
LANDAU DAMPING IN SOBOLEV SPACES
FOR THE VLASOV-HMF MODEL

ERWAN FAOU AND FRÉDÉRIC ROUSSET

Abstract. We consider the Vlasov-HMF (Hamiltonian Mean-Field) model. We consider
solutions starting in a small Sobolev neighborhood of a spatially homogeneous state satisfy-
ing a linearized stability criterion (Penrose criterion). We prove that these solutions exhibit
a scattering behavior to a modified state, which implies a nonlinear Landau damping effect
with polynomial rate of damping.

1. Introduction

In this paper we consider the Vlasov-HMF model. This model has received much interest
in the physics literature for many reasons: It is a simple ideal toy model that keeps several
features of the long range interactions, it is a simplification of physical systems like charged
or gravitational sheet models and it is rather easy to make numerical simulations on it. We
refer for example to [1], [14], [2], [7], [8] for more details.

We shall study the long time behavior of solutions to this model for initial data that are
small perturbations in a weighted Sobolev space to a spatially homogeneous stationary state
satisfying a Penrose type stability condition. We shall prove that the solution scatters when
times goes to infinity towards a modified state close to the initial data in a Sobolev space of
lower order. This result implies a nonlinear Landau damping effect with polynomial rate for
the solution which converges weakly towards a modified spatially homogeneous state. In the
case of analytic or Gevrey regularity, this result has been shown to hold for a large class of
Vlasov equations that contains the Vlasov-Poisson system by Mouhot and Villani [13] (see
also the recent simplified proof [5]). Some earlier partial results were obtained in [6], [9]. The
related problem of the stability of the Couette flow in the two-dimensional Euler equation
has been also studied recently [4]. The question left open in these papers is the possibility
of nonlinear Landau damping for Sobolev perturbations. In this case, one cannot hope for
an exponential damping, but we can wonder if it could occur by allowing polynomial rates.
For the Vlasov-Poisson system, it was proven in [11] that this is false with rough Sobolev
regularity due to the presence of arbitrarily close travelling BGK states. Nevertheless, this
obstruction disappears for sufficiently high Sobolev regularity as also proven in [11]. These
arguments can also be extended to a large class of Vlasov equations and in particular the
HMF model. Note that the regularity of the interaction kernel does not play an essential
part in the argument of [13] (though the decay in Fourier space provided by the Coulomb
interaction seems critical), it is more the nonlinear “plasma-echo” effect which is crucial to
handle. Besides the physical interest of the HMF model, it is thus mathematically interesting
to study the possibility of nonlinear Landau-damping in Sobolev spaces for this simple model.
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1.1. The Vlasov-HMF model. The Vlasov-HMF model reads

(1.1) ∂tf(t, x, v) + v∂xf(t, x, v) = ∂x

(∫
R
P (x− y)f(t, y, u)dudy

)
∂vf(t, x, v),

where (x, v) ∈ T × R and the kernel P (x) is given by P (x) = cos(x). Note that the main
difference with the Vlasov-Poisson equation is the regularity of the kernel: in this latter case,
P (x) =

∑
k≥0 k

−2 cos(kx) is the kernel associated with the inverse of the Laplace operator.
The HMF model is thus the simplest nonlinear model with the structure (1.1). We consider
initial data under the form f0(x, v) = η(v) + εr0(x, v) where ε is a small parameter and r0 is
of size one (in a suitable functional space). This means that we study small perturbations
of a stationary solution η(v). We shall thus write the solution at time t under the form

f(t, x, v) = η(v) + εr(t, x, v).

We are interested in the study of the behavior of f when time goes to infinity. To filter
the effect of the free transport, it is convenient to introduce (as in [13], [5]) the unknown
g(t, x, v) = r(t, x+ tv, v) that is solution of the equation

(1.2) ∂tg = {φ(t, g), η}+ ε{φ(t, g), g}.
where

(1.3) φ(t, g) =

∫
R
(cos(x− y + t(v − u)))g(t, y, u)dudy

and {f, g} = ∂xf∂vg− ∂vf∂xg is the usual microcanonical Poisson bracket. We shall usually
write φ(t) when the dependence in g is clear.

We shall work in the following weighted Sobolev spaces, for m0 > 1/2 be given, we set

(1.4) ‖f‖2Hn =
∑

|p|+|q|6n

∫
T×R

(1 + |v|2)m0|∂px∂qvf |2dxdv,

and we shall denote by Hn the corresponding function space. Note that compared to the
usual Sobolev space Hn, there is also a fixed weight (1 + |v|2)m0 in physical space. The
interest of the weight is that functions in H0 are in L1 and thus it allows to get a pointwise
control in Fourier (see Lemma 2.1 below). We do not include the dependence in m0 in the
notation since m0 will be fixed. We shall denote by ·̂ or F the Fourier transform on T × R
given by

f̂k(ξ) =
1

2π

∫
T×R

f(x, v)e−ikx−iξvdxdv.

