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Abstract. We consider the approximation of the ground state of the
one-dimensional cubic nonlinear Schrödinger equation by a normalized
gradient algorithm combined with linearly implicit time integrator, and
finite difference space approximation. We show that this method, also
called imaginary time evolution method in the physics literature, is con-
vergent, and we provide error estimates: the algorithm converges ex-
ponentially towards a modified solitons that is a space discretization of
the exact soliton, with error estimates depending on the discretization
parameters.

1. Introduction

The goal of this paper is to give a convergence proof of a normalized gra-
dient algorithm used to compute numerically ground states of Schrödinger
equations fulfilling symmetry and coercivity conditions as considered in the
seminal works of Weinstein [13] and Grillakis, Shatah and Strauss [10, 11].
This algorithm is also called imaginary time method in the physics literature:
see for instance [8, 1, 2, 7, 5] and the reference therein. Let us describe the
algorithm in the case of the focusing cubic non linear Schrödinger equation

(NLS) i∂tψ = −1

2
∆ψ − |ψ|2ψ,

set on R, where ψ(t, x) depends on space variables x ∈ R. With this equation
is associated the energy

(1.1) H(ψ, ψ̄) =
1

4

∫
R
|∇ψ|2 − |ψ|4,

that is preserved by the flow of (NLS) for all times. The equation (NLS)
can be written

i∂tψ = −1

2
∆ψ − |ψ|2ψ = 2

∂H

∂ψ̄
(ψ, ψ̄).

In the rest of this paper, the notation ∇H will denote the L2 derivative
of the energy H with respect to real functions ψ. Note that we have for a
real function u

∇H(u) = 2
∂H

∂ψ̄
(u, u) = −1

2
∆u− u3,
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the left-hand side denoting the Fréchet derivative of H(u) considered as a
functional acting on real functions. Note that naturally, ∇H ∈ H−1 with
the embedding H−1 ⊂ L2 ⊂ H1.

With these notations, the ground state η(x) is defined as the unique real
symmetric minimizer in H1 of the problem

(1.2) min
‖ψ‖

L2
=1
H(ψ).

In the one dimensional cubic case considered in this paper, explicit compu-
tations show that

η(x) :=
1

2
sech

(x
2

)
.

We denote by λ the Lagrange multiplier associated with this minimization
problem, such that

(1.3) ∇H(η) = −1

2
∆η − η3 = −λη.

With the ground state η is associated the solution η(t, x) = η(x)eiλt of
the time dependent equation (NLS). By using translation and scaling, the
ground state gives rise to a family of explicit solutions of (NLS) that have
the property to be orbitally stabe in H1, see [13, 10, 11, 6]. For instance, any
solution starting close to η(x) will remain close to the manifold {eiαη(x −
c) |α, c ∈ R} ⊂ H1, the rotation and translation being natural invariant
group actions of the nonlinear Schrödinger equation (NLS).

In more general situations, η is not explicitly known, and one has to rely
on numerical simulations to compute it. To this aim, the imaginary time
method, which is a nonlinear version of the normalized gradient algorithm
is widely used. The goal of the present paper is to analyse the efficiency
of this method in the simple case described above (the results obtained are
in fact valid in more general situations - essentially all situations where the
Grillakis-Shatah-Strauss arguments apply).

The time-discretized algorithm consists in defining a sequence a functions
{ψn}n∈N as follows:

(i) An intermediate function ψ∗n is defined as a numerical approximation
of the solution of the parabolic equation

(1.4) ∂tψ =
1

2
∆ψ + |ψ|2ψ = −∇H(ψ)

over a time interval [0, τ ], where τ is a given time step. To compute
ψ∗n, we will see that the best results are given by the linearly implicit
method

(1.5) ψ∗n = ψn − τ∇̂H(ψn, ψ
∗
n),

where

−∇̂H(ψn, ψ
∗
n) =

1

2
∆ψ∗n + |ψn|2ψ∗n;

(ii) Then we define the normalized function

(1.6) ψn+1 =
ψ∗n

‖ψ∗n‖L2

.



NORMALIZED GRADIENT FOR COMPUTING GROUND STATES 3

Note that the algorithm presented above preserves the real nature of the
function ψ: if ψ0 is real valued, then for all n ∈ N, ψn is real, and that the
same holds true for symmetric functions satisfying ψn(−x) = ψn(x).

