
COMPLETE ASYMPTOTICS FOR SHALLOW SHELLS
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Abstract. In this paper we study the asymptotics of the three-dimensional dis-
placement field for clamped and free linear elastic shallow shells as the thickness
tends to zero. As in the case of plates, the asymptotics contains regular terms
and boundary layers. The two-dimensional generators of the regular parts are so-
lutions of two-dimensional problems governed by an elliptic system in the sense of
S. Agmon, A. Douglis and L. Nirenberg. This asymptotics is justified by optimal
error estimates and improves the results obtained by S. Busse, P. G. Ciarlet and B.
Miara.

Introduction

A thin shell can be defined as a three-dimensional object with a small thickness
compared to the other sizes of the mean surface. The expression shallow shell means
that the curvature of the mean surface is also small with respect to the sizes of the
mean surface.

We show (see theorem 1.1) that if S is a surface embedded in R3 and if its
principal curvatures are small with respect to the intrinsic diameter of S , the surface
is given by a graph over a surface immersed in R

2 . Moreover, we show that the height
of the graph is of the order of the magnitude of the curvature. In the following,
we consider shells whose middle surfaces have curvature of the same order as the
thickness. This characteristic common length is measured by the number ε > 0 .

The previous result then leads to consider a shallow shell as a shell of thickness
2ε whose middle surface is an element of a family of surfaces Sε represented by the
application

ω � (x1, x2) �→
(
x1, x2, ε θ(x1, x2)

)
∈ R

3,

where ω is a flat surface with regular boundary immersed in R
2 and θ a smooth

function on ω . If ω is embedded in R2 , the previous application is a classical graph
over a domain of R2 . The three-dimensional shallow shell is then represented by the
image Ω̂ε of the application Φε defined by

Φε : Ωε = ω × [−ε, ε] � (x1, x2, x
ε
3) �→

(
x1, x2, ε θ(x1, x2)

)
+ xε3a

ε
3(x1, x2),

where aε3(x1, x2) denotes the unit normal vector to the surface Sε . This is the
definition given for the first time by P. G. Ciarlet and J. C. Paumier in [7] and our
result in theorem 1.1 justifies it.

We suppose that Ω̂ε is made with an homogeneous and isotropic material, and
that the shell is subjected to the action of volume forces and to conditions on the
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lateral boundary (clamped or free). The diffeomorphism Φε induces on Ω̂ε the sys-
tem of curvilinear coordinates (x1, x2, x

ε
3) ∈ Ωε . Our aim is to study the asymptotic

behaviour of the displacement uε , solution of the three-dimensional linear elasticity
equation written in curvilinear coordinates. The body forces are represented by a
vector field f ε .

With this definition, a plate is a special case of a shallow shell: if the mean
surface is described by the function θ = 0 and if ω is embedded in R2 , then
Ω̂ε = ω × (−ε + ε) is a plate in the usual sense, with mean surface S ≡ ω ⊂ R2

independent on ε . Thus, we expect that the behaviour of the displacement when
ε tends to zero can be described in a same way as for plates, with some differences
coming from the existence of a non-zero curvature.

For plates, after the scaling xε3 = εx3 and the change of unknown u(ε)(x∗, x3) =
(uε∗, εu

ε
3)(x∗, x

ε
3) , and by supposing that there exists a vector field f (x∗, x3) such that

fα,ε(x∗, xε3) = fα(x∗, x3) and f 3,ε(x∗, xε3) = εf 3(x∗, x3) , the displacement u(ε) tends
to a Kirchhoff-Love displacement

(
ζ0
∗ (x∗)− x3∇∗ζ0

3 (x∗), ζ
0
3(x∗)

)
, where x∗ , ζ0

∗ and
∇∗ζ0

3 are condensed notations for (x1, x2) , (ζ0
1 , ζ

0
2) and (∂1ζ

0
3 , ∂2ζ

0
3 ) . The generator

ζ0 = (ζ∗, ζ3) is solution of a two-dimensional problem posed on ω , involving the
decoupled operator (

Lm 0
0 Lb

)
,

where Lm acts on ζ∗ and is the membrane operator for plates, and where Lb acts on
ζ3 and is the bending operator (see [8, 11]). Note that this operator is the expression
of Koiter’s operator (see [16]) in the case of plates after the scaling of the unknown.

For clamped shallow shells, using the method of extracting subsequences, Ciarlet,
Miara [6] in Cartesian coordinates, and Busse, Ciarlet and Miara [4] in curvilinear
coordinates showed that the scaled displacement u(ε) converges to a Kirchhoff-Love
term, whose generator ζ0 is solution of a two-dimensional equation on ω involving
an operator P that couples the membrane and bending parts with terms depend-
ing on θ . Two “different” problems are obtained depending on whether the three-
dimensional linear elasticity problem is written in Cartesian or curvilinear coordinates
(see [6] and [4]). A comparison between these two models is made in Andreoiu [3],
showing that both models describe the same limit after a change of coordinate sys-
tem. In this paper, the displacement is studied in curvilinear coordinates, as in [4].
With the help of the operator P and the introduction of boundary layer terms, we
show the existence of complete asymptotic expansion for the displacement.

As for thin elastic plates, lateral boundary conditions influence the asymptotics
of the the three-dimensional displacement field. Two lateral boundary conditions are
studied in this paper: shallow shells clamped over the whole lateral boundary and
free shallow shells. In the case of plates the influence of lateral boundary conditions
is described in Dauge, Gruais & Rössle [11]. Many results of [11] will be used in this
paper.

Our aim is to construct an infinite asymptotic expansion of the displacement,
validated by optimal error estimates in H1 norm. As for plates (see [9, 11, 8] and
also [18, 17]), this asymptotics includes:
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an outer part containing displacements depending on the in-plane variable
x∗ and of the scaled transverse variable x3 and

an inner part containing boundary layer terms depending on two scaled
variables: x3 and t = ε−1r where r is the distance to the lateral boundary.

The outer part contains Kirchhoff-Love fields. Their generators verify two-dimen-
sional problems governed by the elliptic operator P . The traces (Dirichlet in the
clamped case and Neumann in the free case) for these generators are determined by
the conditions ensuring the exponential decay at infinity of the boundary layer terms
in the inner part.

Our paper is organised as follows: In section 1, we discuss the concept of shallow
shell and prove a theorem showing that a surface with small curvature is a graph over
a flat immersed surface of R2 .

In section 2 we introduce the studied problem. We consider the three-dimensional
linear elasticity equations on the domain Ω̂ε . We then make a change of coordinates,
using the special geometry of the shallow shell, in order to write the equations in
curvilinear coordinates on Ωε = ω× (−ε,+ε) . Using scalings, the problem is written
on a fixed manifold defined as Ω := ω × (−1,+1) .

In section 3, we state the results concerning the mixed Ansatz containing outer
and inner expansions and we describe the two-dimensional elliptic operator governing
the equations for the Kirchhoff-Love generators of the outer part. We also describe
the first Kirchhoff-Love terms for each boundary condition considered.

In section 4, we expand the three-dimensional elasticity operator with respect to
ε . We then study the solution of the equations without boundary condition in formal
series algebra in ε . In this way, we give the algorithm for the construction of the outer
part: the three-dimensional solution is determined by two-dimensional Kirchhoff-Love
generators satisfying equations involving the operator P . This analysis correspond
to the formal series solution for shells (see [14]).

In section 5, we investigate the lateral boundary conditions. To this aim, we intro-
duce an expansion constituted by terms depending on the variable t = ε−1r , where r
is the distance to the lateral boundary. This new scaling implies a change of variables
in the operators in order to set the equations acting on boundary layer terms. We
then see that the first terms in ε of the operators written with the variables (t, s, x3)
are the same as for plates ( s denote the arc-length on the lateral boundary). Finally,
we match the boundary layer terms to the outer terms constructed in section 3. This
matching is only possible on the lateral boundary. We then recall the definition of
the spaces in which boundary layer terms will be found, and we review the properties
of the operators governing the equations that boundary layers have to verify.

In section 6 & 7, we outline the proofs of the final result in both the clamped and
free cases. The method and arguments are identical to those used for plates (see [11,
8]). We show how the requirement for the boundary layer terms to be exponentially
decreasing gives rise to two-dimensional boundary conditions for the Kirchhoff-Love
generators of the outer part. These conditions lead to well defined generators, which
ensure the existence and uniqueness of the expansion. The construction of asymptotic
expansion of the three-dimensional displacement is then standard.
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1. Shallow shells

A shell Ω̂ is characterised by its mean surface S and its thickness d : Ω̂ is the
subset of R

3 formed by the points P + hn(P ) ∈ R
3 , where P ∈ S , n(P ) is the

unit normal vector to S in P and h ∈ (−d
2
, d

2
) .

Reciprocally, let S be a smooth surface with boundary, and let Kmax be the
maximum of the absolute values of the principal curvatures of S . If d < 1/Kmax ,
then the map

S × (−d
2
, d

2
) � (P, h) �→ P + hn(P ) ∈ R3

is a C ∞ -diffeomorphism with image Ω̂ , and in this situation, Ω̂ is a shell. We say
that Ω̂ is a shallow shell if Kmax satisfies an estimate of the type Kmax ≤ Cd , where
C does not depend on d .