Note that due to the regularity of the interaction kernel and the conservation of the Lp

norms, it is very easy to prove the global well-posedness of the Vlasov-HMF model in Hs for
every s ≥ 0. Nevertheless, in order to study the asymptotic behaviour of g, the regularity of
the kernel is not of obvious help. Indeed, when performing energy estimate on (1.2), it costs
one positive power of t each time one puts a v derivative on the kernel.

1.2. The Penrose criterion. We shall need a stability property of the reference state η
in order to control the linear part of the Vlasov equation (1.2). Let us denote by η, the
spatially homogeneous stationary state and let us define the function

K(n, t) = −npn nt η̂0(nt)1t≥0, t ∈ R, n ∈ Z,
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where (pk)k∈Z are the Fourier coefficients of the kernel P (x). We shall denote by K̂(n, τ) the
Fourier transform of K(n, ·). We shall assume that η satisfies the following condition

(1.5) (H) (1 + v2)η(v) ∈ H5 and ∃κ > 0, inf
τ∈R
|1− K̂(n, τ)| ≥ κ, n = ±1.

Note that here, the assumption is particularly simple due to the fact that for our kernel,
there are only two non-zero Fourier modes. This assumption is very similar to the one used in
[13], [5] and can be related to the standard statement of the Penrose criterion. In particular
it is verified for the states η(v) = ρ(|v|) with ρ non-increasing which are also known to be
Lyapounov stable for the nonlinear equation (see [12]).

1.3. Main result. In the evolution of the solution g(t, x, v) of (1.2), an important role is
played by the quantity

(1.6) ζk(t) = ĝk(t, kt), k ∈ {±1},

such that

φ(t, g) =
1

2

∑
k∈{±1}

eikxeiktvζk(t).

Note that for k 6= 0, ζk(t) is the Fourier coefficient in x of the density ρ(t, x) =
∫
R f(t, x, v) dv.

This quantity also plays a key part in the analysis of [13], [5]. Note that here we need only
to control two Fourier modes due to our simple interaction kernel.

Let us define for every s ≥ 4 and T ≥ 0 the weighted norm

QT,s(g) = sup
t∈[0,T ]

‖g(t)‖Hs
〈t〉3

+ sup
t∈[0,T ]

sup
k∈{±1}

〈t〉s−1|ζk(t)|+ sup
t∈[0,T ]

‖g(t)‖Hs−4 .

Our main result is:

Theorem 1.1. Let us fix s ≥ 7 and R0 > 0 such that Q0,s(g) ≤ R0 and assume that
η ∈ Hs+4 satisfies the assumption (H). Then there exists R > 0 and ε0 > 0 such that for
every ε ∈ (0, ε0] and for every T ≥ 0, we have the estimate

QT,s(g) ≤ R.

As a consequence, we obtain the following scattering result:

Corollary 1.2. Under the assumption of Theorem 1.1, there exists a constant C and g∞(x, v) ∈
Hs−4 such that for all r ≤ s− 4 and r ≥ 1,

(1.7) ∀ t ≥ 0, ‖g(t, x, v)− g∞(x, v)‖Hr ≤
C

〈t〉s−r−3
.

The consequence of such results is the following nonlinear Landau damping effect: as
g(t, x, v) is bounded in Hs−4, the solution f(t, x, v) = η(v)+εr(t, x, v) = η(v)+εg(t, x−tv, v)
satisfies

∀n ∈ Z∗, ∀ξ ∈ R, ∀α + β = s− 4, |f̂n(t, ξ)| = ε|ĝn(t, ξ + nt)| ≤ Cε

〈ξ + nt〉α〈n〉β
.

The last estimate being a consequence of the elementary embedding Lemma 2.1. This yields
that for every n 6= 0, f̂n(t, ξ) tends to zero with a polynomial rate.
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Moreover, by setting

η∞(v) := η(v) +
ε

2π

∫
T
g∞(x, v)dx,

we have by the previous corollary (and again Lemma 2.1) that for r ≤ s− 4,

∀ ξ ∈ R, |f̂0(ξ)− η̂∞0 (ξ)| ≤ C

〈ξ〉r〈t〉s−r−3

In other words, f(t, x, v) converges weakly towards η∞(v).