Our results can be summarized as follows:

• In the semi-discrete case described above, if the initial data ψ0 is
real, symmetric and sufficiently close to η, then ψn converges expo-
nentially towards η in H1.
• In the fully discrete case, where the discretization is space is made

by finite difference in space with mesh h combined with a Dirich-
let cut-off for large values of x (namely x ≤ Kh), then we prove
the exponential convergence towards a modified soliton ηh,K that is

O(h+ 1
h2
e−C1Kh) close to the exact soliton η.

The main property explaining the excellent performance of this method
is the fact that the linearly implicit numerical scheme exactly preserves the
ground state: if ψn = η, then ψn+1 = η, and the same holds true for discrete
in space ground states satisfying a discrete version of (1.3). This fact is
very general: it holds for any linearly implicit scheme applied to a semi-
linear PDEs. This important feature makes of course this scheme much
more attractive than other possible schemes where the nonlinearity would
be approached by

(1.7) − ∇̂H(ψn, ψ
∗
n) =

1

2
∆ψ∗n +

{
|ψn|2ψn (semi-explicit),
|ψ∗n|2ψ∗n (fully-implicit),

despite the fact that fully-implicit schemes enjoy the energy diminishing
property for standard gradient system (see [12]). As we will discuss later,
these schemes still converge, but towards modified ground states ητ = η +
O(τ). As these results would be weaker for longer detailed proofs, we only
give the main arguments to obtain them, keeping a full detailed convergence
proof for the linearly implicit scheme.

2. The Hamiltonian near the ground state

We work in the space V of real symmetric functions of H1:

V :=
{
ϕ ∈ H1(R,R) |ϕ(−x) = ϕ(x)

}
.

We consider the usual L2 and H1 norms, and denote by 〈·, ·〉 the canonical
real scalar product on L2 :

〈ϕ,ψ〉 =

∫
R
ϕ(x)ψ(x)ds, ‖ϕ‖2

L2 = 〈ϕ,ϕ〉, ‖ϕ‖2

H1 = ‖ϕ‖2

L2 + ‖∂xϕ‖
2

L2 .

2.1. Coordinates in the neighborhood of the ground state. We in-
troduce the set of the functions R-close to η

U(R) :=
{
ϕ ∈ V | ‖ϕ− η‖

H1 < R
}
,

the set

W := {u ∈ V | 〈u, η〉 = 0}
and the map χ

χ : R×W → V
(r, u) 7→ (1 + r)η + u.
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The map χ allows to use (r, u) as coordinates in U(R). Observe that χ is
smooth with bounded derivatives and so is the inverse χ−1, from the explicit
formula

χ−1 : V → R×W
ψ 7→ (r(ψ), u(ψ)) = (〈ψ, η〉 − 1, ψ − 〈ψ, η〉η) .

We will also use the following notations: We define the L2 projectors

Pηu = 〈u, η〉η and PWu = I − Pη,
and we define the function

(2.1) H̃(r, u) = (H ◦ χ)(r, u).

We can verify the following relations:

(2.2) ∂rH̃(r, u) = 〈∇H(χ(r, u)), η〉 = η−1(Pη∇H)(χ(r, u)) ∈ R,
and

(2.3) ∇uH̃(r, u) = PW∇H(χ(r, u)) ∈ H−1.

Before collecting some expressions of the Hamiltonian and the gradient
flow in coordinates (r, u), let us introduce the following notations:

Definition 2.1. Let p ≥ 1. We say that R(u) = O(‖u‖p
H1) if for all B,

there exists a constant C such that for all u ∈ H1, ‖u‖
H1 ≤ B, we have

‖R(u)‖
H1 ≤ C‖u‖

p

H1 .

We will also use the notation R(u, v) = O(‖u, v‖p
H1) if for all B, there exists

C such that for all u, v ∈ H1 satisfying ‖u‖
H1 ≤ B and ‖v‖

H1 ≤ B, then

we have
‖R(u, v)‖

H1 ≤ C
(
‖u‖p

H1 + ‖v‖p
H1

)
.

Finally, a function u = O(r) if ‖u‖
H1
≤ Cr for r small enough and a

constant C independent of u.

