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Abstract

We consider linear and nonlinear reaction-diffusion problems, and their time dis-
cretization by splitting methods. We give probabilistic interpretations of the splitting
schemes, and show how these representations allow to give error bounds for the deter-
ministic propagator under weak hypothesis on the reaction part. To show these results,
we only use the Itô formula, and basic properties of solutions of stochastic differential
equations. Eventually, we show how probabilistic representations of splitting schemes
can be used to derive “hybrid” numerical schemes based on Monte Carlo approxima-
tions of the splitting method itself.

MSC numbers: 65M15, 60H30, 65C05

1 Introduction

The main goal of this work is to show how probabilistic interpretations of splitting
schemes for non-linear parabolic problems can yield to deterministic estimates for the
error approximation. We will also show how probabilistic representation of numerical
schemes combined with Monte-Carlo approximation can lead to new numerical methods
that could be considered as “hybrid” Monte-Carlo methods for parabolic problems.

The equations we consider are of the form

∂u

∂t
(t, x) = ∆u(t, x) + g(u(t, x)), u(0, x) = u0(x) (1.1)
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where u(t, x) is a real function depending on the time t ≥ 0 and the space variable
x = (xi)

d
i=1 ∈ R

d, d ≥ 1. The operator ∆ =
∑d

i=1 ∂2
xi

is the Laplace operator in R
d.

The reaction term u 7→ g(u) is a real function defined on R such that g(0) = 0. For
simplicity, we often write u(t) to denote the solution of (1.1) at the time t ≥ 0. We
define et∆u0 and ϕt(u0) the solutions at the time t ≥ 0 of the equations

∂tv(t, x) = ∆v(t, x), v(0, x) = u0 (1.2)

and
∂tv(t, x) = g(v(t, x)), v(0, x) = u0 (1.3)

respectively. In this work, we consider the approximations of solutions of (1.1) given
by the Lie-splitting methods:

u(t) ≃ ϕt(e
t∆u0) =: (ϕt ◦ et∆)(u0) (1.4)

and
u(t) ≃ et∆(ϕt(u0)) =: (et∆ ◦ ϕt)(u0). (1.5)

We will also consider the following Strang-splitting method

u(t) ≃ ϕt/2(e
t∆ϕt/2(u0)) =: (ϕt/2 ◦ et∆ ◦ ϕt/2)(u0). (1.6)

The starting point of this work is to write the preceding approximations using the
Feynman-Kac formula: For instance, we can write for all x,

(

et∆ ◦ ϕt(u0)
)

(x) = E(ϕt(u0(X
x
t ))) (1.7)

where Xx
t is the standard d-dimensional Wiener process in R

d (scaled by a factor√
2) starting in x. Similar formula hold for the schemes (1.4) and (1.6). Using these

probabilistic representations, the goal of this paper is twofold:

• Use stochastic calculus to obtain optimal bounds for the error between u(t) and
the previous splitting approximations. In the linear case, this can be done very
easily using the Feynman-Kac formula for the exact solution itself. In the non-
linear case, it turns out that it is still possible to obtain estimates using the Itô
formula. We actually do not need to have a probabilistic representation of the
exact solution of (1.1), but rather only use probabilistic representations of the
splitting methods themselves. At the end, we obtain deterministic bounds using
stochastic methods.

• Use these probabilistic representations to derive new numerical schemes: Indeed,
if h > 0 denotes a small stepsize, we approximate u(h) using (1.7) by the Monte-
Carlo formula

u(h, x) ≃ u1(x) :=
1

N

N
∑

n=1

Φh(u0(X
x
h;n)) (1.8)

where Φh is a numerical approximation of the flow ϕh and where the Xx
h;n, n =

1, . . . , N are independent realizations of the process Xx
h . After interpolating u1,
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we can iterate the algorithm and obtain a numerical scheme. This methods is a
compromise between fully deterministic schemes where a space approximation of
the Laplace operator would be used, and Monte-Carlo or particles methods where
the stochastic processes are simulated up to the final time T . We will show by
numerical experiment that schemes of the form (1.8) give good results, even for
relatively small values of N .

The paper is organized as follows: In Section 2, we study the linear case, i.e. systems
where g(u) = V u, with a potential function V (x) that depends on the space variable
x ∈ R

d. In this situation, many results already exist: See in particular [10, 9, 7],
the review in [13] and the reference therein. We mention in particular the results
in [15] where a probabilistic method is used. As in our work, the starting point is
the Feynman-Kac formula. However, the analysis is made using estimates on the
probability transition kernel, while in our work we use directly the Itô formula and
basic estimates of solutions of stochastic differential equations. As in [15], we obtain
estimates in Lp norms for arbitrary p.

Comparing with these previous works, we only assume that V is a bounded and
Lipschitz function in R

d. The convergence result is stated in Theorem 2.1. Its very
simple proof rely on the following: We write the Feynman-Kac formula for the exact
solution and for the solution of the splitting method. The difference is driven by
a quadrature error of the process V (Xx

t ) where V is the potential function and Xx
t

the process in appearing in (1.7). We thus obtain directly the result using standard
estimates for the expectation of Wiener processes.