Moreover, we have the following theorem:

Theorem 1.1. Let S be an orientable, compact and connected surface with bound-
ary, embedded in R3 . Let d(P,Q) denote the geodesic distance between two points
P and Q of S , and let D := maxP,Q∈S d(P,Q) be the intrinsic diameter of S .
We denote by Kmax the maximum of the absolute values of the principal curvatures
of S . Then if Kmax ≤ 1

2D
, there exists a point P0 ∈ S , such that the orthogonal

projection of S on its tangent plan in P0 allows the representation of S as a C ∞

graph in R3 :

ω � (x, y) �→
(
x, y,Θ(x, y)

)
∈ S ⊂ R

3,

where ω is a flat surface with smooth boundary immersed in TP0S , the tangent plan
at S in P0 , subset of R3 , and where Θ is a function over this surface. Moreover,
we have

|Θ| ≤ CKmax and ‖∇Θ‖ ≤ CKmax,(1.1)

with constants C depending only on D .

Proof. Let N(P ) denote the outer normal field on S , and let P0 ∈ S . We can
suppose that N(P0) is the point (0, 0, 1) in a Euclidean coordinates system (x, y, z) ,
where (x, y) ∈ TP0S . If X is a vector field on S , and if 〈·, ·〉 is the Euclidean scalar
product in R3 , we have that, for all P ∈ S ,

X〈N(P ), N(P0)〉 = 〈∇XN(P ), N(P0)〉,(1.2)

where ∇ is the standard connection in R
3 . By definition of the principal curvatures,

we then have

∀P ∈ S, |X〈N(P ), N(P0)〉| ≤ Kmax‖X‖ ,
where ‖X‖ denote the norm of X in P with respect to the metric in S induced

by the Euclidean metric in R3 . Let f(P ) be the function P �→ 〈N(P ), N(P0)〉 . Let
P ∈ S , and α(s) be a minimising geodesic joining P0 to P , where s is the arc
length on α . Thus, the vector α′(s) is of length 1 . The previous estimate shows
that

∀s,
∣∣∣∣ d

ds
f
(
α(s)

)∣∣∣∣ ≤ Kmax‖α′(s)‖ = Kmax.
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By integrating this inequality, we find that

|f(P0)− f(P )| =
∣∣∣∣∣
∫ d(P0,P )

0

d

ds
f
(
α(s)

)
ds

∣∣∣∣∣ ≤ Kmaxd(P0, P ) ≤ KmaxD.(1.3)

But f(P0) = 1 , hence, if Kmax ≤ 1
2D

, we have that for all P ∈ S , 1 ≥ f(P ) ≥ 1/2 .
Thus, the normals N(P ) take values in a compact set of the hemisphere {(x, y, z) ∈
R3, x2 + y2 + z2 = 1, z > 0} .

Now, if P ∈ S , this shows that TPS and TP0S are not orthogonal, and thus in
a neighbourhood of P , the surface S is given as a graph over a domain ωP ⊂ TP0S .
The collection of domains {ωP}P∈S then defines the atlas of a surface ω immersed
in TP0S .

Now, we prove the estimates (1.1). Let P ∈ S and α(s) a minimising geodesic
joining P0 and P , where s ∈

(
0, d(P0, P )

)
denotes the arc-length. Thus, we have

that α′′(s) = κ(s)N
(
α(s)

)
, where κ(s) is the principal curvature of S in the point

α(s) in the direction α′(s) (see [12]). Thus, if

z(s) = 〈α(s), N(P0)〉
denotes the level function on S in the z -direction, we have

|z′′(s)| = |〈α′′(s), N(P0)〉| ≤ Kmax|〈N(α(s)), N(P0)〉| ≤ Kmax.

Moreover we have z′(0) = 〈α′(0), N(P0)〉 = 0 because α′(0) belongs to TP0S and
z(0) = 0 because P0 is at the height z = 0 . By integrating twice with respect to
s , using the fact that the length of α is less than D , we find that |z(s)| ≤ CKmax ,
where C depends only on D . But at the point P , the height function is just the
value of Θ at the point in ω corresponding to P . This proves the result.

In order to establish the estimate for ∇Θ , we proceed as follows: Let P be a point
of S and let (xP , yP ) be the coordinates of P in ω . Let Y be a vector of R2 and
also let

(
x(t), y(t)

)
be a curve in the (x, y) , such that

(
x(0), y(0)

)
= (xP , yP ) and(

x′(0), y′(0)
)
= Y . We denote by β(t) =

(
x(t), y(t),Θ(x(t), y(t))

)
the corresponding

curve on S , hence we have β(0) = P and β ′(0) =
(
Y,∇Θ(xP , yP ) · Y

)
. Thus, we

have

∇Θ(xP , yP ) · Y = 〈β ′(0), N(P0)〉.(1.4)

Using the fact that β ′(0) is orthogonal to N(P ) , we have

|〈β ′(0), N(P0)〉| ≤ ‖Y ‖ 〈N(P ), N(P0)〉−1
√

1− 〈N(P ), N(P0)〉2.
Hence, we have

‖∇Θ(xP , yP )‖ ≤ 〈N(P ), N(P0)〉−1
√

1− 〈N(P ), N(P0)〉2.(1.5)

Recall that f(P ) = 〈N(P ), N(P0)〉 . Using the previous notations, and equations
(1.2) and (1.4), we find that

|β ′(0)f(P )| = |〈∇β′(0)N(P ), N(P0)〉|
≤ Kmax|〈β ′(0), N(P0)〉|
≤ Kmax‖Y ‖ ‖∇Θ(xP , yP )‖ .
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This equation is valid for all curve β lying on S , with Y the horizontal part of β ′ .
Thus, we can reproduce the proof of estimate (1.3), and we find

|f(P )− f(P0)| ≤ KmaxD‖∇Θ‖ ,

where ‖∇Θ‖ = supx,y∈ω ‖∇Θ(x, y)‖ . But, under the condition Kmax ≤ 1/2D , we

have f(P ) ≥ 1/2 . The previous equations show that

∀P ∈ S, ‖∇Θ(xP , yP )‖
2 ≤ 4

(
2KmaxD‖∇Θ‖ −K2

maxD
2‖∇Θ‖2 )

.

Hence, we find that

‖∇Θ‖ ≤ 8DKmax.

This ends the proof of the theorem.

Thus, if S is a surface satisfying the condition Kmax ≤ Cd for d sufficiently
small, ( d ≤ 1/2CD ), S satisfies the conditions of the theorem. Hence, there exists

ρ0 > 0 such that for all 0 < ρ < ρ0 , the image Ω̂ of the application

(x, y, h) �→
(
(x, y,Θ(x, y)) + hn(x, y,Θ(x, y))

)
for (x, y, h) ∈ ω × (−ρ

2
,
ρ

2
),

is an embedded open set of R3 .

In the following, we suppose that ρ0 > d . In comparison with the estimate on
Θ and ∇Θ under the condition Kmax ≤ Cd , we normalise the graph by setting
Θ = d

2
θ , where θ is a function on the manifold ω .

Using classical notations (see [5]), we thus consider a shallow shell as an element

of the family of sets Ω̂ε indexed by ε , image of the application Φε defined by

Φε : Ωε = ω × [−ε, ε] � (x1, x2, x
ε
3) �→

(
x1, x2, ε θ(x1, x2)

)
+ xε3a

ε
3(x1, x2),(1.6)

where aε3(x1, x2) denotes the unit normal vector to the middle surface. Here, ω is
a flat surface with smooth boundary immersed in R2 and θ a function on ω . The
lateral boundary of Ω̂ε is the image of ∂ω × [−ε, ε] by the application Φε .

Remark 1.2. Shallow shells are also used to describe a simplification of Koiter’s two-
dimensional equations: see [19, 20]. In [19, 20], ε is considered as fixed, and no
relation are imposed between the curvature of the middle surface and the thickness.
The obtained model is more simple in order to study two-dimensional boundary layers
appearing in shells.

2. Three-dimensional linear elasticity problem for shallow shells

On the domain Ω̂ε , there are two natural coordinate systems: a system {x̂i} of
Cartesian coordinates coming from the ambient space R3 , and the system {x∗, xε3}
called normal coordinate system, coming from the diffeomorphism (1.6).

Associated with the normal coordinate system, we denote by gεi (x
ε) = ∂Φε

∂xε
i
(xε) ,

i = 1, 2, 3 the covariant basis in R3 . The metric tensor in normal coordinates then
is written gεij(x

ε) = gεi (x
ε) · gεj(xε) , where · is the Euclidean scalar product in the

ambient space R3 . We also let gε = det(gεij) .
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To the covariant basis (gεi (x
ε)) we associate the contravariant basis (gj,ε(xε))

by the formula gεi (x
ε) · gj,ε(xε) = δji , where δji is the Kronecker symbol. The

contravariant components of the metric in Ω̂ε are written gij,ε = gi,ε · gj,ε , and the

Christoffel symbols associated to this metric then are given by Γk,εij =
∂gε

j

∂xε
i
· gk,ε .

We assume that the shells Ω̂ε , for 0 < ε ≤ ε0 , are constituted by a homogeneous,
isotropic material with Lamé coefficients λ > 0 and µ > 0 . We denote by Γε0 the

lateral boundary ∂ω × [−ε,+ε] of Ωε and by Γ̂ε0 = Φε(Γε0) the geometrical lateral
boundary.

2.1. The equations of elasticity. In the following, Greek indices take their values
in {1, 2} and Latin indices in {1, 2, 3} . Moreover, the summation over repeated
indices and exponents is used.