The remaining of the paper is devoted to the proof of Theorem 1.1. We shall obtain
Corollary 1.2 in section (4) as an easy consequence. As pointed out in [13] the control of
the “plasma echoes” that can be seen as kind of resonances is crucial to prove nonlinear
Landau damping. These resonances occur when nt = kσ in the last integral term of (2.6).
The main structural property of the Vlasov-HMF model that makes possible the following
short proof of nonlinear Landau damping in Sobolev spaces is that the resonances are easy
to analyze, the only possibility is when n = k = ±1 and t = ±σ. Moreover, the structure
of the nonlinearity then allows to control it without loss of decay. Making an analogy with
dispersive equations (see [10] for example), the nonlinearity of the Vlasov-HMF model could
be thought as a nonlinearity with null structure. Our approach also allows to handle the
case of a kernel with a finite number of modes which allows more resonances, we briefly
sketch the modification in section 5. Nevertheless, it is still unclear if this can be done for
the Vlasov-Poisson equation.

2. A priori estimates

In this section, we shall study a priori estimates for the solution of (1.2). Let us fix s ≥ 7
and introduce the weighted norms:

(2.1) NT,s(g) = sup
t∈[0,T ]

‖g(t)‖Hs
〈t〉3

, MT,γ(ζ) = sup
t∈[0,T ]

sup
k∈{±1}

〈t〉γ|ζk(t)|

so that

(2.2) QT,s(g) = NT,s(g) +MT,s−1(ζ) + sup
[0,T ]

‖g(t)‖Hs−4 .

Let us take R0 > 0 such that Q0,s(g) ≤ R0. Our aim is to prove that when ε is sufficiently
small we can choose R so that we have

QT,s(g) ≤ R

for every T ≥ 0.
In the following a priori estimates, C stands for a number which may change from line to

line and which is independent of R0, R, ε and T .
We shall make constant use of the following elementary lemma.

Lemma 2.1. For every α, β, n ∈ N with α + β = n we have the following inequality:

(2.3) ∀ k ∈ Z, ∀ ξ ∈ R, |f̂k(ξ)| 6 2n/2C(m0)〈k〉−α〈ξ〉−β‖f‖Hn ,

where C(m0) depends only on m0 and where 〈x〉 = (1 + |x|2)1/2 for x ∈ R.
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Proof. We have by using the Cauchy-Schwarz inequality that∣∣kαξβ f̂k(ξ)∣∣ =
1

2π

∣∣∣∣∫
T×R

∂αx∂
β
v f(x, v)e−ikxe−ivξdxdv

∣∣∣∣
6 C‖f‖Hn

(∫
R
(1 + |v|2)−m0dv

)1/2
.

The previous inequality with α = β = 0 yields the result when k = 0 or |ξ| 6 1 and we
conclude by using 〈x〉 6 2α/2|x|2 for |x| > 1. �

2.1. Estimate ofMT,s−1(ζ). Towards the proof of Theorem 1.1, we shall first estimate ζk(t),
k = ±1.

Proposition 2.2. Assuming that η ∈ Hs+2 verifies the assumption (H), then there exists
C > 0 such that for every T > 0, every solution of (1.2) such that QT,s(g) ≤ R enjoys the
estimate

(2.4) MT,s−1(ζ) ≤ C
(
R0 + εR2

)
.

Proof. We first note that in Fourier space, the equation (1.2) can be written after integration
in time,

(2.5) ĝn(t, ξ) = ĝn(0, ξ) +

∫ t

0

pnζn(σ)η̂0(ξ − nσ)(n2σ − nξ)dσ

+ ε
∑
k∈Z

pk

∫ t

0

ζk(σ)ĝn−k(σ, ξ − kσ)(nkσ − kξ)dσ,

for all (n, ξ) ∈ Z×R, with pk = 1
2

for k ∈ {±1} and pk = 0 for k 6= ±1, and where the ζk(t)
are defined by (1.6). Setting ξ = nt in (2.5), the equation satisfied by (ζn(t))n=±1 can be
written under the almost closed form

(2.6) ζn(t) = ĝn(0, nt)−
∫ t

0

pnζn(σ)η0(n(t− σ))n2(t− σ)dσ

− ε
∑

k∈{±1}

pk

∫ t

0

ζk(σ)ĝn−k(σ, nt− kσ)kn(t− σ)dσ.