In Section 3, we study the nonlinear case (1.1) and show the convergence of the
Lie and Strang splitting methods above under smoothness assumptions on the initial
conditions. The method consists in studying the stochastic process s 7→ U(s) :=
ϕs(u(t − s,Xx

s )). At the time s = 0, it is equal to u(t, x) and at the time s = t, to
ϕt(u0(Xt)) whose expectation gives the splitting scheme (1.7). We use the Itô formula
to expand U(s), and conclude by estimating the terms in the expansion after taking
the expectation. This method is familiar when working with the approximations of
parabolic PDE using Monte-Carlo methods: see for instance [14]. The main results
are given by Theorem 3.2 and 3.5. For the analysis of splitting schemes applied to
nonlinear reaction-diffusion problem using deterministic methods, we refer to [6, 3, 4].
However, let us mention that the convergence results we give for splitting methods
applied to nonlinear parabolic problems apparently does not exist yet in the literature.

It is worth noticing that the method we use can be applied to more general situ-
ations. In particular, the results presented below extend straightforwardly to partial
differential equations of the form

∂tu = div(A(x)∇u) + f(x)T∇u + g(u) (1.9)

where A(x) is a d × d matrix such that A = 1
2σσT where σ(x) is a d × d matrix, and

where f(x) is a d-dimensional vector. In this case, the stochastic process appearing in
(1.7) in a splitting procedure between the linear and the nonlinear part is replaced by
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the solution of the stochastic differential equation

dXx
t = f̃(Xx

t )dt + σ(Xx
t )dWt, Xx

0 = x, (1.10)

where f̃(x) = f(x) +
∑d

i=1 ∂xi
Aij(x). In particular, we never use the regularization

properties of the heat equation semi group. The other result can therefore be eas-
ily extended to the case where A(x) is not positive definite. For simplicity of the
presentation, we only consider the case where A is the identity matrix, and f = 0.

In Section 4, we describe a hybrid Monte-Carlo methods following from the rep-
resentation (1.7) based on approximations of the form (1.8). We present numerical
examples in the linear case, and for the Fisher-KPP and Ginzburg-Landau equations.
This method is different from standard Monte-Carlo or particle methods (see [1, 12]).
In particular, the method differs because each stochastic process is simulated from
points on a fixed grid at each time step, while in particles or classical Monte-Carlo
methods, the processes are simulated up to the final time. The price to pay is the
interpolation made at each time-step, but the advantage is that the processes appear-
ing in the algorithm have all small variances. This might explain why the number of
realizations N can seemingly be taken much smaller than usual.

Let us mention that all these results also extend to the case of systems of the form

∂tv = ∆v + f(v)

where v(t, x), t ≥ 0 and x ∈ R
d takes values in R

n, n ≥ 0 and f(v) a vector field in R
n.

In this situation, formulas like (1.7) still hold true componentwise. Such an example
is given at the end of the paper by considering the Ginzburg-Landau equation.

2 The linear case

We first consider the case where the equation (1.1) is linear, that is:

∂tu = ∆u + V u, u(0, x) = u0(x) (2.1)

where u(t, x) is a function of the time t ≥ 0 and the space variable x ∈ R
d and where

the potential V is a function depending on x ∈ R
d. In this case, we write the flow of

the reaction part ϕt(u0) = etV u0.
We assume that the potential V is Lipschitz. For x ∈ R

d, let Xx
t be the solution of

the stochastic differential equation

dXx
t =

√
2dWt, and X0 = x. (2.2)

where Wt is the standard d-dimensional Wiener process in R
d with independent com-

ponents. The Feynman-Kac formula asserts that we have for all t ≥ 0,

u(t, x) = E

(

u0(X
x
t ) exp

(

∫ t

0
V (Xx

s )ds
)

)

. (2.3)
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Similarly, using again the Feynman-Kac formula, we have for t ≥ 0,

(et∆etV u0)(x) = E

(

u0(X
x
t )etV (Xx

t )
)

(2.4)

and
(etV et∆u0)(x) = E

(

u0(X
x
t )etV (x)

)

. (2.5)

The goal of this section is to prove the following result:

Theorem 2.1 Assume that V is bounded and Lipschitz on R
d. Let t0 be a fixed positive

number. Then we have for all p with 1 ≤ p ≤ ∞ and for all u0 ∈ Lp(Rd)

‖u(t) − (etV et∆u0)‖Lp ≤ C t3/2‖u0‖Lp (2.6)

and

‖u(t) − (et∆etV u0)‖Lp ≤ C t3/2‖u0‖Lp (2.7)

where u(t) denotes the solution of (2.1) given by (2.3) with initial value u0 at t = 0,
and where the constants in the previous inequalities only depend on V , t0, p and the

dimension d.

Proof. We have using (2.3) and (2.5)

u(t, x) − (etV et∆u0)(x) = E

(

u0(X
x
t )

(

e
R t

0
V (Xx

s )ds − etV (x)
))

.