The starting point is the linear elasticity problem that we first describe in Carte-
sian coordinates. Let {x̂i} be a Cartesian coordinate system in R3 . We denote by

V (Ω̂ε) the variational space depending on the boundary conditions:

V (Ω̂ε) = {v̂ε = (v̂εi ) ∈ H1(Ω̂ε) ; v̂ε = 0 on Γ̂ε0}
for clamped shallow shells and

V (Ω̂ε) = H1(Ω̂ε),

in the free case.

The shell is subjected to the action of body forces represented by the vector field
f̂ ε = (f̂ i,ε) on Ω̂ε .

The considered problem consists in finding ûε ∈ V (Ω̂ε) such that∫
Ω̂ε

Âijk�êij(û
ε)êk�(v̂

ε) dx̂1dx̂2dx̂3 =

∫
Ω̂ε

f̂ i,εv̂εi dx̂1dx̂2dx̂3, ∀ v̂ε ∈ V (Ω̂ε),(2.1)

where Âijk� = λδijδk�+µ(δikδj�+δi�δjk) is the rigidity matrix and êij(û) = 1
2
(∂x̂i

ûj+
∂x̂j

ûi) . This is the classical three-dimensional elasticity problem posed in Cartesian

coordinates on the domain Ω̂ε of R3 .

The linear elasticity problem in normal coordinates has as unknown the vector
uε = (uεi ) of the coefficients of the displacement of the shallow shell ûε in the
contravariant basis: ûε(Φε(xε)) = (uεig

i,ε)(xε) , xε ∈ Ωε .

We now make a change of coordinate system in order to set the equations in
normal coordinates on the domain Ωε . We write f ε = (f i,ε) the body forces vector

field in normal coordinates. That means we have f̂ ε(Φε(xε)) = (f i,εgi,ε)(x
ε) for

xε ∈ Ωε .

After the change of coordinates, following the notations in [5], let eεi‖j(v
ε) denote

the components of the linearised deformation tensor associated with a displacement
vε = vεig

i,ε . We find that

eεi‖j(v
ε) =

1

2
(∂εi v

ε
j + ∂εj v

ε
i )− Γp,εij v

ε
p,(2.2)
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where ∂εi is the derivation with respect to the coordinates in the system xε . We
denote by Aε = (Aijk�,ε) the rigidity matrix in normal coordinates, and we have

Aijk�,ε = λgij,εgk�,ε + µ(gik,εgj�,ε + gi�,εgjk,ε).

The variational formulation of the linear elasticity problem in curvilinear coordinates
is, see [5]: find uε ∈ V (Ωε) such that∫

Ωε

Aijk�,εeεi‖j(u
ε)eεk‖�(v

ε)
√
gε =

∫
Ωε

f i,εvεi
√
gε, ∀ vε ∈ V (Ωε),(2.3)

where V (Ωε) is the space

V (Ωε) = {vε = (vεi ) ∈ H1(Ωε) ; vε = 0 on Γε0},

in the case of clamped shallow shells and

V (Ωε) = H1(Ωε),

in the free case.

2.2. Scaling and hypothesis on the data. To every point xε = (x∗, xε3) ∈ Ωε we
associate a point in the fixed open set Ω = ω × (−1, 1) by the scaling

Ωε � xε �→ (x∗, x3 = ε−1xε3) =: x ∈ Ω.(2.4)

The corresponding scaling on the unknown uε yields a new unknown u(ε) given by

uεα(x
ε) = uα(ε)(x), α = 1, 2, and uε3(x

ε) = ε−1u3(ε)(x).(2.5)

Moreover, we make the following assumption on the forces: we suppose that there
exists a vector field f = (fα, f 3) on Ω that is independent of ε such that

fα,ε(xε) = fα(x) and f 3,ε(xε) = εf 3(x),(2.6)

where x and xε are related by the scaling (2.4). We assume that f = (f i) ∈ C ∞(Ω)3

in order to get an asymptotic of arbitrary order.

Now we can write the problem (2.3) on the fixed domain Ω . The test function
spaces become V (Ω) = {v = (vi) ∈ H1(Ω) ; v = 0 on Γ0} for clamped shells, where
Γ0 = ∂ω × (−1, 1) , and V (Ω) = H1(Ω) in the free case.

We also define the scaled geometrical data of the shell on Ω , i.e. we define gi(ε) ,
gi(ε) , gij(ε) , gij(ε) , g(ε) and Γkij(ε) such that

gi(ε)(x) = gεi (x
ε), gi(ε)(x) = gi,ε(xε),

gij(ε)(x) = gεij(x
ε), gij(ε)(x) = gij,ε(xε),

g(ε)(x) = gε(xε), Γkij(ε)(x) = Γk,εij (xε).

We obtain an equivalent problem, see [4], which consists in finding u(ε) ∈ V (Ω)
such that ∫

Ω

Aijk�(ε)ei‖j(ε;u(ε))ek‖�(ε;v)
√
g(ε) =

∫
Ω

f ivi
√
g(ε), ∀v ∈ V (Ω),(2.7)
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where we set,

eα‖β(ε;v) = eαβ(v)− Γσαβ(ε)vσ − ε−1Γ3
αβ(ε)v3,

eα‖3(ε;v) = ε−1eα3(v)− Γσα3(ε)vσ,

e3‖3(ε;v) = ε−2e33(v),

(2.8)

with eij(v) = 1
2
(∂ivj + ∂jvi) , where ∂i stands for the derivative with respect to xi .

Moreover, we have

Aijk�(ε) = λgij(ε)gk�(ε) + µ
(
gik(ε)gj�(ε) + gi�(ε)gjk(ε)

)
.(2.9)

2.3. Three-dimensional compatibility condition. We denote by R(ε,Ω) the
space of rigid motions R(ε,Ω) =

{
v ∈ V (Ω) ; ei‖j(ε,v) = 0 i, j ∈ {1, 2, 3}

}
.

For clamped shallow shells, R(ε,Ω) = {0} and in the free case, R(ε,Ω) is a
six-dimensional space spanned by 1

0
0

 ,

 0
1
0

 ,

 0
0
1

 ,

 −x̂3

0
x̂1

 ,

 0
−x̂3

x̂2

 ,

 x̂2

−x̂1

0

 ,(2.10)

in Cartesian coordinates.

Thanks to Korn’s inequality in curvilinear coordinates (see [13, 5]), if the right-
hand side in (2.7) verifies the compatibility condition

∀v ∈ R(ε,Ω),

∫
Ω

f ivi
√
g(ε) = 0,(2.11)

then there exists an unique solution u(ε) of (2.7) such that

∀v ∈ R(ε,Ω),

∫
Ω

gij(ε)ui(ε)vj
√
g(ε) = 0.(2.12)

2.4. Local coordinates near the boundary. We introduce in-plane coordinates
(r, s) in a neighbourhood of the boundary ∂ω . Let n be the inner unit normal to
∂ω and let τ be the tangent unit vector such that the basis (n, τ ) is direct at each
point of ∂ω . This definition, usual if ω is a domain of R

2 , also makes sense for an
immersed surface in R2 . Let s be the arc-length along ∂ω oriented according to τ
and S be the set of the values of s for which we can associate a point in ∂ω .

For a point x∗ in the neighbourhood of ∂ω , let r = r(x∗) be its signed distance
to ∂ω oriented along n , i.e. r is this distance if x∗ ∈ ω , and minus this distance if
x∗ /∈ ω . Then, if | r | is small enough, there exists a unique point x0

∗ ∈ ∂ω such that
| r |= d(x∗, x0

∗) and we define s = s(x∗) as the curvilinear abscissa of x0
∗ . Thus, we

have a tubular neighbourhood of ∂ω diffeomorphic to (−r0, r0)× S via the change
of variables x∗ → (r, s) . We extend the vectors n and τ from S to (−r0, r0)× S

by letting

∀r ∈ (−r0, r0), ∀s ∈ S, n(r, s) = n(s) and τ (r, s) = τ (s).

The following relations are satisfied:

∂rn = 0 and ∂rτ = 0,
∂sn = −κτ and ∂sτ = κn,
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where κ is the curvature of ∂ω with respect to s . If R = R(s) denotes the curvature
radius of ∂ω at s from inside ω , then κ = 1/R . In Cartesian coordinates, we have

n =

(
n1

n2

)
and τ =

(
n2

−n1

)
.

Thus we obtain, (obviously ∂n = ∂r ):

∂r = n1∂1 + n2∂2 and ∂s = (1− κr)(n2∂1 − n1∂2).