To study the equation (2.6), we shall first consider the corresponding linear equation, that
is to say that we shall first see

(2.7) Fn(t) := ĝn(0, nt)− ε
∑

k∈{±1}

pk

∫ t

0

ζk(σ)ĝn−k(σ, nt− kσ)kn(t− σ)dσ

as a given source term and we shall study the linear integral equation

(2.8) ζn(t) =

∫ t

0

K(n, t− σ)ζn(σ) dσ + Fn(t) n = ±1

where the kernel K(n, t) has been introduced in section 1.2.
For this linear equation, we have the estimate:
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Lemma 2.3. Let γ ≥ 0, and assume that η ∈ Hγ+3 satisfies (H). Then, there exists C > 0
such for every T ≥ 0, we have

MT,γ(ζ) ≤ CMT,γ(F ).

Let us postpone the proof of the Lemma and finish the proof of Proposition 2.2.
From the previous Lemma and (2.3), we first get that

(2.9) MT,s−1(ζ) ≤ C
(
‖g(0)‖s + εMT,s−1(F

1) + εMT,s−1(F
2)
)

with where F 1 corresponds to the term with k = −n in (2.7) and F 2 corresponds to the
term with k = n, hence

F 1
n(t) = −n2p−n

∫ t

0

ζ−n(σ)ĝ2n(σ, n(t+ σ))(t− σ) dσ, n = ±1,

F 2
n(t) = n2pn

∫ t

0

ζn(σ)ĝ0(σ, n(t− σ))(t− σ) dσ, n = ±1.

Let us estimate F 1
n , by using again (2.3) and the definition (2.1) of Nσ,s, we get that

|F 1
n(t)| ≤ C

∫ t

0

(t− σ)〈σ〉3Mσ,s−1(ζ)Nσ,s(g)

〈σ〉s−1〈t+ σ〉s
dσ ≤ C

R2

〈t〉s−1

∫ +∞

0

1

〈σ〉s−4
dσ ≤ C

R2

〈t〉s−1

provided s ≥ 6. This yields that for all T ≥ 0

MT,s−1(F
1) ≤ CR2.

To estimate F 2
n , we split the integral into two parts: we write

F 2
n(t) = I1n(t) + I2n(t)

with

I1n(t) = n2pn

∫ t
2

0

ζn(σ)ĝ0(σ, n(t− σ))(t− σ) dσ, n = ±1,

I2n(t) = n2pn

∫ t

t
2

ζn(σ)ĝ0(σ, n(t− σ))(t− σ) dσ, n = ±1.

For I1n, we proceed as previously,

|I1n(t)| ≤ CR2

∫ t
2

0

〈σ〉3(t− σ)

〈σ〉s−1〈t− σ〉s
dσ ≤ CR2

〈t〉s−1

∫ +∞

0

1

〈σ〉s−4
dσ

and hence since s ≥ 6, we have
MT,s−1(I

1) ≤ CR2.

To estimate I2n, we shall rather use the last factor in the definition of Qs,T in (2.2). By using
again (2.3), we write

|I2n(t)| ≤
∫ t

t
2

Mσ,s−1(ζ)

〈σ〉s−1
‖g(σ)‖Hs−4

〈t− σ〉s−5
dσ ≤ CR2

〈t〉s−1

∫ +∞

0

1

〈τ〉s−5
dσ ≤ CR2

〈t〉s−1

and hence since s ≥ 7, we find again

MT,s−1(I
2) ≤ CR2.

By combining the last estimates and (2.9), we thus obtain (2.4). This ends the proof of
Proposition 2.2. �
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It remains to prove Lemma 2.3.

Proof of Lemma 2.3. Let us take T > 0, and let us set for the purpose of the proof K(t) =
K(n, t), F (t) = Fn(t)10≤t≤T . Since we only consider the cases n = ±1, we do not write down
anymore explicitly the dependence in n. We consider the equation

(2.10) y(t) = K ∗ y(t) + F (t), t ∈ R
setting y(t) = 0 for t ≤ 0. Note that the solution of this equation coincides with ζn(t) on
[0, T ] since the modification of the source term for t ≥ T does not affect the past. By taking
the Fourier transform in t (that we still denote by ·̂ ), we obtain

(2.11) ŷ(τ) = K̂(τ)ŷ(τ) + F̂ (τ), τ ∈ R,

with K̂(τ) = K̂(n, τ). Under the assumption (H), the solution of (2.11) is given explicitely
by the formula

(2.12) ŷ(τ) =
F̂ (τ)

1− K̂(τ)
.

Let us observe that since (1 + v2)η0 ∈ H5, we have by (2.3) that for α ≤ 2 and for t > 0

(2.13) |∂αt K(t)| ≤ C

〈t〉4
∈ L1(R+).