For y in R
d, we set ‖y‖

1
=

∑

1≤i≤d |yi| the ℓ1 norm in R
d. Assuming that ‖V ‖

L∞
≤ MV ,

that V is Lipschitz with a constant LV for the norm ‖ · ‖
1
, and that |t| ≤ t0 we deduce

that

|u(t, x) − (etV et∆u0)(x)| ≤ LV et0MV E

(

|u0(X
x
t )|

∫ t

0
‖Xx

s − x‖
1
ds

)

. (2.8)

We derive that

‖u(t) − (etV et∆u0)‖L∞
≤ LV et0MV ‖u0‖L∞

∫ t

0
E‖Xx

s − x‖
1
ds.

But we have for all s ∈ (0, t),

E‖Xx
s − x‖

1
=

√
2 E‖W (s)‖

1
≤ Cs1/2. (2.9)

for a constant C depending on d. This yields

‖u(t) − (etV et∆u0)‖L∞
≤ C t3/2‖u0‖L∞

, (2.10)

where C only depends on V , t0 and d. This shows (2.6) in the case where p = ∞.

Similarly, as Xx
t −x =

√
2W (t) is independent of x we have for any integrable function

f on R
d, and for any time t ≥ 0,

∫

Rd

f(Xx
t )dx =

∫

Rd

f(x)dx, a.e. (2.11)

Using this relation, we automatically get from (2.8) using Fubini’s Theorem that

‖u(t) − (etV et∆u0)‖L1
≤ C t3/2‖u0‖L1
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which shows (2.6) in the case where p = 1.

For 1 < p < ∞, the equation (2.8) together with Jensen inequality for the convex
function y 7→ yp in the probability space (Ω, P) on which the stochastic process is
defined imply that for all x ∈ R

d,

|u(t, x) − (etV et∆u0)(x)|p ≤ LV et0MV E

(
∣

∣

∣
u0(X

x
t )

∣

∣

∣

p∣
∣

∣

∫ t

0
‖Xx

s − x‖
1
ds

∣

∣

∣

p)

. (2.12)

Integrating this equation in x ∈ R
d, using Fubini’s theorem and again the Jensen

inequality but the for integration variable s ∈ (0, t), we find

‖u(t) − (etV et∆u0)‖p

Lp ≤ Ctp E

(

∫

Rd

|u0(X
x
t )|p

(1

t

∫ t

0
‖Xx

s − x‖p

1
ds

)

dx
)

.

As Xx
s − x =

√
2W (s) is independent of x, we have using (2.11),

‖u(t) − (etV et∆u0)‖p

Lp ≤ Ctp ‖u0‖p

Lp

(1

t

∫ t

0
E‖W (s)‖p

1
ds

)

.

The result then follows from the fact that E‖W (s)‖p

1
≤ Csp/2 for all s and for a

constant depending on p : This is an easy consequence of the Itô formula when p = 2k

for k ∈ N, and for any given p > 1, this comes from E‖W (s)‖p

1
≤ C(E‖W (s)‖2k

1
)

p

2k for
k such that 2k > p.
The proof of (2.7) is similar.

Remark 2.2 The previous L∞ estimates readily extend to partial differential equa-
tions of the form

∂tu = div(A(x)∇u) + f(x)T∇u + V (x)u, u(0) = u0

where A(x) is a d×d-dimensional matrix such that there exists a d×d matrix σ(x) such
that A(x) = 1

2σ(x)σ(x)T , and where f(x) a d-dimensional vector, ∇u is the gradient
of u in R

d. In this case, the Feynman-Kac formula (2.3) is still valid, with the process
Xx

t satisfying the stochastic differential equation

dXx
t = f̃(Xx

t )dt + σ(Xx
t )dWt, Xx

0 = x, (2.13)

where f̃(x) = f(x) +
∑d

i=1 ∂xi
(σ(x)σ(x)T )ij . In this case, the diffusion part et∆u0

solution of (1.2) in the splitting scheme has to be replaced by the solution of the
equation

∂tu = div(A(x)∇u) + f(x)T∇u, u(0) = u0,

which corresponds to the stochastic differential equation (2.13). The estimates (2.6)
and (2.7) for p = ∞ then remain valid, as long as σ and f are bounded.

Corollary 2.3 Under the assumptions of Theorem 2.1, let τ0 be a fixed positive num-

ber, and let T > 0 be given. Then for all τ ≤ τ0 and n such that nτ ≤ T , we have for

all p with 1 ≤ p ≤ ∞ and all u0 ∈ Lp(Rd),

‖u(nτ) − (eτ∆eτV )nu0‖Lp ≤ Cτ1/2‖u0‖Lp (2.14)
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and

‖u(nτ) − (eτV eτ∆)nu0‖Lp ≤ Cτ1/2‖u0‖Lp , (2.15)

where C only depends on V , p, d, τ0 and T .