With these notations and the fact that ψ = (1 + r)η + u, we compute
using (1.3) that

−∇H(ψ) =
1

2
∆ψ + ψ3

= (1 + r)(−η3 + λη) +
1

2
∆u+ u3

+(1 + r)3η3 + 3(1 + r)2η2u+ 3(1 + r)ηu2

= λη +
1

2
∆u+ 3η2u+O(r + ‖u‖2

H1).

Note that to obtain the bound, we have used the fact that η ∈ H1, as well
as the estimate

(2.4) ‖uv‖
H1 ≤ C‖u‖H1 ‖v‖H1 ,

for two functions u and v. We deduce using (2.2) and (2.3) that

∂rH̃(r, u) = −λ− 1

2
〈u,∆η〉 − 3〈η3, u〉+O(r + ‖u‖2

H1)

= −λ− 2〈η3, u〉+O(r + ‖u‖2

H1),
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as 〈u, η〉 = 0 and 〈η, η〉 = 1, and

∇uH̃(r, u) = −PW (λη +
1

2
∆u+ 3η2u) +O(r + ‖u‖2

H1)

= −1

2
∆u− 3η2u+ 2〈η3, u〉η +O(r + ‖u‖2

H1).

2.2. Projection onto the unit L2 sphere. Let us define now the function
u 7→ r(u) from W to R by the implicit relation

‖χ(r(u), u)‖2

L2 = 1.

By explicit computation, we get

(2.5) r(u) = −1 +

√
1− ‖u‖2

L2 ,

from which we deduce that r(u) is well defined and smooth in a neighborhood

of 0 in H1, and that moreover |r(u)| = O(‖u‖2

L2) when u is small enough.

Hence, u 7→ χ(r(u), u) is a local parametrization of S ∩V in a neighborhood
of η, where

S :=
{
ψ ∈ V | ‖ψ‖

L2 = 1
}
.

Note that in this parametrization, u = 0 corresponds to the ground state η.
We then define

(2.6) H(u) := H̃(r(u), u) = H(χ(r(u), u)).

The main result in [13], see also [10, 11, 9], is the following:

Proposition 2.2. The point u = 0 is a non degenerate minimum of H:
there exist some positive constants c0 and ρ0 such that

(2.7) ∀v ∈W d2H(0).(v, v) ≥ c0‖v‖
2

H1 .

Note that we have

∇ur(u) = − u√
1− ‖u‖2

L2

= −u+O(‖u‖3

H1).

Hence, as r(u) = O(‖u‖
H1), we have

∇uH(u) = ∂rH̃(r(u), u)∇ur(u) + (∇uH̃)(r(u), u)

= λu− 1

2
∆u− 3η2u+ 2〈η3, u〉η +O(‖u‖2

H1)

= PW (λu− 1

2
∆u− 3η2u) +O(‖u‖2

H1).

From the previous proposition, we deduce the following:

Corollary 2.3. The operator A : W →W defined by

(2.8) Au := PW (λu− 1

2
∆u− 3η2u)

is L2 symmetric and positive definite in H1: We have

(2.9) c‖u‖2

H1 ≤ 〈u,Au〉 ≤ C‖u‖
2

H1

for some constants c and C, and

∇uH(u) = Au+O(‖u‖2

H1).
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Let us remark that the coercitivity relation (2.9) combined with Cauchy-
Schwartz inequality implies that

c‖u‖2

H1 ≤ 〈u,Au〉 ≤ C‖u‖L2 ‖Au‖L2 ≤ C‖u‖H1 ‖Au‖L2

for some constant C. We thus infer the existence of a constant c > 0 such
that

(2.10) ‖Au‖
L2 ≥ c‖u‖H1 and ‖Au‖2

L2 ≥ c〈u,Au〉.

3. Continuous normalized gradient flow

We consider the continuous normalized gradient flow (see for instance [4])

(3.1) ∂tψ = −∇H(ψ) + 〈∇H(ψ),
ψ

‖ψ‖
L2

〉 ψ

‖ψ‖L2

,

which is the projection of the standard gradient flow ∂tψ = −∇H(ψ) onto
the unit L2 sphere. The local existence of an H1 solution to (3.1) is guar-
anteed by standard argument, using the fact that ∆ defines a semi group in
H1, and that H1 is an algebra in dimension 1 (see (2.4)).