Note that by definition of K(t), the function K(t) is continuous in t = 0, but not C1. Using
an integration by parts on the definition of the Fourier transform, we then get that

(2.14) |∂ατ K̂(τ)| ≤ C

〈τ〉2
, α ≤ 2.

To get this, we have used that the function t η̂0(t) vanishes at zero.

By using this, estimate on K̂, (H) and that F̂ (τ) ∈ H1
τ (the Sobolev space in τ) since F is

compactly supported in time, we easily get that y defined via its Fourier transform by (2.12)
belongs to H1

τ . This implies that 〈t〉y ∈ L2 and thus that y ∈ L1
t . These remarks, together

with the uniqueness of the solution of (2.10) which is a consequence of the Gronwall Lemma,
justifies the use of the Fourier transform and the equivalence between equation (2.11) and
equation (2.10).

Note that a L2-based version of Lemma 2.3 would be very easily obtained. The difficulty
here is to get the uniform L∞ in time estimate we want to prove.

We shall first prove the estimate for γ = 0. Let us take χ(τ) ∈ [0, 1] a smooth compactly
supported function that vanishes for |τ | ≥ 1 and which is equal to one for |τ | ≤ 1/2. We
define χR(τ) = χ(τ/R) and χR(∂t) the corresponding operator in t variable corresponding
to the convolution with the inverse Fourier transform of χR(τ). Thanks to (2.14), we have
that for R large

〈t〉2|(1− χR(∂t))K(t)| ≤ C
∑
α≤2

‖∂ατ ((1− χR(τ))K̂(τ))‖L1(R) ≤ C

∫
|τ |≥R/2

1

〈τ〉2
≤ C

R

and hence

(2.15) ‖(1− χR(∂t))K(t)‖L1(R) ≤
C

R
≤ 1

2
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for R sufficiently large. This choice fixes R.
To estimate the solution y of (2.10), we shall write that

y = χ2R(∂t)y + (1− χ2R(∂t))y =: yl + yh.

By applying (1− χ2R(∂t)) to (2.10), we get that

yh = K ∗ yh + (1− χ2R(∂t))F =
(
(1− χR(∂t)K

)
∗ yh + (1− χ2R(∂t))F

since (1−χR) = 1 on the support of 1−χ2R. Therefore, we obtain thanks to (2.15) and the
fact that χ2R(∂t) is a convolution operator with a L1 function, that

‖yh‖L∞ ≤
1

2
‖yh‖L∞ + C‖F‖L∞

and hence

‖yh‖L∞ ≤ 2C‖F‖L∞ .
For the low frequencies, we can use directly the form (2.10) of the equation: We can write
that

ŷl(τ) =
χ2R(τ)

1− K̂(τ)
χR(τ)F̂ (τ).

Since the denominator does not vanish thanks to (H), we obtain again that yl can be
written as the convolution of an L1 function - which is the inverse Fourier transform of
χ2R(τ)/(1 − K̂(τ)) - by the function χR(∂t)F which is a convolution of F by a smooth
function. Thus we obtain by using again the Young inequality that

‖yl‖L∞ ≤ C‖F‖L∞ .

Since ‖y‖L∞ ≤ ‖yl‖L∞ + ‖yh‖L∞ , we get the desired estimate for γ = 0. To get the estimate
for arbitrary γ, we can proceed by induction. We observe that

ty(t) = K ∗ (ty) + F 1

with F 1 = (tK) ∗ y + tF . Using the result γ = 0, we obtain that ‖ty‖L∞ ≤ C‖F 1‖L∞ . Now
since η0 ∈ Hγ+3, for γ = 1, we obtain that tK ∈ L1 and thus

‖F 1‖L∞ ≤ C
(
‖tF‖L∞ + ‖y‖L∞) ≤ C‖(1 + t)F‖L∞ .

The higher order estimates follow easily in the same way. �

2.2. Estimate of NT,s(g).

Proposition 2.4. Assuming that η ∈ Hs+2 verifies the assumption (H), then there exists
C > 0 such that for every T > 0, every solution of (1.2) such that QT,s(g) ≤ R enjoys the
estimate

NT,s(g) ≤ C(R0 + εR2)(1 + εR)eCεR.