Proof. The proof is classic, but we recall it here for completeness. It is clear that
for any p, 1 ≤ p ≤ ∞, we have for all functions u,

‖et∆u‖
Lp ≤ ‖u‖

Lp and ‖etV u‖
Lp ≤ etMV ‖u‖

Lp

where MV = ‖V ‖
L∞

. Let H = ∆ + V . We have u(t, x) = etHu0. For all function u,
Duhamel formula states that

etHu = et∆u +

∫ t

0
e(t−s)∆V esHu.

Using Gronwall’s Lemma, we deduce that any p, 1 ≤ p ≤ ∞,

‖etHu‖
Lp ≤ etMV ‖u‖

Lp .

For a given τ , let S = eτH and L = eτ∆eτV . We have

u(nτ, x) − (eτV eτ∆)nu0 = Snu0 − Lnu0 =

n−1
∑

j=0

Sn−j−1(S − L)Lju0.

We deduce from the previous estimates that for p with 1 ≤ p ≤ ∞

‖u(nτ) − (eτV eτ∆)nu0‖Lp ≤
n−1
∑

j=0

eτ(n−j−1)MV ‖(S − L)Lju0‖Lp .

Using (2.6), we obtain that

‖u(nτ) − (eτV eτ∆)nu0‖Lp ≤ Cτ3/2
n−1
∑

j=0

eτ(n−1)MV ‖u0‖Lp ,

provided that τ ≤ τ0. This yields (2.14). The second estimate is proved in a similar
way.

Remark 2.4 The previous corollary shows a convergence rate in
√

τ for the Lie-
splitting method applied to a linear parabolic problem. This convergence rate is op-
timal when the splitting operator is seen as an operator from Lp to itself. To obtain
a better convergence rate, we have to assume more regularity for the potential func-
tion and for the initial value. For instance, in the case where V and u0 are C1 with
bounded derivative, we recover the local order 2, but with a constant depending on
the derivatives of u0 and V .
Similarly, with the assumptions of Theorem 2.1, no better estimate can be obtained
for the Strang splitting scheme etV/2et∆etV/2. To obtain a better estimate, we have to
assume that V is more regular, see [15, 10]
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3 The nonlinear case

Let us now consider the equation

∂tu = ∆u + g(u), u(0, x) = u0(x) (3.1)

where g(u) is a function depending on u. We assume that g ∈ C2(R, R) and that there
exist constants Mi, i = 1, 2 such that for all u ∈ R, we have

|g′(u)| ≤ M1, |g′′(u)| ≤ M2. (3.2)

We will moreover assume that g(0) = 0.
To avoid technical details, we will only deal with L∞ estimates in this section. For

a given function v(x), x ∈ R
d, we denote by ∇u the associated column gradient vector

and ∇2u the Hessian matrix. When the following norms make sense, we set

‖∇u‖
L∞

:=
d

max
i=1

sup
x∈Rd

∣

∣

∣

∣

∂v

∂xi
(x)

∣

∣

∣

∣

and ‖∇2u‖
L∞

:=
d

max
i,j=1

sup
x∈Rd

∣

∣

∣

∣

∂2v

∂xi∂xj
(x)

∣

∣

∣

∣

.

Under the assumptions (3.2), it is clear from Duhamel formula

u(t, x) = et∆u0 +

∫ t

0
e(t−s)∆g(u(s, x))ds (3.3)

and from classical estimates for the heat kernel, that the following estimates hold: For
all t ≥ 0, if u(t) denotes the solution of (3.1) at time t, we have

‖u(t)‖
L∞

≤ etM1‖u0‖L∞
, ‖∇u(t)‖

L∞
≤ etM1‖∇u0‖L∞

(3.4)

and
‖∇2u(t)‖

L∞
≤ etM1

(

‖∇2u0‖L∞
+ tM2e

2tM1‖∇u0‖2

L∞

)

. (3.5)

Let ϕt(u) be the flow associated with the differential equation

∀u ∈ R,
d

dt
ϕt(u) = g(ϕt(u)), and ϕ0(u) = u. (3.6)

We will denote by ϕ′
t(u) and ϕ′′

t (u) the derivatives of the flow with respect to the initial
condition, solutions of the equations

d

dt
ϕ′

t(u) = g′(ϕt(u))ϕ′
t(u), with ϕ′

0(u) = 1 (3.7)

and
d

dt
ϕ′′

t (u) = g′′(ϕt(u))ϕ′
t(u)2 + g′(ϕt(u))ϕ′′

t (u), with ϕ′′
0(u) = 0. (3.8)

We deduce immediately from the preceding equations that

∀u ∈ R, ∀ t ≥ 0,
∣

∣ϕ′
t(u)

∣

∣ ≤ etM1 and
∣

∣ϕ′′
t (u)

∣

∣ ≤ tM2e
3tM1 . (3.9)
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Lemma 3.1 With the preceding notations, we have for all v ∈ R and all s ≥ 0,

ϕ′
s(v)g(v) = g(ϕs(v)).

Proof. Let
Y (s, v) = ϕ′

s(v)g(v) − g(ϕs(v)).