3.1. The gradient flow in local variables. We assume for the moment
that ψ(t) remains in a ball sufficiently close to η so that we can write ψ(t) =
(1 + r(t))η + u(t) with r(t) > −1 and u(t) ∈ W . We have in this case
Pηψ = (1 + r)η and PWψ = u. Note also that

〈∇H(ψ), ψ〉 = 〈Pη∇H,Pηψ〉+ 〈PW∇H,PWψ〉
= (1 + r)∂rH̃+ 〈∇uH̃, u〉

and that

‖ψ‖2

L2 = (1 + r)2 + ‖u‖2

L2 .

It turns out that the relation ‖ψ‖2

L2 = 1 implies that ‖u‖
L2 ≤ 1. In the

following we will only work with functions u satisfying this condition. Ap-
plying successively the operators Pη and PW to the equation (3.1), we obtain
the relation

∂tr = −∂rH̃(r, u) +
(1 + r)2

(1 + r)2 + ‖u‖2

L2

∂rH̃+
(1 + r)

(1 + r)2 + ‖u‖2

L2

〈∇uH̃, u〉,

∂tu = −∇uH̃(r, u) +
(1 + r)u

(1 + r)2 + ‖u‖2

L2

∂rH̃+
u

(1 + r)2 + ‖u‖2

L2

〈∇uH̃, u〉.

As the L2 norm of ψ is preserved, we calculate directely that (1 + r)2 +

‖u‖2

L2 is preserved along the flow of this system (and is constant equals to

one), and that we can solve r in terms of u as above (see (2.5)). We thus
obtain the closed equation

(3.2) ∂tu = −∇uH̃(r(u), u) + (1 + r(u))u ∂rH̃(r(u), u) + u〈∇uH̃, u〉.

But we have

(∇uH̃)(r(u), u) = ∇uH(u) + ∂rH̃(r(u), u)
u√

1− ‖u‖2

L2

,



NORMALIZED GRADIENT FOR COMPUTING GROUND STATES 7

hence we can write the equation (3.2) as

∂tu = −∇uH(u) + u〈u,∇uH(u)〉 − ∂rH̃(r(u), u)
u√

1− ‖u‖2

L2

+u

√
1− ‖u‖2

L2∂rH̃(r(u), u) + ∂rH̃(r(u), u)
u‖u‖2

L2√
1− ‖u‖2

L2

.

and hence

(3.3) ∂tu = −∇uH(u) + u〈u,∇uH(u)〉,

which is the gradient flow in local coordinates (r(u), u) on S. Note that
with the notation of the previous paragraph, we we can write this equation
as follows:

∂tu = −Au+R(u)

with R(u) = O(‖u‖2

H1).

3.2. Convergence of the flow. We prove now that the solution of the
normalized gradient flow (3.1) converges towards the ground state η if the
initial value sufficiently close to it.

Theorem 3.1. There exists µ > 0 such that if u(t) ∈ W is a solution of
(3.3) with ‖u0‖H1 sufficiently small, then we have

‖u(t)‖
H1 ≤ C(u0)e−µt

for all t > 0, and for some constant C(u0) depending on u0.
Hence, if ψ(t) ∈ V ∩ S is a solution of (3.1) such that ‖ψ(0) − η‖

H1 is

small enough, then for all t

‖ψ(t)− η‖
L2 ≤ Ce−µt

for some constant C and µ.

Proof. As A is symmetric, we calculate that

∂t〈u(t), Au(t)〉 = −2〈Au(t), Au(t)〉+ 2〈R(u(t)), Au(t)〉.

Using (2.10), and the fact that for all u and v inH1, 〈u,Av〉 ≤ C‖u‖
H1 ‖v‖H1 ,

we obtain

|∂t〈u(t), Au(t)〉| ≤ −c〈u(t), Au(t)〉+ 2C‖R(u(t))‖
H1 ‖u(t)‖

H1

for some positive constant c and C. As we have by definition ‖R(u(t))‖
H1 ≤

‖u(t)‖2

H1 ≤ C〈u(t), Au(t)〉, we infer the estimate

|∂t〈u(t), Au(t)〉| ≤ −c〈u(t), Au(t)〉+ C〈u(t), Au(t)〉3/2.

