e e e

0-valent 0-valent 0-valent

C1

D1

1-valent

eee

D1

e e e

1-valent1-valent1-valent

D0

e

0-valent

e'

72 / 87

Two neighbor configurations C0 and C1 in C exist

Or this configuration of D is 1-valent, and thus we can identify the
hook we were looking for

CC0

e =(m,p)

D0

0-valent

C'0

e e e e e

D'0

0-valent 0-valent 0-valent

C1

D1

1-valent

eee e e e

1-valent1-valent1-valent

D'1

e

1-valent

e'

73 / 87

Where have we been so far ?

74 / 87

Where have we been so far ?

We are almost done. We need to consider two cases :
1 either p 6= p′

2 or p = p′

75 / 87

p 6= p′

Since p is different from p′ then steps e and e ′ do not interact
Steps e ′ can be applied to configuration D0
Thus D0.e

′ = D1 which closes the diamond
We get a contradiction since a 0-valent configuration cannot lead
to a 1-valent configuration.

76 / 87

p = p′

77 / 87

p = p′

Let σ be an execution that can be applied to C0 such that
1 All the processes decide
2 Except p that does not make any step in σ (the protocol

tolerates one crash thus it must allow n − 1 processes to
decide)
Let A = C0.σ be such a decision configuration
By the validity property of the consensus protocol,
configuration A must be univalent

78 / 87

p = p′

Since p takes no step in σ, σ can be applied to D0 and to D1

79 / 87

p = p′

Leading to a 0-valent configuration E0 and 1-valent configuration
E1

80 / 87

p = p′

Now the adversary allows p to make its step e from configuration
A. This leads to configuration E0 = A.e by applying the same
argument as before.

81 / 87

p = p′

Thus configuration A must be 0-valent

82 / 87

p = p′

Both e ′ and e can be applied to configuration A and leads to
E1 = A.e ′.e.

83 / 87

p = p′

Thus A must be 1-valent. But A is 0-valent. A contradiction

84 / 87

What we have shown

There exists at least one initial configuration which is bivalent.
We start our infinite execution from this configuration C

By applying the bivalent extension lemma, we can always
extend a finite execution made up of bivalent configurations
with another execution also made up of bivalent configurations
with the step of a given process.
We can repeat this step with each process infinitely often
But no process will ever decide.

85 / 87

FLP impossibility result

This theorem is so far the most fundamental one for the field
of fault-tolerant distributed computing
This work has received the Edsger W. Dijkstra Prize in
Distributed Computing prize in 2001.

86 / 87

Any questions ?