We have that for all v, Y (0, v) = 0. Now we compute easily that for a fixed v,

d
dsY (s, v) = g′(ϕs(v))ϕ′

s(v)g(v) − g′(ϕs(v)))g(ϕs(v)),

= g′(ϕs(v))Y (s, v).

and this shows that for all s ≥ 0, Y (s, v) = 0.

3.1 Lie splitting

Let us first consider the Lie-splitting methods:

u(t) ≃ (et∆ ◦ ϕt)(u0) and u(t) ≃ (ϕt ◦ et∆)(u0).

The Feynman-Kac representations of these splitting methods can be written:

et∆(ϕt(u0(x))) = E(ϕt(u0(X
x
t ))) and ϕt(e

t∆u0(x))) = ϕt(E(u0(X
x
t )))

where Xx
t is the stochastic process defined in (2.2).

The following result gives a local estimate in L∞ norm for the difference between
the exact solution of (3.1) and its approximation by the Lie-splitting methods. We
assume here that we can compute exactly the solution of the splitting methods. Notice
that such a result does not seem to exist in the literature yet, even using stronger
regularity assumptions and deterministic methods.

Theorem 3.2 Assume that g ∈ C2(R) satisfies the hypothesis (3.2) and g(0) = 0. Let

t0 be a fixed positive number. Assume that ∇u0(x) ∈ L∞(Rd), Then we have for all

t ≤ t0,

‖u(t) − (et∆ ◦ ϕt)(u0)‖L∞
≤ Ct2‖∇u0‖2

L∞
(3.10)

and

‖u(t) − (ϕt ◦ et∆)(u0)‖L∞
≤ Ct2‖∇u0‖2

L∞
(3.11)

where u(t) denote the solution of (3.1) with initial value u0 at t = 0, and where the

constants in the previous inequalities only depend on t0, g and the dimension d.

Proof. Let R(t, x) = u(t, x) − et∆(ϕt(u0(x))). We define for s ∈ (0, t),

U(s) = ϕs(u(t − s,Xx
s )).

We have U(0) = u(t, x) and U(t) = ϕt(u0(Xt)) so that

R(t, x) = −E

∫ t

0
dU(s).
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Now we compute using the Itô formula that

du(t − s,Xx
s ) = −∂tu(t − s,Xx

s )ds +
√

2∇u(t − s,Xx
s )T dWs + ∆u(t − s,Xx

s )ds

and thus using (3.1)

du(t − s,Xx
s ) = −g(u(t − s,Xx

s ))ds +
√

2∇u(t − s,Xx
s )T dWs. (3.12)

Using again the Itô formula, we obtain

dU(s) = ϕ′
s(u(t − s,Xs))(−g(u(t − s,Xx

s ))ds +
√

2∇u(t − s,Xx
s )T dWs)

+ g(ϕs(u(t − s,Xs)))ds + ϕ′′
s(u(t − s,Xs))‖∇u(t − s,Xx

s )‖2

2
ds, (3.13)

where ‖ · ‖
2

denotes the Euclidean norm in R
d.

We deduce from (3.13), Lemma 3.1 and the martingale property of the Itô integral,
that we have

R(t, x) =

∫ t

0
E ϕ′′

s(u(t − s,Xx
s ))‖∇u(t − s,Xx

s )‖2

2
ds. (3.14)

Using (3.4) and (3.9), we find that for t ≤ t0,

‖R(t, x)‖
L∞

≤ Ct2‖∇u0‖2

L∞

where C only depends on t0, g and the dimension d. This shows (3.10).
Now we have that

ϕt(u0(X
x
t )) − ϕt(E(u0(X

x
t ))) = (u0(X

x
t ) − Eu0(X

x
t ))ϕ′

t(Eu0(X
x
t ))

+
1

2
(u0(X

x
t ) − Eu0(X

x
t ))2

∫ 1

0
ϕ′′

t ((1 − σ)Eu0(X
x
t )) + σu0(X

x
t ))dσ.

We deduce using (3.9) that there exists a constant C such that

|Eϕt(u0(X
x
t )) − ϕt(E(u0(X

x
t )))| ≤ CtE|u0(X

x
t ) − Eu0(X

x
t )|2.

But we have

u0(X
x
t ) = u0(x) + (Xx

t − x)T
∫ 1

0
∇u0((1 − σ)x + σXx

t ) dσ.

Hence it is clear that

E|u0(X
x
t ) − Eu0(X

x
t )|2 ≤ t‖∇u0‖2

L∞
.

This yields

‖(et∆ ◦ ϕt)(u0) − (ϕt ◦ et∆)(u0)‖L∞
= ‖Eϕt(u0(X

x
t )) − ϕt(E(u0(X

x
t )))‖

L∞

≤ Ct2‖∇u0‖2

L∞
.

This estimate, combined with (3.10), then yields (3.11).

The next result give the global result following from the previous Theorem:

Corollary 3.3 Under the assumptions of Theorem 2.1, let τ0 be a fixed positive num-

ber, and let T > 0 be given. For all τ ∈ (0, τ0), let uk be the sequence of functions

defined recursively by uk = (eτ∆ ◦ ϕτ )(uk−1), k ≥ 1. Then for all n such that nτ ≤ T ,
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we have

‖u(nτ) − un‖L∞
≤ Cτ‖∇u0‖2

L∞
, (3.15)

where C only depends on g, d, τ0 and T . The same result holds for the sequence of

functions defined by the propagator ϕτ ◦ eτ∆.