Proof. To prove Proposition 2.4, we shall use energy estimates. We set Lt[g] the operator

Lt[g]f = {φ(t, g), f}

such that g solves the equation

∂tg = Lt[g](η + εg).
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For any linear operator D, we thus have by standard manipulations that

d

dt
‖Dg(t)‖2

L2 = 2ε〈Dg(t), D(Lt[g]g(t))〉L2 + 2〈Dg(t), D(Lt[g](η))〉L2

= 2ε〈Dg(t),Lt[g]Dg(t)〉L2 + 2ε〈Dg(t), [D,Lt[g]]g(t)〉L2

+2〈Dg(t), D(Lt[g](η))〉L2 ,

where [D,Lt] denotes the commutator between the two operators D and Lt. The first term
in the previous equality vanishes since Lt[g] is the transport operator associated with a
divergence free Hamiltonian vector field. Consequently, we get that

(2.16)
d

dt
‖Dg(t)‖2

L2 6 2ε ‖Dg(t)‖
L2 ‖[D,Lt[g]]g(t)‖

L2 + 2

∫ t

0

‖Dg(t)‖
L2 ‖D(Lt[g](η))‖

L2 .

To get the estimates of Proposition 2.4, we shall use the previous estimates with the operator
D = Dm,p,q defined as the Fourier multiplier by kpξq∂mξ for (m, p, q) ∈ N3d such that p+q 6 s,
m 6 m0 and the definition (1.4) of the Hs norm. To evaluate the right hand-side of (2.16),
we shall use

Lemma 2.5. For p+q 6 γ and m 6 m0, and functions h(t) and g(t), we have the estimates

‖
[
Dm,p,q,Lσ[g]

]
h(σ)‖L2 ≤ C

(
mσ,γ+1(ζ)‖h(σ)‖H1 +mσ,2(ζ)‖h(σ)‖Hγ

)
,(2.17)

‖Dm,p,q
(
Lσ[g]

)
h(σ)‖L2 ≤ C

(
mσ,γ+1(ζ)‖h(σ)‖H1 +mσ,2(ζ)‖h(σ)‖Hγ+1 ,(2.18)

for all σ, where ζ is still defined by ζk(t) = ĝk(t, kt), k ∈ { ± 1}, and where

mσ,γ(ζ) = 〈σ〉γ
(

sup
k∈{±1}

|ζk(σ)|
)
,

with a constant C depending only on γ, and in particular, does not depend on σ.

Let us finish first the proof of Proposition 2.4. By using the previous lemma with γ = s
and (2.17) with h = g and (2.18) with h = η, we obtain from (2.16) that

d

dt
‖g(t)‖2Hs ≤ 〈t〉2mt,s−1(ζ)

(
‖η‖H1 + ε‖g(t)‖H1

)
‖g(t)‖Hs

+
1

〈t〉s−3
mt,s−1(ζ)‖η‖Hs+1‖g(t)‖Hs +

ε

〈t〉s−3
mt,s−1(ζ)‖g(t)‖2Hs .

This yields using the fact that Mt,γ(ζ) = supσ∈[0,t]mσ,γ(ζ),

‖g(t)‖Hs ≤ ‖g(0)‖Hs + 〈t〉3Mt,s−1(ζ)
(
‖η‖Hs+1 + εR

)
+ εR

∫ t

0

1

〈σ〉s−3
‖g(σ)‖s dσ

for t ∈ [0, T ]. From the Gronwall inequality, we thus obtain

‖g(t)‖Hs ≤
(
‖g(0)‖Hs + 〈t〉3Mt,s−1(ζ)

(
‖η‖Hs+1 + εR

))
e
εR

∫+∞
0

dσ
〈σ〉s−3 .

By using Proposition 2.2, this yields

NT,s(g) ≤
(
R0 + (R0 + εR2)(C + εR)

)
eCεR.

This ends the proof of Proposition 2.4.
�
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Let us give the proof of Lemma 2.5.

Proof of Lemma 2.5. We give the proof of (2.17), the proof of the second estimate being
slightly easier. In the Fourier side, we have for Lσ[g](h) the expression

(FLσ[g]h)n(ξ) =
∑

k∈{±1}

kpkζk(σ)ĥn−k(σ, ξ − kσ)(nσ − ξ).

Consequently, we obtain that(
F([Dm,p,q,Lσ[g]h)

)
)n(ξ) =∑

k∈{±1}

kpkζk(σ)
(
npξq∂mξ

(
ĥn−k(σ, ξ − kσ)(nσ − ξ)

)
−

(
(n− k)p(ξ − σ)q∂mξ ĥn−k(σ, ξ − kσ)(nσ − ξ)

))
.

For k = ±1, we can thus expand the above expression into a finite sum of terms under the
form

Ikn(σ, ξ) = kpkζk(σ)kp1(n− k)p−p1+α
(
kσ
)q1+α(ξ − kσ)q−q1+β∂m1

ξ ĥn−k(σ, ξ − kσ)

where

0 ≤ p1 ≤ p, 0 ≤ q1 ≤ q, m− 1 ≤ m1 ≤ m, α + β = m1 −m+ 1, α, β ≥ 0.