If 〈u(t), Au(t)〉 ≤ B2 at t = 0, we check that by continuity argument, we
have the rough estimate

〈u(t), Au(t)〉 ≤ B2e−(c−CB)t,

The result easily follows by taking B small enough and using (2.9). �
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4. Convergence result

We consider the scheme described in the introduction: from a function
ψn of L2 norm 1, close enough to η, we can write ψn = (1 + r(un))η + un
with un ∈ W . We then define ψn+1 by the relations (1.5) and (1.6). Note
that as ψn+1 is of L2 norm 1, we can define un+1 by the formula ψn+1 =
(1 + r(un+1)η + un+1 if ψn+1 is close enough to Γ. The map un 7→ un+1

satisfies the following relation:

Lemma 4.1. Let R ≤ 1
4 be given. There exists τ0 such that for all τ ≤ τ0

the numerical scheme (1.5)-(1.6) is well defined from S ∩U(R) to S ∩U(2R)
and is equivalent to an application un 7→ un+1 satisfying
(4.1)

un+1 = un + τPW
(1

2
∆un+1 − λun + η2un+1 + 2η2un

)
+O(τ‖un, un+1‖

2

H1),

which is a time discretization of the equation

∂tu = PW (−λu+
1

2
∆u+ 3η2u) +O(‖u‖2

H1)

= −Au+O(‖u‖2

H1),

corresponding to the normalized gradient flow system (3.1).

Proof. Note that with the assumption on R, we can assume that ‖un‖H1 ≤
1/2. Let us calculate (r∗n, u

∗
n) such that

ψ∗n = χ(r∗n, u
∗
n) = (1 + r∗n)η + u∗n,

with u∗n ∈ W , that is 〈η, u∗n〉 = 0. As rn = r(un) = O(‖un‖
2

H1), we have

|ψn|2 = η2 +2unη+O(‖un‖
2

H1). Let us assume that |r∗n| ≤ 1, we can expand

the Hamiltonian term

− ∇̂H(ψn, ψ
∗
n) =

1

2
∆ψ∗n + |ψn|2ψ∗n

= (1+r∗n)(−η3+λη)+
1

2
∆u∗n+η2u∗n+(η3+2unη

2)(1+r∗n)+O(‖un, u∗n‖
2

H1),

and hence we find
(4.2)

−∇̂H(ψn, ψ
∗
n) = λη(1+r∗n)+

1

2
∆u∗n+η2u∗n+2unη

2(1+r∗n)+O(‖un, u∗n‖
2

H1).

By taking the projection Pη of the equation (1.5), we obtain

1 + r∗n = 1 + rn + τ(1 + r∗n)λ+ 2τ〈un, η3〉(1 + r∗n) +O(τ‖un, u∗n‖
2

H1).

Remark 4.2. At this stage, the same calculations for the implicit explicit of
fully implicit schemes would yield a term depending on η3 in (4.2) which is
not in W nor in Rη. After taking a projection, this term would not vanish,
while the “constant” term λη(1+r∗n) is here orthogonal to W (which reflects
the fact that the ground state is exactly integrated by the linearly implicit
scheme).
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We deduce that for τ ≤ τ0 small enough with respect to R (and λ)

1 + r∗n =
1 + rn

1− τλ− 2τ〈un, η3〉
+O(τ‖un, u∗n‖

2

H1)

=
1

1− τλ
(
1 + rn +

2τ

1− τλ
〈un, η3〉

)
+O(τ‖un, u∗n‖

2

H1),

and by taking the projection on W , we obtain

(4.3) u∗n = un + τPW
(1

2
∆u∗n + η2u∗n +

2

1− τλ
unη

2
)

+O(τ‖un, u∗n‖
2

H1).

Let us now calculate and asymptotic expansion of the L2 norm of ψ∗n,

‖ψ∗n‖
2

L2 = (1 + r∗n)2 + ‖u∗n‖
2

L2 .