Proof. For a given function u0, we define the function Φ(t;u0) as the solution of
(3.1) at time t. It is clear that we have

∀ t ≥ 0, ∀ s ≥ 0, Φ(t + s;u0) = Φ(t; Φ(s;u0)).

Moreover, using Duhamel formula (3.3), we have for all t ≥ 0 and all functions u0 and
v0 in L∞(Rd),

‖Φ(t;u0) − Φ(t; v0)‖L∞
≤ etM1‖u0 − v0‖L∞

.

Let Ψτ = eτ∆ ◦ ϕτ . We can write un = Ψn
τ (u0). Now we have

Φ(nτ ;u0) − Ψn
τ (u0) =

n−1
∑

j=0

Φ((n − j)τ ; Ψj
τ (u0)) − Φ((n − j − 1)τ ; Ψj+1

τ (u0))

and hence

‖u(nτ) − un‖L∞
≤

n−1
∑

j=0

e(n−j−1)τM1‖Φ(τ ; Ψj
τ (u0)) − Ψj+1

τ (u0)‖L∞
.

Using (3.11) we get

‖u(nτ) − un‖L∞
≤ τ2

n−1
∑

j=0

e(n−j−1)τM1‖∇Ψj
τ (u0)‖2

L∞
. (3.16)

Now for a given function v, we have

∇Ψτ (v) = eτ∆ϕ′
τ (v)∇v,

whence using (3.9),
‖∇Ψτ (v)‖

L∞
≤ eτM1‖∇v‖

L∞
.

We deduce that
‖∇Ψj

τ (u0)‖L∞
≤ eτjM1‖∇u0‖L∞

.

Hence using (3.16),

‖u(nτ) − un‖L∞
≤ τ2

n−1
∑

j=0

e(n−j−1)τM1+2jτM1‖∇u0‖2

L∞

and this yields the result with C ≤ e3TM1 .

3.2 Strang splitting

We now study the approximation given by the Strang splitting ϕt/2 ◦ et∆ ◦ ϕt/2. We
make the assumptions that g is a C3 function on R satisfying g(0) = 0. We also assume

11



that there exist constants Mi, i = 0, 1, 2, 3 such that for all u ∈ R, we have

|g(u)| ≤ M0, |g′(u)| ≤ M1, |g′′(u)| ≤ M2 and |g′′′(u)| ≤ M3. (3.17)

Under these assumptions, we can prove the following result concerning the asymptotic
expansion of the derivative of the flow ϕt associated with g:

Lemma 3.4 Assume that g ∈ C3(R) satisfies (3.17) and g(0) = 0. Let ϕt(u) the flow

defined in (3.6). Then for a given t0 > 0, there exist a constant C depending on Mi,

i = 0, . . . , 3 such that for all u ∈ R and all t < t0, we have

∀u ∈ R, |ϕ′′
t (u) − tg′′(u)| ≤ Ct2. (3.18)

Proof. From (3.7) and (3.9) we easily get that

∀u ∈ R, |ϕ′
t(u) − 1| ≤ tM1e

tM1 .

Moreover, under the assumption (3.17), we have that for all u ∈ R and all t ≥ 0,

|ϕt(u) − u| ≤ tM0.

To prove (3.18), we set V (t) = ϕ′′
t (u) − tg′′(u). We have

d

dt
V (t) = g′′(ϕt(u))ϕ′

t(u)2 − g′′(u) + g′(ϕt(u))ϕ′′
t (u), with V (0) = 0.

We can rewrite the previous equation as

d

dt
V (t) = (g′′(ϕt(u)) − g′′(u))ϕ′

t(u)2 + g′′(u)(ϕ′
t(u)2 − 1) + g′(ϕt(u))ϕ′′

t (u)

and this yields using (3.9)
∣

∣

∣

∣

d

dt
V (t)

∣

∣

∣

∣

≤ te2tM1M3M0 + tM2M1e
tM1(1 + etM1) + tM1M2e

3tM1 .

This gives (3.18) after integrating from 0 to t < t0.

Theorem 3.5 Assume that g ∈ C3(R) satisfies (3.17) and g(0) = 0. Let t0 be a fixed

positive number. Assume that ∇u0 and ∇2u0 are in L∞(Rd), then we have for all

t ≤ t0,

‖u(t) − (ϕt/2 ◦ et∆ ◦ ϕt/2)(u0)‖L∞

≤ Ct5/2‖∇u0‖L∞

(

‖∇2u0‖L∞
+ ‖∇u0‖2

L∞
+ t1/2‖∇u0‖L∞

)

(3.19)

where u(t) denotes the solution of (3.1) with initial value u0 at t = 0, and where the

constants in the previous inequalities only depend on t0, g and the dimension d.