In the tubular neighbourhood (−r0, r0) × S , we introduce the in-plane normal
and tangential components of u(ε) defined by

un(ε) = n1u1(ε) + n2u2(ε) and us(ε) = (1− κr)(n2u1(ε)− n1u2(ε)).(2.13)

2.5. The boundary value problem. In the following, Γ+ and Γ− denote the
upper and lower faces of Ω = ω× (−1,+1) . After integration by parts, the problem
(2.7) can be written as the boundary value problem

L(ε)u(ε) = −f in Ω,

G(ε)u(ε) = 0 on Γ+ ∪ Γ−,

u(ε) = 0 on Γ0 (clamped shallow shells),

T (ε)u(ε) = 0 on Γ0 (free shallow shells),

(2.14)

where L(ε) is the interior operator on Ω whose components are, for u on Ω ,

Lα(ε)u = ∂β
(
Aαβστeσ‖τ (ε;u) + Aαβ33(ε)e3‖3(ε;u)

)
+

(
Aαβστ (ε)eσ‖τ (ε;u) + Aαβ33(ε)e3‖3(ε;u)

)
Γτβτ (ε)

+
(
Aδβστ (ε)eσ‖τ (ε;u) + Aδβ33(ε)e3‖3(ε;u)

)
Γαδβ(ε)

+4Aδ3σ3(ε)eδ‖3(ε;u)Γασ3(ε) + 2Aα3δ3(ε)eδ‖3(ε;u)Γσσ3(ε)

+ε−12∂3

(
Aδ3α3(ε)eδ‖3(ε;u)

)
,

L3(ε)u = ε−1
(
Aαβστ (ε)eσ‖τ (ε;u) + Aαβ33(ε)e3‖3(ε;u)

)
Γ3
αβ(ε)

+ε−12∂σ
(
Aα3σ3(ε)eα‖3(ε;u)

)
+ ε−12Aα3σ3(ε)eα‖3(ε;u)Γτστ (ε)

+ε−2∂3

(
Aαβ33(ε)eα‖β(ε;u) + A3333(ε)e3‖3(ε;u)

)
+ε−1

(
Aαβ33(ε)eα‖β(ε;u) + A3333(ε)e3‖3(ε;u)

)
Γσσ3(ε).

(2.15)

The operator G(ε) is the traction operator on the lower and upper faces of the
shallow shell, and we have

Gα(ε)u = ε−12Aβ3α3(ε)eβ‖3(ε;u),

G3(ε)u = ε−2
(
Aαβ33(ε)eα‖β(ε;u) + A3333(ε)e3‖3(ε;u)

)
.

(2.16)

Finally, T (ε) is the traction operator on the lateral boundary Γ0 on the shell, and
we have, with nα the component of the normal n along the boundary,

Tα(ε)u =
(
Aαβστ (ε)eσ‖τ (ε;u) + Aαβ33(ε)e3‖3(ε;u)

)
nβ,

T3(ε)u = ε−12Aα3σ3(ε)eσ‖3(ε;u)nα.
(2.17)
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In the coordinate system (r, s, x3) near the lateral boundary Γ0 , the traction oper-
ator on Γ0 writes (Tr(ε), Ts(ε), T3(ε)) , where

Tr(ε) = n1T1(ε) + n2T2(ε) and Ts(ε) = (1− κr)−1 (n2T1(ε)− n1T2(ε)) .

3. Description of results

In this section, we give and describe the main result of this paper. The structure
of the different terms of the asymptotic is also given.

As in the case of plates, the asymptotics of u(ε) contains three kinds of terms
(for k ≥ 0 ):

ukKL(x∗, x3) : Kirchhoff-Love displacements depending on two-dimensional
C ∞ generators ζk(x∗) =

(
ζk∗ (x∗), ζ

k
3 (x∗)

)
such that

ukKL(x) =
(
ζk∗ (x∗)− x3∇∗ζk3 (x∗), ζ

k
3 (x∗)

)
,

vk(x∗, x3) : three-dimensional C∞ displacements with zero mean value,
i.e.

∀x∗ ∈ ω,

∫ 1

−1

vk(x∗, x3) dx3 = 0.

wk(t, s, x3) : boundary layer term, uniformly exponentially decreasing as
t→∞ , concentrating the singularities due to the edge of the shallow shell.

The main result is the following:

Theorem 3.1. Let u(ε) be the unique solution of the problem (2.7) satisfying the
orthogonality condition (2.12). Then, for all k ≥ 0 , there exist Kirchhoff-Love fields
ukKL , displacements v

k with zero mean value and boundary layer terms wk , such
that if χ(r) is a cut-off function equal to 1 in a neighbourhood of ∂ω , and if we
define for all k ≥ 0 the displacement

uk(x, ε−1r) = ukKL(x) + vk(x) + χ(r)wk(ε−1r, s, x3),(3.1)

then for all k ≥ 0 , uk ∈ V (Ω) and moreover, we have for all N ≥ 0

‖u(ε)(x)−
N∑
k=0

εkuk(x, ε−1r)‖
H1(Ω)

≤ CεN+1/2,(3.2)

where C is some constant. Moreover, v0 = 0 , w0 = 0 , v1 = 0 and w1
3 = 0 . In

particular,

u0 = u0
KL and u1 = u1

KL(x) + χ(r)w1(ε−1r, s, x3).

We deduce from this theorem that

‖u(ε)(x)− u0
KL(x)‖H1(Ω)

≤ Cε1/2.(3.3)
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3.1. The Kirchhoff-Love generators. The generators ζk = (ζk∗ , ζ
k
3 ) of the above

Kirchhoff-Love fields are solutions of a two-dimensional problem on ω with boundary
conditions on ∂ω .

Let λ̃ be the homogenized Lamé coefficient

λ̃ =
2λµ

λ+ 2µ
,(3.4)

and let bαβστ denote the contravariant components of the two-dimensional elasticity
tensor,

bαβστ = λ̃δαβδστ + µ(δασδβτ + δατδβσ).(3.5)

We also let

ẽαβ(ζ) = eαβ(ζ)− (∂αβθ)ζ3.(3.6)

The two-dimensional problem is governed by a bilinear mapping on V (ω)× V (ω) ,
where V (ω) = H1

0(ω)× H1
0(ω)× H2

0(ω) in the clamped case, and V (ω) = H1(ω)×
H1(ω)×H2(ω) in the free case:

a(ζ,η) =

∫
ω

bαβστ
(
ẽαβ(ζ)ẽστ (η) +

1

3
(∂αβζ3)(∂στη3)

)
dω.(3.7)

In the case of plates ( θ = 0 ) this bilinear form is just the sum of a membrane bilinear
form acting on ζ∗ and a bending bilinear form acting on ζ3 . In the general case,
both operators are coupled by lower order terms.

In the coordinates system (r, s, x3) , the Dirichlet operator is given by:

ζ �→ (ζn, ζs, ζ3, ∂nζ3)
∣∣
∂ω
,

while the Neumann operator is:

ζ �→
(
Bs(ζ), Bn(ζ),Mn(ζ3), Nn(ζ3)

)∣∣
∂ω
,

where

Bn(ζ) = λ̃div∗ζ∗ + 2µ∂nζn − ζ3
(
(λ̃+ 2µ)∂nnθ + λ̃(∂ssθ − κ∂nθ)

)
,

Bs(ζ) = µ (∂nζs + ∂sζn + 2κζs − 2ζ3(∂nsθ + κ∂sθ)) ,

Mn(ζ3) =
1

3

(
λ̃∆∗ζ3 + 2µ∂nnζ3

)
,

Nn(ζ3) = −1

3

(
(λ̃+ 2µ)∂n(∆∗ζ3) + 2µ∂s(∂r + κ)∂sζ3

)
,

(3.8)

where div∗ζ∗ = ∂1ζ1 + ∂2ζ2 and ∆∗ = ∂11 + ∂22 with respect to (x1, x2) .

Let P = (Pi) be the two-dimensional operator associated with the bilinear form
a(·, ·) . By integration by parts, we obtain that:

Pσ(ζ) = −λ̃∂σẽαα(ζ)− 2µ∂αẽασ(ζ),

P3(ζ) =
1

3
(λ̃+ 2µ)∆2ζ3 − λ̃(∆θ)ẽαα(ζ)− 2µ(∂αβθ)ẽαβ(ζ).

(3.9)

Note that the degrees of the operator P can be represented as

degP =

(
2 1
1 4

)
,
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and moreover the terms depending on θ are of order at most one. Thus the prin-
cipal symbol of the operator is the same as for plates. The same remark holds for
the Neuman operator, and thus we have the following proposition, which gives the
regularity properties of the operator P :

Proposition 3.2. The operator P is a self adjoint operator, strongly elliptic in the
sense of Agmon, Douglis and Nirenberg (see [1]), with indices of equations t1 = t2 =
1 , t3 = 2 and indices of unknown s1 = s2 = 1 and s3 = 2 . Moreover, the Dirichlet
and Neumann boundary conditions satisfy the complementing boundary condition.

Let K(ω) = {ζ ∈ V (ω) ; a(ζ, ζ) = 0} denote the space of two-dimensional rigid
displacements. We then have:

K(ω) = {ζ ∈ V (ω) ; ẽαβ(ζ) = 0 and ∂αβζ3 = 0}.
It easily seen that K(ω) = 0 in the case of boundary conditions of clamping and
that, in the free case, K(ω) is six-dimensional and spanned by the terms 1

0
0

 ,

 0
1
0

 ,

 −x2

x1

0

 ,

 ∂1θ
∂2θ
1

 ,

 x2∂1θ
x2∂2θ − θ

x2

 ,

 x1∂1θ − θ
x1∂2θ
x1

 .(3.10)

According to the boundary conditions considered, the Kirchhoff-Love generators
ζk are solutions to two kinds of two-dimensional boundary value problems: In the
case of clamped shallow shells, the generators satisfy, for all k ≥ 0 , equations of the
type: {

P (ζk) = rk in ω,

(ζkr , ζ
k
s , ζ

k
3 , ∂nζ

k
3 )

∣∣
∂ω

= hk on ∂ω,
(3.11)

with regular right-hand sides rk ∈ (C ∞(ω))3 and hk = (hkr , h
k
s , h

k
3, h

k
n) ∈ (C ∞(∂ω))4 .