Moreover, if m1 = m, then we have p1 + q1 > 0.
We have to estimate

∑
n

∫
ξ
|
∑

k∈±1 I
k
n(σ, ξ)|2 dξ by isometry of the Fourier transform.

We note that for a fixed k ∈ {±1} then for |n− k|+ |ξ − kσ| ≤ |k|σ, we have

|Ikn(σ, ξ)| ≤ Cσp+q+1|ζk(σ)||n− k||∂m1
ξ ĥn−k(σ, ξ − kσ)|

whereas for |n− k|+ |ξ − kσ| ≥ |k|σ, we have

|Ikn(σ, ξ)| ≤ C〈σ〉2|ζk(σ)|(|n− k|+ |ξ − kσ|)γ|∂m1
ξ ĥn−k(σ, ξ − kσ)|.

Consequently by taking the L2 norm, we find that

‖
∑
k∈±1

Ikn(σ, ξ)‖L2 ≤ C
(
mσ,γ+1(ζ)‖h(σ)‖H1 +mσ,2(ζ)‖h(σ)‖Hm

)
.

This ends the proof of the Lemma. �

2.3. Estimate of ‖g‖Hs−4. To close the argument, it only remains to estimate ‖g‖Hs−4 .

Proposition 2.6. Assuming that η ∈ Hs+2 verifies the assumption (H), then there exists
C > 0 such that for every T > 0, every solution of (1.2) such that QT,s(g) ≤ R enjoys the
estimate

‖g(t)‖Hs−4 ≤ C
(
R0 + εR2)eCεR, ∀t ∈ [0, T ].

Proof. We use again (2.16) with D = Dm,p,q but now with p + q ≤ s− 4. By using Lemma
2.5, we find

(2.19)
d

dt
‖g(t)‖2Hs−4 ≤ mt,s−3(ζ)

(
‖η‖Hs−3‖g(t)‖Hs−4 + ε‖g(t)‖2Hs−4

)
.
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This yields

‖g(t)‖Hs−4 ≤ ‖g(0)‖Hs−4 + ‖η‖Hs−3Mt,s−1(ζ)

∫ t

0

1

〈σ〉2
dσ + εMt,s−1(ζ)

∫ t

0

1

〈σ〉2
‖g(σ)‖Hs−4 dσ.

By using Proposition 2.2, we thus get

‖g(t)‖Hs−4 ≤ C
(
R0 + εR2) + εR

∫ t

0

1

〈σ〉2
‖g(σ)‖Hs−4 dσ.

From the Gronwall inequality, we finally find

‖g(t)‖Hs−4 ≤ C
(
R0 + εR2)eCεR.

This ends the proof of Proposition 2.6.
�

3. Proof of Theorem 1.1

The proof of Theorem 1.1 follows from the a priori estimates in Propositions 2.2, 2.4
and 2.6 and a continuation argument. Indeed, by combining the estimates of these three
propositions, we get that

QT,s(g) ≤ C(R0 + εR2)(1 + εR)eCεR

assuming that QT,s(g) ≤ R. Consequently, let us choose R such that R > CR0, then for ε

sufficiently small we have R > C(R0 + εR2)(1 + εR)
)
eCεR and hence by usual continuation

argument, we obtain that the estimate QT,s(g) ≤ R is valid for all times.

4. Proof of Corollary 1.2

In view of (2.5), let us define g∞(x, v) by

g∞(x, v) = g(0, x, v) +

∫ +∞

0

{φ(σ, g), η + εg(σ)} dσ.

Note that the integral is convergent in Hs−4 since thanks to (2.18), we have

‖{φ(σ, g), η + εg(σ)}‖Hs−4 ≤ C(R)
( 1

〈σ〉2
+
〈σ〉 34
〈σ〉s−3

)
.

Note that for the last estimate, we have used that by interpolation

‖g‖Hs−3 ≤ C‖g‖
3
4

Hs−4‖g‖
1
4
Hs ≤ C(R)〈σ〉

3
4 .

From the same arguments, we also find that

‖g(t)− g∞‖Hs−4 ≤ C(R)
(∫ +∞

t

1

〈σ〉2
+

1

〈σ〉s−3− 3
4

dσ
)
≤ C(R)

〈t〉
.