Proof. We consider now U(s) = ϕs−t/2(u(t− s,Xx
s )). We have U(0) = ϕ−t/2(u(t, x))

and U(t) = ϕt/2(u0(Xt)). We set R(t, x) = U(0)−U(t). The same procedure as in the
proof of Theorem 3.2 shows that (compare with (3.14))

R(t, x) =

∫ t

0
E ϕ′′

s−t/2(u(t − s,Xx
s ))‖∇u(t − s,Xx

s )‖2

2
ds.
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Using (3.18), we see that

R(t, x) = R1(t, x) + R2(t, x)

where

R1(t, x) =

∫ t

0

(

s − t

2

)

E g′′(u(t − s,Xx
s ))‖∇u(t − s,Xx

s )‖2

2
ds.

and ‖R2(t, x)‖
L∞

≤ Ct3‖∇u0‖2

L∞
for a constant C depending on g and t0.

Let f(s) = E g′′(u(t − s,Xx
s ))‖∇u(t − s,Xx

s )‖2

2
. We have that

R1(t, x) =

∫ t

0

(

s − t

2

)

f(s)ds

=

∫ t/2

0
s
(

f
( t

2
+ s

)

− f
( t

2
− s

)

)

ds.

(3.20)

Let v(s) = u(t − s,Xx
s ) for s ∈ (0, t). We know from (3.12) that

dv(s) = −g(v(s))ds +
√

2∇v(s)T dWs, (3.21)

and (3.4) shows that for all s ≤ t0,

‖∇v(s)‖
L∞

≤ et0M1‖∇u0‖L∞
. (3.22)

By definition, we have that

f(s) = E g′′(v(s))‖∇v(s)‖2

2
.

Hence, we have

f
( t

2
+ s

)

− f
( t

2
− s

)

= E ‖∇v(t/2 + s)‖2

2

(

g′′(v(t/2 + s)) − g′′(v(t/2 − s))
)

+ E g′′(v(t/2 − s))
(

‖∇v(t/2 + s)‖2

2
− ‖∇v(t/2 − s)‖2

2

)

.

We deduce from this relation and from (3.22) that for s ∈ (0, t/2),
∣

∣

∣

∣

f
( t

2
+ s

)

− f
( t

2
− s

)

∣

∣

∣

∣

≤ M3e
t0M1‖∇u0‖2

L∞
E |v(t/2 + s) − v(t/2 − s)|

+ 2M2e
t0M1‖∇u0‖L∞

E ‖∇v(t/2 + s) −∇v(t/2 − s)‖
2
. (3.23)

Using (3.21), we see that there exists a constant C only depending on g, t0 and d such
that the first term in the right-hand side can be bounded by

C‖∇u0‖2

L∞
(t +

√
t‖∇u0‖L∞

).

To bound the second term, we see that

d∇v(s) = −g′(v(s))∇v(s)ds +
√

2∇2v(s)dWs,

and hence, using (3.5), the second term in the right-hand side of (3.23) is bounded by

C‖∇u0‖L∞
(t‖∇u0‖L∞

+
√

t‖∇2u0‖L∞
+ t3/2‖∇u0‖2

L∞
).

for a constant C only depending on g, t0 and d. The previous estimates and the
equation (3.20) yield that ‖R(t, x)‖

L∞
is bounded by the right-hand side of (3.19). We

13



conclude using the fact that

u(t, x) − (ϕt/2 ◦ et∆ ◦ ϕt/2)(u0) = ϕt/2(U(0)) − ϕt/2(U(t))

so that using (3.9)

|u(t, x) − (ϕt/2 ◦ et∆ ◦ ϕt/2)(u0)| ≤ etM1 |R(t, x)|
and this yields the result.

Corollary 3.6 Under the assumptions of Theorem 2.1, let τ0 be a fixed positive num-

ber, and let T > 0 be given. For all τ ∈ (0, τ0), let uk be the sequence of functions

defined recursively by uk = (ϕτ/2 ◦ eτ∆ ◦ ϕτ/2)(uk−1), k ≥ 1. Let n be an integer such

that nτ ≤ T , then we have

‖u(nτ) − un‖L∞

≤ Cτ3/2‖∇u0‖L∞

(

‖∇2u0‖L∞
+ ‖∇u0‖2

L∞
+ τ1/2‖∇u0‖L∞

)

(3.24)

where C only depends on g, d, τ0 and T .

The proof of this result is essentially the same as the proof of Corollary 3.3 by using
Theorem 3.5.

Remark 3.7 As mentioned in the introduction and in Remark 2.2, the previous results
extend to partial differential equations of the form (1.9), under regularity assumptions
on σ(x) and f(x).

4 A hybrid Monte-Carlo algorithm

We now define new algorithms based on formulas of the form (1.7) for approximating
the equation (1.1).

Let δx be a given positive number. For a multi-index i = (i1, . . . , id), let xi be the
points i(δx), i ∈ [−M,M ]d defining a grid in R

d (M ∈ N). For simplicity, we consider
here uniform grid points, but the principle extends easily to more general situations.