In the case of free shallow shells, the two-dimensional boundary value problems
are, for all k ≥ 0 , of the type:{

P (ζk) = rk in ω,(
Bn(ζ

k), Bs(ζ
k), Nn(ζ

k
3 ),Mn(ζ

k
3 )

)∣∣
∂ω

= gk on ∂ω,
(3.12)

with gk = (gkn, g
k
s , g

k
3 , g

k
m) ∈ (C ∞(∂ω))4 .

Let us define on ∂ω :

gk1 = n1g
k
n + n2g

k
s and gk2 = n2g

k
n − n1g

k
s , for each k ≥ 0.(3.13)

In order to have a solution, the boundary value problem (3.12) must satisfy the
following compatibility condition:∫

ω

rki ηi dω +

∫
γ

gki ηi +

∫
γ

gkm∂nη3 = 0, ∀η ∈ K(ω)(3.14)

and in this case, the unique solution ζk satisfies:∫
ω

ζki ηi = 0, ∀η ∈ K(ω).(3.15)
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3.2. The first Kirchhoff-Love generators ζ0 . Recall that the first term of the
expansion is a Kirchhoff-Love field u0

KL = (ζ0
∗ − x3∇∗ζ0

3 , ζ
0
3) . We give here the

equations satisfied by ζ0 in both cases of boundary conditions.

Let pi(x∗) and qi(x∗) be the following functions on ω , constructed from the
three-dimensional vector field f = (f i) (see (2.6)):

pi(x∗) =

∫ 1

−1

f i(x∗, x3) dx3 and qi(x∗) =

∫ 1

−1

x3f
i(x∗, x3) dx3.(3.16)

In the case of clamped shallow shells, the generator ζ0 is the unique solution to
the two-dimensional problem:{

P (ζ0) = 1
2
(p1, p2, ∂αq

α + p3) in ω,

(ζ0
r , ζ

0
s , ζ

0
3 , ∂nζ

0
3)

∣∣
∂ω

= (0, 0, 0, 0) on ∂ω.
(3.17)

S. Busse, P. G. Ciarlet & B. Miara found in [4] the same problem for ζ0 . With (3.3),
we improve their result by giving an estimate for the convergence.

In the free case, ζ0 is the unique solution satisfying condition (3.15) to the Neu-
mann problem: P (ζ0) =

1

2
(p1, p2, ∂αq

α + p3) in ω,(
Bn(ζ

0), Bs(ζ
0), Nn(ζ

0
3),Mn(ζ

0
3 )

)∣∣
∂ω

= (0, 0,−1
2
nαq

α, 0) on ∂ω.
(3.18)

4. Outer expansion

In this section, we study the solution in formal series of the three-dimensional
elasticity equations without boundary conditions on the lateral boundary. Thus, we
search for a formal series in powers of ε :

u(ε)(x) = u0(x) + εu1(x) + ε2u2(x) + · · · ,(4.1)

(with coefficients uk(x) displacement fields on Ω ), solution of the two first equations
in (2.14) in the sense of formal series.

To this aim, we first expand the operators L(ε) and G(ε) with respect to ε ,
and define the formal series problem. We will see that this problem can be solved and
that the coefficients uk(x) are determined by generators ζk solutions of problems
of type

P (ζk) = rk in ω.

Hence, we do not have the uniqueness of such an expansion, because no traces on ∂ω
are imposed on the ζk terms. We will show in the next section that the generators
ζk are fully determined after the introduction of boundary layer terms. The analysis
of this section is similar to that in ([14]) for shells.
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4.1. Asymptotic expansion of the elasticity operator.

Definition 4.1. We say that a function f(ε) depending on ε is O(εk) if f(ε)/εk is

bounded when ε approaches zero. If for every N ∈ N , we have f(ε)−
∑N
k≥0 ε

kfk =

O(εN+1) , we write

f(ε) ∼
∑
k≥0

εkfk

and we can write f(ε) =
∑
k≥0 ε

kfk in the sense of asymptotic expansions.

The particular form of the middle surface of the shell yields asymptotic expansions
of the geometrical data such as Γkij(ε) , g

ij(ε) (and hence Aijk�(ε) ).

In the following, we denote sθ = (∂1θ)
2 + (∂2θ)

2 .

Proposition 4.2. The geometrical data admit the following expansions:

gα(ε) ∼
∑
j≥0

εjgα;j, gα(ε) ∼
∑
j≥0

εjgα;j and g3(ε) = g3(ε) ∼
∑
j≥0

εjg3;j,(4.2)

with

gα;0 =

 δα1

δα2

0

 , gα;1 =

 0
0
∂αθ

 , gα;2 =

 −x3∂α1θ
−x3∂α2θ

0

 ,

gα;0 =

 δα1

δα2

0

 , gα;1 =

 0
0
∂αθ

 , gα;2 =

 x3∂α1θ − (∂αθ)∂1θ
x3∂α2θ − (∂αθ)∂2θ

0

 ,

and moreover, the first two components of gα;2j+1 and g
α;2j+1 and the last component

of gα;2j and g
α;2j are zero for all j . For the third vector, we have

g3;0 =

 0
0
1

 , g3;1 =

 −∂1θ
−∂2θ

0

 , g3;2 =

 0
0

−1
2
sθ

 ,

and the first two components of g3;2j and the last component of g3;2j+1 are zero for
all j . For the metric tensors we have:

gαβ(ε) ∼
∑
j≥0

ε2jgαβ;2j and gαβ(ε) ∼
∑
j≥0

ε2jgαβ;2j ,(4.3)

with

gαβ;0 = δαβ, gαβ;2 = (∂αθ)∂βθ − 2x3∂αβθ, gαβ;0 = δαβ and gαβ;2 = −gαβ;2.

Moreover we have:

gα3(ε) = 0, gα3(ε) = 0 and g33(ε) = g33(ε) = 1.(4.4)

The Christoffel symbols admit the expansions:

Γσαβ(ε) ∼
∑
j≥1 ε

2jΓσ;2jαβ ,

Γ3
αβ(ε) ∼

∑
j≥0 ε

2j+1Γ3;2j+1
αβ ,

Γσα3(ε) ∼
∑
j≥0 ε

2j+1Γσ;2j+1
α3 ,

(4.5)



16 GEORGIANA ANDREOIU AND ERWAN FAOU

with
Γσ;2αβ = (∂σθ)∂αβθ − x3∂αβσθ, Γ3;1

αβ = ∂αβθ and Γσ;1α3 = −∂ασθ.
Finally, we have: √

g(ε) ∼
∑
j≥0

ε2jg1/2;2j,(4.6)

with
g1/2;0 = 1 and g1/2;2 = 1/2(sθ − 2x3∆θ).

Proof. These computations are obtained by using the special form of the surface and
Taylor expansions. The fact that Γ3

αβ(ε) = ε∂αβθ + · · · means that the second
fundamental form of the surface Sε is of order ε .

We deduce from this proposition that the operators L(ε) , G(ε) and T (ε) also
admit expansions with respect to ε : this is due to fact that their coefficients only
depend on the geometrical data expanded in Proposition 4.2. Thus we have:

Lα(ε)u ∼
∑
k≥0

ε2k−2Lα;2ku and L3(ε)u ∼
∑
k≥0

ε2k−4L3;2ku,(4.7)

where {
Lα;0u = 2µ∂3eα3(u) + λ∂αe33(u),

L3;0u = (λ+ 2µ)∂3e33(u).
(4.8)

Note that the normal component starts with ε−4 and that the horizontal components
start with ε−2 .

For the traction operators on Γ−+ , we have (see (2.16)):

Gα(ε)u ∼
∑
k≥0

ε2k−2Gα;2ku and G3(ε)u ∼
∑
k≥0

ε2k−4G3;2ku(4.9)

with {
Gα;0u = 2µeα3(u),

G3;0u = (λ+ 2µ)e33(u).
(4.10)

Note that the normal component starts with ε−4 and that the horizontal components
start with ε−2 .

Remark 4.3. The first operators Li;0 and Gi;0 do not depend on θ and are thus,
the same as the first terms for plates, see [11]. This is the reason of the fact that the
structure of the outer expansion, involving Kirchhoff-Love terms, is the same as for
plates.

Finally, using Proposition 4.2, we show that the traction operator on the lateral
boundary admits the following expansions in ε :

Tn(ε)u ∼
∑
k≥0 ε

2k−2Tn;2ku,

Ts(ε)u ∼
∑
k≥0 ε

2kTs;2ku,

T3(ε)u ∼
∑
k≥0 ε

2k−2T3;2ku,

(4.11)
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and we compute that:
Tn;0u = λ∂3u3,

Ts;0u = µ
(
∂nus + ∂sun + 2κus − 2u3(∂rsθ + κ∂sθ)

)
+λ∂3u3

(
2x3(∂rsθ + κ∂sθ)− (∂rθ)∂sθ

)
,

T3;0u = µ
(
∂3ur + ∂ru3

)
.

(4.12)

We also need the following expressions:

Tn;2u = λdiv∗u∗ + 2µ∂nun

−u3

(
λ(∂rrθ + ∂ssθ − κ∂rθ) + 2µ∂rrθ

)
+λ∂3u3

(
2x3∂rrθ − (∂rθ)

2
)
,

T3;2u = 2µ
(
∂rrθur + (∂rsθ + κ∂sθ)us

)
+µ

[(
2x3∂rrθ − (∂rθ)

2
)
(∂ru3 + ∂3ur)

+
(
2x3(∂rsθ + κ∂sθ)− (∂rθ)∂sθ

)
(∂su3 + ∂3us)

]
,

(4.13)

Remark 4.4. For the three-dimensional traction on the lateral boundary, the first
operators Tn;0 and T3;0 are the same as those for plates, see [11]. But the tangential
component contains the function θ from the first order, which is not the case for
plates defined with θ = 0 .