We have

(1 + r∗n)2 =

(
1

1− τλ

)2 (
1 + rn +

2τ

1− τλ
〈un, η3〉

)2
+O(τ‖un, u∗n‖

2

H1)

=

(
1

1− τλ

)2 (
(1 + rn)2 +

4τ

1− τλ
〈un, η3〉

)
+O(τ‖un, u∗n‖

2

H1)

and

‖u∗n‖
2

L2 = ‖un‖
2

L2 +O(τ‖un, u∗n‖
2

H1).

Hence we calculate that

‖ψ∗n‖
−1

L2 =
(

(1 + r∗n)2 + ‖u∗n‖
2

L2

)−1/2

= (1− τλ)

(
(1 + rn)2 +

4τ

1− τλ
〈un, η3〉+ ‖un‖

2

L2 +O(τ‖un, u∗n‖
2

H1)

)−1/2

= (1− τλ)

(
1 +

1

1− τλ
4τ〈un, η3〉+O(τ‖un, u∗n‖

2

H1)

)−1/2

= 1− τλ− 2τ〈un, η3〉+O(τ‖un, u∗n‖
2

H1).

Let us rewrite (4.3) as

u∗n − τPW
(1

2
∆u∗n + η2u∗n

)
= un + τPW

( 2

1− τλ
unη

2
)

+O(τ‖un, u∗n‖
2

H1).

Hence by multiplying by ‖ψ∗n‖
−1

L2 we obtain

un+1 − τPW
(1

2
∆un+1 + η2un+1

)
= un − τλun + τPW (2unη

2) +O(τ‖un, un+1‖
2

H1),

which yields the result. �

We can now prove the main result of this section:

Theorem 4.3. There exists constants R, τ0, r and C such that if ψ0 ∈
S ∩ U(R), that for all τ ≤ τ0 the solution of the numerical scheme (1.5)-
(1.6) satisfies

(4.4) ∀n ‖ψn − η‖H1 ≤ Ce−rnτ .
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Proof. Note that with the previous notations, we have ‖ψn−η‖H1 = O(‖un‖H1).

We will prove the following result, which implies (4.4) after a slight change
of constants: There exists B, τ0, r and C such that if ‖u0‖H1 ≤ B and

τ ≤ τ0, then every sequence (un)n≥0 defined by (4.1) satisfies the estimate

∀n ‖un‖H1 ≤ Ce−rnτ .

We rewrite the system (4.1) as

un+1 = un − τ(Lun+1 +Bun) +O(τ‖un, un+1‖
2

H1),

with

Lu = PW (1
2∆u+ η2u) and Bu = PW (−λu+ 2η2u).

We know that A = L + B is coercive in H1. Note moreover that B is a
symmetric bounded operator in W . We can write

un+1 = un − τ(L+B)un+1 + τB(un − un+1) +O(τ‖un, un+1‖
2

H1).

Now for τ sufficiently small, the operator I + τB is symmetric, invertible,
positive and bounded from W to itself. Hence we can rewrite the numerical
scheme as

un+1 = un − τ(I + τB)−1(L+B)un+1 +O(τ‖un, un+1‖
2

H1).

Setting vn = (I + τB)1/2un, we obtain the relation

vn+1 = vn − τ(I + τB)−1/2(L+B)(I + τB)−1/2vn+1 +O(τ‖vn, v∗n‖
2

H1).

In this new variable vn, we thus can write the induction relation

(4.5) vn+1 = vn − τAτvn+1 + τwn

with Aτ = (I + τB)−1/2(L+B)(I + τB)−1/2,

(4.6) wn = O(‖vn, vn+1‖
2

H1) and c‖v‖2

H1 ≤ 〈Aτv, v〉L2 ≤ C‖v‖2

H1 ,

for some constants c and C independent of τ . Note also that the inequality
(2.10) holds for the operators Aτ uniformly in τ ≤ τ0 sufficiently small.
From (4.5), we can write

〈Aτvn + τAτwn, vn + τwn〉L2 = 〈Aτvn+1 + τA2
τvn+1, vn+1 + τAτvn+1〉L2

= 〈Aτvn+1, vn+1〉+ 2τ〈Aτvn+1, Aτvn+1〉L2 + τ2〈A2
τvn+1, Aτvn+1〉L2

≥ (1 + 2cτ)〈Aτvn+1, vn+1〉,

using (2.10) and the fact that 〈A2
τvn+1, Aτvn+1〉L2 ≥ 0.