Let h > 0 be a stepsize, and let Φh be a numerical scheme approaching the exact flow
ϕt at the time t = h. Note that in the linear case, we can take Φh(u0(x)) = ehV (x)u0(x)
so that there is no numerical approximation for the reaction part.

Let ui
k be approximations of the solution u(tk, xi) at the time tk = kh, k ∈ N and

at the grid points xi. The following scheme yields an approximation of the splitting
method (1.7): For i ∈ [−M,M ]d, we define

ui
k+1 =

1

N

N
∑

n=1

Φh(Iuk(X
xi

h;n)) (4.1)

where Xxi

h;n, n = 1, . . . , N , are independent realizations of the Wiener process Xxi

h .

Here Iuk(x) is an interpolation function of the values uj
k at the grid points xj. Note
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that Iuk can be defined in different ways using linear interpolation, B-splines or finite
elements.

In the more general case (1.9), a numerical discretization of the process (1.10) has
to be used to simulate the Xxi

h;n.
Similarly, a discretization of the splitting scheme

(

(ϕt ◦ et∆)(u0)
)

(x) = ϕt(E u0(X
x
t )))

can be written

ui
k+1 = Φh

( 1

N

N
∑

n=1

Iuk(X
xi

h;n)
)

(4.2)

and the the discretization of the Strang splitting (1.6) can be written

ui
k+1 = Φh/2

( 1

N

N
∑

n=1

Φh/2(Iuk(X
xi

h;n))
)

.

It is not the goal of this paper to study rigourously the properties of these algo-
rithms, but we present in the next three subsections numerical examples and point out
some particular features of these schemes.

4.1 A linear example

We first consider the case of the linear equation

∂tu(t, x) = 1
2∆u(t, x) − 1

2 x2u(t, x),

in the case where d = 1. The solution of this equation can be computed explicitly. We
take the initial condition u0(x) = exp(−x2/2), so that we have u(t, x) = exp(−(x2 +
t)/2). We use the splitting method (4.2) with linear interpolation. As the problem is
linear, the reaction part is computed exactly (i.e. we take Φh(u) = exp(−h

2x2)u).
In Figure 1, we plot the exact solution and the numerical solution computed with

the previous algorithm: First with the “rough” parameters h = 0.1, δx = 0.1, N = 10
(up) and then with the more refined parameters h = 0.02, δx = 0.05 and N = 50
(down). We plot the results at times t = 1, 2 and 3. Note that even for relative small
value of the Monte-Carlo parameter N , the results are not bad.

4.2 Fisher-KPP equation

We consider now the Fisher-KPP equation in R (see [8, 11]):

∂tu = ∆u + u − u2 with u(0, x) = u0(x). (4.3)

We consider the the initial condition given by

u0(x) =

{

1 if x ≤ 0
0 if x > 0.
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Figure 1: Solutions of the linear problem with h = 0.1, δx = 0.1 and N = 10 (up) h = 0.02,
δx = 0.05 and N = 50 (down).

We use the scheme (4.2) with linear interpolation. The numerical flow Φh is the classical
Euler scheme.

In Figure 2, we plot the propagating front at each integer times t ∈ N first with
h = 0.1, δx = 0.1, N = 10 (left) and then h = 0.02, δx = 0.05 and N = 50 (right).
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Figure 2: Solutions the Fisher-KPP equation at integer times with h = 0.1, δx = 0.1, N = 10
(left) and h = 0.02, δx = 0.05 and N = 50 (right).

We see that the numerical solutions always satisfy ui
k ∈ [0, 1] as for the exact

solution1. Moreover, we can numerically compute that the velocity of the propagating
front converges for large times toward v = 2 as expected (see [2]).

1This can be easily proved from (4.2) for h sufficiently small.

16



Note that this method is not the same as the particle method proposed by Puckett
in [12] and analysed in [1].

4.3 Ginzburg-Landau equation

We eventually consider the quintic complex Ginzburg-Landau equation in R
2:

∂tu = m0∆u + m1u + m2|u|2u + m3|u|4u (4.4)

where u(t, x) ∈ C, and m0 ∈ C, i = 1, 2, 3. This equation exhibits stable pulse-like
solution for some values of the parameters (see [16]).

When m0 > 0, we can extend the numerical schemes (4.1)-(4.2) to this case using
complex interpolation. We use the parameters m0 = 0.2, m1 = −0.1, m2 = 4 + i and
m3 = −2.75 + i. As initial solution, we take

u0(x, y) = exp(−1
2x2 − 1

2 |y + q|2 + ipy)) + exp(−1
2x2 − 1

2 |y − q|2 − ipy))

with q = 1.9 and p = 0.15. We use the numerical scheme (4.2) with the Euler scheme
Φh. We take δx = 0.05, h = 0.01 and N = 40. The results are plotted in Figure 3
where we see the collapse of these two pulses. These results can be compared to those
in [5].
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Figure 3: Solutions of Ginzburg-Landau system at the time t = 0, 3, 5, 5.5, 11 and 17 with δx =
0.05, h = 0.01 and N = 40.
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