4.2. The outer expansion. The previous expansions associate to each operator a
formal series in power of ε . Our aim is to construct a formal series:

u(ε)(x) =
∑
k=0

εkuk(x),(4.14)

solution of the problem (in the sense of formal series){
L(ε)u(ε) = −f in Ω,

G(ε)u(ε) = 0 on Γ+ ∪ Γ−,
(4.15)

which represents the following set of equations, obtained by taking the product of
the formal series and identifying the terms in powers of ε :

∀ k ≥ 0,


∑k
�=0 Lα;�u

k−� = fαδk2 in Ω, α = 1, 2,∑k
�=0 L3;�u

k−� = f 3δk4 in Ω, α = 1, 2,∑k
�=0Gi;�u

k−� = 0 on Γ+ ∪ Γ−, i = 1, 2, 3,

where δk� is the Kronecker symbol, and where we set Li;2�+1 = 0 and Gi;2�+1 = 0
for all : ≥ 0 , and u� = 0 for : < 0 .

Using the expansions (4.7), (4.9) and the explicit forms of the operators L3;0 and
G3;0 , the transverse components of the former equations are written:

(λ+ 2µ)∂33u
k
3 = −L3;2u

k−2 − L3;4u
k−4 −

∑[k/2]
m=3 L3;2mu

k−2m − f 3δk4 in Ω,

(λ+ 2µ)∂3u
k
3 = −G3;2u

k−2 −G3;4u
k−4 −

∑[k/2]
m=3 G3;2mu

k−2m on Γ−+,

(4.16)

where [a] denotes the integer part of a real number a .
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For fixed k , problem (4.16) is a Neumann problem whose solvability relies on the
compatibility condition:

(λ+ 2µ)

∫ 1

−1

∂33u
k
3 dx3 = (λ+ 2µ)

[
∂3u

k
3

]+1

−1
.

This condition is equivalently expressed as:

∫ 1

−1

(
L3;2u

k−2 + L3;4u
k−4 +

[k/2]∑
m=3

L3;2mu
k−2m + f 3δk4

)
dx3

=
[
G3;2u

k−2 +G3;4u
k−4 +

[k/2]∑
m=3

G3;2mu
k−2m

]+1

−1
,

relation which involves u� for : < k .

Using Proposition 4.2, we find that:{
L3;2v = λ∂3 (eαα(v)− (∆θ)v3)− 2µ(∆θ)e33(v) + 2µ∂σeσ3(v),

G3;2v = λ (eαα(v)− (∆θ)v3) ,
(4.17)

and



L3;4v = λ∂3

(
(Γ3;3
αα − gαβ;2∂αβθ)v3

)
+ λ∂3

(
gαβ;2eαβ(v)− Γσ;2ααvσ

)
−

(
(λ+ 2µ)Γσ;3σ3 + λ(Γ3;3

αα − gαβ;2∂αβθ)
)
e33(v)

+2µ∂αβθ (eαβ(v)− (∂αβθ)v3) + 2µ∂σ (gασ;2eα3(v) + (∂ασθ)vα)

+2µΓσ;2ασ eα3(v),

G3;4v = λ(Γ3;3
αα − gαβ;2∂αβθ)v3 + λ

(
gαβ;2eαβ(v)− Γσ;2ααvσ

)
.

(4.18)

The compatibility condition then becomes:

2µ∆θ

∫ +1

−1

∂3u3
k−2 dx3 − 2µ∂σ

( ∫ +1

−1

eσ3(u
k−2) dx3

)
+

∫ +1

−1

(
(λ+ 2µ)Γσ;3σ3 + λ

(
Γ3;3
αα − gαβ;2∂αβθ

))
∂3u3

k−4 dx3

− 2µ∂αβθ

∫ +1

−1

(
eαβ(u

k−4)− (∂αβθ)u3
k−4

)
dx3

− 2µ∂σ

(∫ +1

−1

(
gασ;2eα3(u

k−4) + (∂ασθ)uα
k−4

)
dx3

)
− 2µ

∫ +1

−1

Γσ;2σα eα3(u
k−4) dx3 −

∫ +1

−1

f 3δk4 dx3

=

[k/2]∑
m=3

∫ +1

−1

L3;2mu
k−2m dx3 −

[k/2]∑
m=3

G3;2mu
k−2m(1) +

[k/2]∑
m=3

G3;2mu
k−2m(−1).

(4.19)
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Using the expansions (4.7), (4.9) and the explicit forms of the operators Lσ;0 and
Gσ;0 , we get for the horizontal components ( σ = 1, 2 ) and for k ≥ 0 ,

2µ∂3eγ3(u
k) + λ∂γ(∂3u

k
3) = −Lγ;2uk−2 −

∑[k/2]
m=2 Lγ;2mu

k−2m − fγδk2 in Ω,

2µeγ3(u
k) = −Gγ;2uk−2 −

∑[k/2]
m=2 Gγ;2mu

k−2m on Γ−+.

(4.20)

For each k ≥ 0 , we must thus have

2µ

∫ 1

−1

∂3eγ3(u
k) dx3 = 2µ

[
eγ3(u

k)
]+1

−1
,

and this relation is written as:∫ 1

−1

(
λ∂γ3u

k
3 + Lγ;2u

k−2 +

[k/2]∑
m=2

Lγ;2mu
k−2m + fγδk2

)
dx3

=
[
Gγ;2u

k−2 +

[k/2]∑
m=2

Gγ;2mu
k−2m

]+1

−1
.

We find that:
Lγ;2v = 2µ∂3 (gαγ;2eα3(v) + (∂γσθ)vσ) + λ∂γ (eαα(v)− (∆θ)v3)

+2µ∂σ (eσγ(v)− (∂σγθ)v3) + λ∂σ (gγσ;2e33(v))

+λ(Γγ;2αα + Γτ ;2γτ )e33(v)− 2µ(∆θ)eγ3(v)− 4µ(∂αγθ)eα3(v),

Gγ;2v = 2µ (gαγ;2eα3(v) + ∂γσθvσ) .

(4.21)

Hence we have the following condition:

λ∂γ

(∫ +1

−1

∂3u
k
3 dx3

)
+ λ∂γ

(∫ +1

−1

(
eαα(u

k−2)− (∆θ)uk−2
3

)
dx3

)
+ 2µ∂σ

(∫ +1

−1

(
eσγ(u

k−2)− (∂σγθ)u
k−2
3

)
dx3

)
+ λ∂σ

(∫ +1

−1

gγσ;2e33(u
k−2) dx3

)
+ λ

∫ +1

−1

(
Γγ;2αα + Γτ ;2γτ

)
e33(u

k−2) dx3

− 2µ∆θ

∫ +1

−1

eγ3(u
k−2) dx3 − 4µ∂αγθ

∫ +1

−1

eα3(u
k−2) dx3 +

∫ +1

−1

fγδk2 dx3

= −
∫ +1

−1

[k/2]∑
m=2

Lγ;2mu
k−2m dx3 −

[k/2]∑
m=2

Gγ;2mu
k−2m(1) +

[k/2]∑
m=2

Gγ;2mu
k−2m(−1).

(4.22)

Now we will study the solution of the equations (4.16) and (4.20) for all k ≥ 0 .
For k = 0 , the equations are:

{
(λ+ 2µ)∂33u

0
3 = 0 in Ω,

(λ+ 2µ)∂3u
0
3 = 0 on Γ−+,

and

{
2µ∂3eγ3(u

0) + λ∂γ3u
0
3 = 0 in Ω,

2µeγ3(u
0) = 0 on Γ−+,

(4.23)
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and the compatibility conditions are trivially satisfied. We deduce that there exists
ζ0(x∗) independent on x3 such that u0 is the Kirchhoff-Love displacement associated
to ζ0 : we have u0 =

(
ζ0
∗ (x∗) − ∇∗ζ0

3 , ζ
0
3

)
. The same result hold for u1 with a

generator denoted ζ1 .

The generators ζ0 and ζ1 are not determined yet. Roughly speaking, the com-
patibility condition in the next steps will give equations involving ζ0 and ζ1 . These
equations will take the form P (ζ0) = r0 and P (ζ1) = r1 , where P is the operator
described in the former section, where r0 is given in (3.17) and (3.18), and where
r1 = 0 .

At each step, we get the same first equations (4.23) involving uk , with non-
vanishing rights hand sides depending on the fields u� for : < k . Thus, each term
uk only depends on the previous terms u� for : < k and on a Kirchhoff-Love
term associated to an undetermined generator ζk . This is due to the fact that the
kernel of the operators (4.23) consists of Kirchhoff-Love terms. The generators ζk

are then determined by the compatibility conditions in the next steps by relations
P (ζk) = rk , where rk depends on f , and on the generators ζ� for : < k . The
following theorem gives the structure of the terms uk :

Theorem 4.5. For any k ≥ 0 there exist a Kirchhoff-Love displacement ukKL ,
whose generator is denoted by ζk and a displacement field vk with zero mean value:

∀x∗ ∈ ω,

∫ 1

−1

vk(x∗, x3) dx3 = 0,

such that

uk = ukKL + vk(4.24)

is solution of (4.16) and (4.20).