In a similar way, by using again (2.18), we have for r ≤ s− 4 and r ≥ 1,

‖g(t)− g∞‖Hr ≤ C(R)
(∫ +∞

t

1

〈σ〉s−r−2
+

1

〈σ〉s−3
dσ
)
≤ C(R)

( 1

〈t〉s−r−3
+

1

〈t〉s−4
)
≤ C(R)

〈t〉s−r−3
.
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5. The case of a kernel with a finite number of modes

In this section, we briefly indicate the modifications in the case that in (1.1), the kernel
P is defined by

P (x) =
M∑
k=1

pk cos(kx),

for some pk ∈ R and for a fixed M . For the Penrose criterion (1.5), it suffices to consider
that it holds for any n, |n| ≤M, n 6= 0.

We can use the weighted norms

QT,s(g) = sup
t∈[0,T ]

‖g(t)‖Hs
〈t〉2M+1

+ sup
t∈[0,T ]

sup
|k|≤M,k 6=0

〈t〉s+1−2k|ζk(t)|+ sup
t∈[0,T ]

‖g(t)‖Hs−2M−2 .

One can then obtain that

Theorem 5.1. Let us fix s ≥ 4M + 2 and R0 > 0 such that Q0,s(g) ≤ R0 and assume that
η ∈ Hs+4 satisfies the assumption (H). Then there exists R > 0 and ε0 > 0 such that for
every ε ∈ (0, ε0] and for every T ≥ 0, we have the estimate

QT,s(g) ≤ R.

It is then easy to get from this result a nonlinear damping effect as previously.
The proof of this result follows exactly the same lines as the proof of Theorem 1.1. The

estimates for supt∈[0,T ]
‖g(t)‖Hs
〈t〉2M+1 and for supt∈[0,T ] ‖g(t)‖Hs−2M−2 can be obtained exactly in the

same way as in Proposition 2.4 and Proposition 2.6. The only technical difference is that in
Lemma 2.5, we define

mσ,γ(ζ) = 〈σ〉γ sup
|k|≤M,k 6=0

|ζk(σ)|.

The only part were we need to be careful is to estimate supt∈[0,T ] sup|k|≤M,k 6=0〈t〉s+1−2k|ζk(t)|
as in Proposition 2.2 since more resonances are possible in the integral equation (2.6). By
using the Volterra equation (2.8) for |n| ≤M , n 6= 0, we still get that

sup
t∈[0,T ]

〈t〉s+1−2n|ζn(t)| ≤ sup
t∈[0,T ]

〈t〉s+1−2n|Fn(t)|

and we only need to estimate the right hand side.
The only difficulty is to estimate the contribution of the integral terms

Jn = sup
t∈[0,T ]

〈t〉s+1−2n
∑

|k|≤M,k 6=0

|pk|
∫ t

0

|ζk(σ)| |ĝn−k(σ, nt− kσ)||kn|(t− σ)dσ

for |n| ≤M .
12



If k and n have opposite sign, then, we can proceed as in the estimate of F 1
n in the proof

of Proposition 2.2, we find

〈t〉s+1−2n
∫ t

0

|ζk(σ)| |ĝn−k(σ, nt− kσ)||kn|(t− σ)dσ

≤ CQt,s(g)2〈t〉s+1−2n
∫ t

0

〈σ〉1+2M(t− σ)

〈σ〉s+1−2k〈t〉s
dσ

≤ CQt,s(g)2〈t〉2−2n
∫ +∞

0

1

〈σ〉s−4M
dσ

which is uniformly bounded since s ≥ 4M + 2 and |n| ≥ 1.
Now let us assume that k and n have the same sign. We can assume that k ≥ 1 and n ≥ 1,

the other situation being similar. If n > k, then we have that nt − kσ ≥ (k + 1)t − kσ ≥ t
and hence we can use the same bound as above. If n = k, we can proceed exactly as for the
term F 2

n in the proof of Proposition 2.2. It remains to handle the case n < k which is new.
For this one, we split the time integral in the region σ ≤ n

2k
t and the region σ ≥ n

2k
t. For

the first region we have nt − kσ ≥ nt/2 and hence this part of the integral can be handled
as previously. For the region σ ≥ n

2k
t, we estimate it by

〈t〉s+1−2n
∫ t

0

|ζk(σ)| |ĝn−k(σ, nt− kσ)||kn|(t− σ)dσ

≤ CQt,s(g)2〈t〉s+1−2n
∫ t

n
2k
t

t

〈σ〉s+1−2k dσ ≤ C〈t〉2n−2k+2.

This term is uniformly bounded since 1 ≤ n ≤ k − 1.
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[2] J. Barré, A. Olivetti and Y.Y. Yamaguchi, Algebraic damping in the one-dimensional Vlasov equation,
J. Phys. A 44, 405502 (2011)
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