On the other hand we have

〈Aτvn + τAτwn, vn + τwn〉L2 = 〈Aτvn, vn〉+ 2τ〈Aτvn, wn〉+ τ2〈Aτwn, wn〉.
But using an integration by part in the unbounded part of Aτ , we have for
all τ ≤ τ0 sufficiently small, and for any v, w in H1

|〈Aτv, w〉| ≤ C‖v‖H1 ‖w‖H1 .

Using the estimate on wn, we thus see that if 〈Aτvn, vn〉 and 〈Aτvn+1, vn+1〉
are bounded by B2, we have

〈Aτvn + τAτwn, vn + τwn〉L2 ≤ (1 +CτB)〈Aτvn, vn〉+CτB〈Aτvn+1, vn+1〉.
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The previous inequalities imply:

〈Aτvn+1, vn+1〉L2 ≤
1 + CBτ

1 + cτ − CBτ
〈Aτvn, vn〉L2

as long as 〈Aτvn, vn〉 ≤ B2 and 〈Aτvn+1, vn+1〉 ≤ B2. If B is small enough
(independently of τ) we have

1 + CBτ

1 + cτ − CBτ
≤ e−aτ

for some constant a independent of τ . This implies that

〈Aτvn, vn〉L2 ≤ B2e−anτ ,

for all n, by an induction argument. This shows the result. �

Remark 4.4. If we choose another discretization - implicit explicit or fully
implicit, see (1.7) - then as explained in Remark 4.2 the term in η3 do not
disapear in the equation, and after some manipulations we end up with a
recursion formula of the form

vn+1 = vn + τ2g − τAτvn+1 + τρn

with ρn = O(‖vn, vn+1‖
2

H1) and g ∈ W a non zero function. It is rel-

atively easy to prove that in this case, vn converges towards a function
v∞τ = τA−1

τ g + O(τ2). Indeed, the previous equation if a discretization of
the modified problem

∂tv = τg −Aτv +B(v)

whose solution exponentially converges towards the solution of the problem

τg −Aτv +B(v) = 0

which exists by standard implicit function theorem in H1. This shows that
in this case, ψn converges exponentially in H1 towards a modified soliton
ητ = η+O(τ). As the result is weaker than for the linearly implicit scheme,
we do not give more mathematical details.

5. Fully discrete case

The goal of this last section is to show that the previous results carry
over to fully discrete systems. This fact relies essentially on the results in
[3] and [6]: After discretization of the previous system by finite difference
method, there exists a discrete ground state ηh minimizing a discrete convex
functional Hh which is an approximation of the exact functional H defined
above. Here h denotes the space discretization parameter and ηh is close to η
with an error of order h. Moreover, the same holds true after Dirichlet cut-off
upon adding an exponentially decreasing error term, and it can be proven
that the discrete functionals satisfy the same estimates as the continuous
ones, uniformly with respect to the discretization parameters.

Having fixed a positive parameter h we discretize in space by substituting
the sequence ψ` ' ψ(h`), ` ∈ Z for the function ψ(x), and the second order
operator of finite difference ∆h defined by

(5.1) (∆hψ)` :=
ψ`+1 + ψ`−1 − 2ψ`

h2
,
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for the Laplace operator ∂xx. We also impose Dirichlet boudary conditions
for |j| ≥ K + 1, and the parabolic equation (1.4) then becomes
(5.2)

d

dt
ψ` =

1

2h2
(ψ`+1 + ψ`−1 − 2ψ`) + |ψ`|2ψ`, ` ∈ Z, |`| ≤ K,

ψ` = 0, |`| ≥ K + 1,

where t 7→ ψ(t) = (ψ`(t))`∈Z is an application from R to RZ. With this
equation is associated a Hamiltonian function and a discrete L2 norm given
by

(5.3) Hh(ψ) = h
∑
j∈Z

[∣∣∣∣ψj − ψj−1

h

∣∣∣∣2 − |ψj |42

]
and Nh(ψ) = h

∑
j∈Z
|ψj |2.