Moreover, for k ≥ 0 , ζk is solution of an equation governed by the operator P ,
defined in (3.9):

P (ζk) = rk in ω,(4.25)

where for each k , rk is determined by the previous functions ζk−2m , 1 ≤ m ≤ [k/2]
and by f . Moreover, r0 = 1/2(p1, p2, ∂αq

α + p3) and r1 = (0, 0, 0) .

We also have v0 = v1 = 0 and for k ≥ 2 , vk depends only on f and on the
functions ζk−2m for 1 ≤ m ≤ [k/2] .

Proof. Let us formulate our induction hypothesis for any : ∈ N and let us denote it
(F �) :

for every k ≤ :−4 , uk is determined and (4.16), (4.20), (4.19) and (4.22)
are satisfied;

the function u�−2 is determined and (4.16), (4.19), (4.20), (4.22) are solved
for k = :− 2 ;

there exist v� such that

∫ 1

−1

v� dx3 = 0 and (4.16), (4.20) and conditions

(4.19), (4.22) are satisfied at k = : for u� = v� ;
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the compatibility condition (4.19) is satisfied for k = :+ 2 by u� = v� .

We see that (F0) and (F1) hold with v0 = 0 , v1 = 0 .

Let us assume that (F �) holds. We prove that (F �+2) also holds. Since v�3 is
solution of (4.16) for k = : , we see that for any function ζ�3 not depending on x3 ,
v�3 + ζ�3 is still solution of (4.16).

Since v�γ is solution of (4.20) for k = : , for any function ζ�γ independent on x3 ,

we get another solution for this equation, namely v�γ + ζ�γ −x3∂γζ
�
3 , for u�3 = v�3 + ζ�3 .

Therefore, for any Kirchhoff-Love field u�KL , u� = v� + u�KL is solution of (4.16)
and (4.20) for k = : . The condition (4.19) is satisfied for k = :+2 and u� = v� and
still holds for u� = v� + u�KL , where u�KL is an arbitrary Kirchhoff-Love field. This

allows to denote by v�+2
3 the solution of (4.16) with

∫ 1

−1

v�+2
3 dx3 = 0 for k = : + 2

and u� = v� + u�KL .

Now we investigate the condition (4.22) for k = : + 2 and u� = v� + u�KL .
Integrating (4.16) from −1 to x3 for k = : + 2 , we obtain the expression of ∂3v

�
3

with respect to ζ� , v� , u�−2, . . .u0 . Let Pγ be defined by (3.9). By separating
the contributions of v� and u�KL in the investigated condition, we compute that
equation (4.22) takes the form

Pγ(ζ
�) = r�γ in ω,(4.26)

for r�γ depending on v� , u�−2, . . .u0 . For : = 0, 1 , we have r0
γ = 1

2
pγ and r1

γ = 0 .

For a function ζ� verifying (4.26), let v�+2
γ be the solution of (4.20) for k = :+2

and for u�+2
3 = v�+2

3 , having zero mean value over (−1, 1) .

In order to investigate the compatibility condition (4.19) for k = : + 4 and
u�+2 = v�+2 , we integrate (4.20) from −1 to x3 . Using the first equation (4.26), we
get that this compatibility condition takes the form

P3(ζ
�) = r�3 in ω,(4.27)

with a left side depending on v� , u�−2, . . .u0 . For : = 0, 1 , we have r0
3 = 1/2(∂γq

γ+
p3) and r1

3 = 0 .

We also calculate that:

v2
3(x∗, x3) =

λ

λ+ 2µ

(
x2

3

2
− 1

6

)
∆ζ0

3 −
λ

λ+ 2µ
x3(div∗ζ0

∗ − (∆θ)ζ0
3 ).(4.28)

Therefore, if we take ζ� verifying (4.26), (4.27) and we define u� = v� + u�KL , then
the induction condition (F �+2) is established.

5. Construction of the inner expansion

In the previous section, starting from solutions ζk of equations (4.25), we con-
structed formal series (4.14) satisfying equations (4.15). However, we can show that
for all solutions ζk , the equations on the lateral boundary Γ0 are usually not satis-
fied.
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As in the case of plates, we introduce scaled boundary layer terms w(ε−1r, s, x3)
exponentially decreasing in t = ε−1r . Thus, we have to make the change of variable
(r, s, x3) �→ (t, s, x3) in order to pose the equations, and as this change of variable
depends on ε , it has an influence on the underlying formal series.

5.1. Interior equations and horizontal boundary conditions. In the following,
(r, s, x3) denotes the coordinate system described in section 2.4, in a neighbourhood
of Γ0 , and t = ε−1r is a scaled coordinate. The system (t, s, x3) lies in Σ+ × S ,
with (t, x3) ∈ Σ+ := R+ × (−1,+1) . Thus, Σ+ is a half strip with two corners (t =
0, x3 = −+1) , and whose boundary consists of a lateral boundary γ0 = {0}× (−1,+1)
and of upper and lower edges γ−+ = R+ × {−+1} .

In order to define the operators acting on boundary layer terms, we introduce the
following scaling operator: let D(ε) be defined as

D(ε)ϕ = (ϕ∗, ε ϕ3),

for all triple ϕ = (ϕ∗, ϕ3) .

Recall that in coordinates (r, s, x3) , the components of the operator L(ε) are
given by:

Lr(ε)(r, s, x3; ∂r, ∂s, ∂3) =
(
n1L1(ε) + n2L2

)
(x; ∂x),

Ls(ε)(r, s, x3; ∂r, ∂s, ∂3) = (1− κr)−1
(
n2L1(ε)− n1L2(ε)

)
(x; ∂x),

L3(ε)(r, s, x3; ∂r, ∂s, ∂3) = L3(ε)(x; ∂x),

where x = (x1, x2, x3) and ∂x = (∂1, ∂2, ∂3) , and that the same holds for the opera-
tors G(ε) and T (ε) .

In order to obtain an operator of order 0 in ε , by using D(ε) we define the
following operator:

Lt(ε)(t, s, x3; ∂t, ∂s, ∂3) := ε2Lr(ε)(ε t, s, x3; ε
−1∂t, ∂s, ∂3) ◦ D(ε),

Ls(ε)(t, s, x3; ∂t, ∂s, ∂3) := ε2Ls(ε)(ε t, s, x3; ε
−1∂t, ∂s, ∂3) ◦ D(ε),

L3(ε)(t, s, x3; ∂t, ∂s, ∂3) := ε3L3(ε)(ε t, s, x3; ε
−1∂t, ∂s, ∂3) ◦ D(ε).

Using Taylor expansions, we see that we can associate to this operator a formal series:

L(ε) = L0 + εL1 +
∑
k≥2

εkLk,

where the Lk are operators of degree 2 on Σ+ × S that are polynomial in x3 and
t . Moreover, we identify:

L0
tϕ = µ(∂ttϕt + ∂33ϕt) + (λ+ µ)∂t(∂tϕt + ∂3ϕ3),

L0
sϕ = µ(∂ttϕs + ∂33ϕs),

L0
3ϕ = µ(∂ttϕ3 + ∂33ϕ3) + (λ+ µ)∂3(∂tϕt + ∂3ϕ3),

(5.1)

and we see that this operator is the same as that for plates (see [11, 8]).
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Similarly, we define the following traction operator on Σ+ × S :
Gt(ε)(t, s, x3; ∂t, ∂s, ∂3) := ε2Gr(ε)(ε t, s, x3; ε

−1∂t, ∂s, ∂3) ◦ D(ε),

Gs(ε)(t, s, x3; ∂t, ∂s, ∂3) := ε2Gs(ε)(ε t, s, x3; ε
−1∂t, ∂s, ∂3) ◦ D(ε),

G3(ε)(t, s, x3; ∂t, ∂s, ∂3) := ε3G3(ε)(ε t, s, x3; ε
−1∂t, ∂s, ∂3) ◦ D(ε).

Using Taylor expansions, we see that we can associate to this operator a formal series:

G(ε) = G0 + εG1 +
∑
k≥2

εkGk,

where the operators Gk are of degree one on Σ+×S and are polynomials in x3 and
t . Moreover, we see that the first term is given by: G0

tϕ = µ(∂tϕ3 + ∂3ϕt),
G0
sϕ = µ∂3ϕs,
G0

3ϕ = (λ+ 2µ)∂3ϕ3 + λ∂tϕt.
(5.2)

Thus we see that this operator is the same as that for plates, see [11, 8].

Hence, we are searching for formal series ϕ(ε) =
∑
k≥0 ε

kϕk solution of the
equations (in formal series):

L(ε)ϕ(ε) = 0,

G(ε)ϕ(ε) = 0.

Before studying these equations, we perform the same change of variables for the
operators on the lateral boundary, taking into account the previous result concern-
ing the outer expansion. Hence, we obtain boundary equations in order to get the
matching of the terms of this outer part.