The discrete space of functions is

Vh,K = {ψj ∈ CZ |ψj = ψ−j , ψj = 0 for j > K}
equipped with the discrete H1 norm

(5.4) ‖ψ‖2

h
= 2h

∑
j∈Z

|ψj+1 − ψj |2

h2
+ h

∑
j∈Z
|ψj |2,

and we also define the scalar product

〈ψ,ϕ〉h := h
∑
j∈Z

ψjϕj .

Following [6, 3], we identify Vh with a finite element subspace of H1(R).
More precisely, defining the function s : R→ R by

(5.5) s(x) =


0 if |x| > 1,

x+ 1 if − 1 ≤ x ≤ 0,

−x+ 1 if 0 ≤ x ≤ 1,

the identification is done through the map ih : Vh → H1(R) defined by

(5.6) {ψj}j∈Z 7→ (ihψ)(x) :=
∑
j∈Z

ψjs
(x
h
− j
)
.

The main results in [6] and [3] can expressed as follows:

Theorem 5.1. For h sufficiently small and K sufficiently large, there exists

a unique real minimizer ηh,K = (ηjh,k)j∈Z ∈ Vh,K of the functional Hh(ψ)

over the set
{ψ = (ψj)j∈Z ∈ Vh,K , Nh(ψ) = 1 },

equipped with the norm (5.4). Moreover, ηh,K satisfies the equation

1
2(∆hηh,K)` + |η`h,K |2η`h,K = λhη

`
h,K , ` = −K, . . . ,K,(5.7)

η`h,K = 0, |`| ≥ K + 1,

for some λh > 0. Moreover, we can define a local coordinate system ψ =
χh(r, u) = (1+r)ηh,K +u in a vicinity of ηh,K in Vh,K with u ∈Wh := {u ∈
Vh,K , 〈u, ηh,K〉h = 0}, and such that if rh(u) is defined by the implicit rela-
tion Nh(χh(rh(u), u))) = 1, then the functional Hh(u) = Hh(χh(rh(u), u)))



NORMALIZED GRADIENT FOR COMPUTING GROUND STATES 13

has a unique non degenerate minimum in u = 0 in Vh,K and satisfies a
convexity estimate of the form (2.7) uniformly in h and K.

Finally, the discrete ground state ηh,K is close to the continuous one in
the sense that

(5.8) ‖ihηh,K − η‖H1 ≤ C
(
h+

1

h2
e−C1hK

)
,

where C and C1 do not depend on h, and where ih is the embedding (5.6).

The fully discrete algorithm corresponding to (1.5)-(1.6) then consists in
the two following steps: From (ψ`n)Kj=−K such that Nh(ψn) = 1,

(i) Compute ψ∗n = (ψ∗,`n )j∈Z defined by the relation

(5.9)

 ψ∗,`n = ψ`n + τ
(

1
2(∆hψ

∗
n)` + |ψ`n|2ψ

∗,`
n

)
, ` ∈ Z, |`| ≤ K,

ψ∗,` = 0, |`| ≥ K + 1.

(ii) Normalization step:

(5.10) ψ`n+1 =
ψ∗,`n

Nh(ψ∗n)
.

The equation (5.7) guarantees that this fully discrete algorithm preserves
exactly the discrete ground state ηh,K . We can now copy the proof of the
continuous case an adapt it directly to the fully discrete case: We can prove
that

‖ψn − ηh,K‖h ≤ Ce
−cnτ , n ≥ 0,

for some constants C and c independent of h, K and τ . By using the previous
estimate, we obtain the following result:

Theorem 5.2. There exist constants B, C, C1 and c such that for h, τ
sufficiently small and K sufficiently large, if (ψ0) = (ψ`0)K`=−K satisfies

‖ihψ0 − η‖H1 ≤ B

then the solution ψn of the fully discrete algorithm (5.9)-(5.10) satisfies

‖ihψn − η‖H1 ≤ C
(
e−cnτ + h+

1

h2
e−C1hK

)
.

Remark 5.3. Following Remark 4.4, we can prove a similar result for the
implicit-explicit and fully implicit algorithms (1.7), but the fully discrete
schemes will converge towards a discrete ground state ητ,h,K satisfying

‖ihητ,h,K − η‖H1 ≤ C
(
τ + h+

1

h2
e−C1hK

)
,

and the previous result has to be modified accordingly in these cases.
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