5.2. Conditions on the lateral boundary.

5.2.1. Lateral Dirichlet boundary conditions. Let u(ε) =
∑
k≥0 ε

kuk be a formal
series constructed in the former section. Recall that, according to Theorem 4.5, we
have:

ukn = ζkn − x3∂nζ
k
3 + vkn,

uks = ζks − x3∂sζ
k
3 + vks ,

uk3 = ζk3 + vk3 ,
(5.3)

where the ζk are two-dimensional generators. Due to the scaling operator D(ε) , we
are looking for a boundary layer formal series of the type w(ε) = D(ε)◦ϕ(ε) . Thus,
we want to find a formal series ϕ(ε) satisfying the relation:∑

k≥0

εkuk
∣∣
Γ0

+
∑
k≥0

εk(ϕk∗, εϕ
k
3)

∣∣
t=0

= 0.(5.4)

In 5.4 we identify the coefficients of ε and we get:
ϕ0
t

∣∣
t=0

+ u0
n

∣∣
∂ω

= 0,

ϕ0
s

∣∣
t=0

+ u0
s

∣∣
∂ω

= 0,

u0
3

∣∣
∂ω

= 0,

and ϕ0
3

∣∣
t=0

+ u1
3

∣∣
∂ω

= 0,
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and, for k ≥ 1 , 
ϕkt

∣∣
t=0

+ ukn
∣∣
∂ω

= 0,

ϕks
∣∣
t=0

+ uks
∣∣
∂ω

= 0,

ϕk3
∣∣
t=0

+ uk+1
3

∣∣
∂ω

= 0.

(5.5)

5.2.2. Lateral Neumann boundary conditions. As before, we define the following op-
erator: 

Tt(ε)(t, s, x3; ∂t, ∂s, ∂3) := εTr(ε)(ε t, s, x3; ε
−1∂t, ∂s, ∂3) ◦ D(ε),

Ts(ε)(t, s, x3; ∂t, ∂s, ∂3) := εTs(ε)(ε t, s, x3; ε
−1∂t, ∂s, ∂3) ◦ D(ε),

T3(ε)(t, s, x3; ∂t, ∂s, ∂3) := ε2T3(ε)(ε t, s, x3; ε
−1∂t, ∂s, ∂3) ◦ D(ε).

Using Taylor expansion in t = 0 and x3 , we see that we can associate to this operator
a formal series:

T (ε) = T 0 + εT 1 +
∑
k≥2

εkT k,

where the operators T k are of degree one on Σ+ × ∂ω , polynomials in x3 and t
and take their values in (−1,+1)× ∂ω .

Moreover, we find that:
T 0
t (ϕ) = λ∂3ϕ3 + (λ+ 2µ)∂tϕt,

T 0
s (ϕ) = µ∂tϕs,

T 0
3 (ϕ) = µ(∂3ϕt + ∂tϕ3),

(5.6)

which is the same as for plates, and that:

T 1
t (ϕ) = λ(∂sϕs − κϕt),

T 1
s (ϕ) = µ(∂sϕt + 2κϕs),

T 1
3 (ϕ) = 2µ

(
(∂rrθ)ϕt + (∂rsθ + κ∂sθ)ϕs

)
+µ

(
(2x3∂rrθ − (∂rθ)

2) (∂tϕ3 + ∂3ϕt)

+ (2x3(∂rsθ + κ∂sθ)− (∂rθ)∂sθ) ∂3ϕs
)
.

(5.7)

We remark that T 1
t and T 1

s are the same as for plates. Finally, we give explicit
formulas for:


T 2
t (ϕ3) = −ϕ3

(
(λ+ 2µ)∂rrθ + λ(∂ssθ − κ∂rθ)

)
+ λ∂3ϕ3

(
2x3∂rrθ − (∂rθ)

2
)
,

T 2
s (ϕ3) = −2µϕ3(∂rsθ + κ∂sθ) + λ∂3ϕ3

(
2x3(∂rsθ + κ∂sθ)− (∂rθ)∂sθ

)
,

T 2
3 (ϕ3) = µ

(
2x3(∂rsθ + κ∂sθ)− (∂rθ)∂sθ

)
∂sϕ3.

Taking into account the different scalings that we made, the traction-free condition
on the lateral boundary can be written as:

T (ε)u(ε)
∣∣
∂ω

+
(
ε−1Tt(ε)ϕ(ε), ε−1Tt(ε)ϕ(ε), ε−2Tt(ε)ϕ(ε)

)∣∣
t=0

= 0.(5.8)
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In 5.8 we identify the powers of ε and we obtain:

T 0
t (ϕk) + T 1

t (ϕk−1) + T 2
t (ϕk−2) +

∑k
�=3 T �t (ϕk−�)

+ Tn;0(u
k+1) + Tn;1(u

k) +
∑k+1
�=2 Tn;�(u

k+1−�) = 0,

T 0
s (ϕk) + T 1

s (ϕk−1) + T 2
s (ϕk−2) +

∑k
�=3 T �s (ϕk−�)

+ Ts;0(u
k+1) + Ts;1(u

k) +
∑k+1
�=2 Ts;�(u

k+1−�) = 0,

T 0
3 (ϕk) + T 1

3 (ϕk−1) + T 2
3 (ϕk−2) +

∑k
�=3 T �3 (ϕk−�)

+ T3;0(u
k) + T3;1(u

k−1) +
∑k
�=2 T3;�(u

k−�) = 0,

where we set Tn;� = Ts;� = T3;� = 0 for : odd. Introducing the expressions of the
operators, (see also [2]), we find that:



T 0
t (ϕk) = −T 1

t (ϕk−1)− T 2
t (ϕk−2)−

∑k
�=3 T �t (ϕk−�)

−Bn(ζk−1) + 3x3Mn(ζ
k−1
3 ) + En(v

k−1,uk−3 . . .u0)

T 0
s (ϕk) = −T 1

s (ϕk−1)− T 2
s (ϕk−2)−

∑k
�=3 T �s (ϕk−�)

−Bs(ζk−1) + 2µx3(∂n + κ)∂sζ
k−1
3 + Es(v

k−1,uk−3 . . .u0),

T 0
3 (ϕk) = −T 1

3 (ϕk−1)−
∑k
�=2 T �s (ϕk−�)− (λ̃+ 2µ)

x2
3 − 1

2
∂r(∆∗ζk−2

3 )

−x3 + 1

2

(
pγδk−2

0 nγ +
λ

λ+ 2µ
∂r(p

3δk−4
0 − q3δk−4

0 )
)
+

∫ x3

−1

nγf
γδk−2

0

+E3(v
k−2,uk−4 . . .u0),

where En , Es and E3 are appropriate operators and where pγ and q3 are given
in (3.16).

5.3. Recursive equations. Let u(ε) be a formal series solution of the equations
(4.15). This series depends on generators ζk . Our aim is to find a formal series ϕ(ε)
solution of the system {

L(ε)ϕ(ε) = 0 in Σ+ × ∂ω,

G(ε)ϕ(ε) = 0 on γ−+ × ∂ω,
(5.9)

with the boundary conditions

u(ε)
∣∣
∂ω

+
(
ϕ∗(ε), ε ϕ3(ε)

)∣∣
t=0

= 0,

in the clamped case, and

T (ε)u(ε)
∣∣
∂ω

+
(
ε−1Tt(ε)ϕ(ε), ε−1Tt(ε)ϕ(ε), ε−2Tt(ε)ϕ(ε)

)∣∣
t=0

= 0,

in the free case.

The system (5.9) becomes, for k ≥ 0 ,{
L0ϕk = −

∑k
�=1 L�ϕk−�,

G0ϕk = −
∑k
�=1 G�ϕk−�.

(5.10)
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Using the framework of [8], we recall here properties of the operator (L0,G0) (see
also [10, 11]). First of all, we introduce the functional space where the functions
ϕk will be, (see [8]): Let H(Σ+) be the space of C ∞(Σ+) functions ϕ , that are
smooth up to any point of the boundary of Σ+ (except corners) and are exponentially
decreasing as t→∞ in the following sense:

∀i, j, k ∈ N, eδt tk ∂it∂
j
3ϕ ∈ L2(Σ+)

where δ > 0 is a fixed number smaller than the smallest exponent arising from
the Papkovich-Fadle eigen- functions, see [15]. Denoting by ρ the distance between
the two corners of Σ+ , we prescribe the following behaviour at the corners for the
elements of H(Σ+) :

ϕ ∈ L2(Σ+) and ∀i, j ∈ N, i+ j "= 0, ρi+j−1 ∂it∂
j
3ϕ ∈ L2(Σ+).

Then we define the corresponding displacement space H(Σ+) := H(Σ+)3 . Our formal
series ϕ(ε) will have its coefficients in C ∞(

∂ω,H(Σ+)
)
.

Let K(Σ+) be the space of triples (ψ, ψ−+) ∈ C ∞(Σ+)× C ∞(γ−+) that satisfy

∀i, j, k ∈ N, eδt tk ∂it∂
j
3ψ ∈ L2(Σ+) and eδt tk ∂itψ

−+ ∈ L2(γ−+)

and

∀i, j ∈ N, ρi+j+1 ∂it∂
j
3ψ ∈ L2(Σ+) and ρi+j+1/2 ∂itψ

−+ ∈ L2(γ−+).

Then we define the corresponding displacement space:

K(Σ+) :=
{
Ψ = (ψ,ψ−+) ∈ K(Σ+)3

}
.

According to [11] the operator (L0,G0) has similar properties in both the clamped
and free cases. We recall here those that we need; compare [11, section 5].

Proposition 5.1. There exists a four-dimensional space Z of polynomials, such
that if Ψ belongs to C ∞(

∂ω,K(Σ+)
)
and v belongs to C ∞(Γ0)

3 , then there exist

an unique ϕ ∈ C ∞(
∂ω,H(Σ+)

)
and an unique Z ∈ C ∞(∂ω,Z) such that

L0(ϕ) = Ψ in Σ+ × ∂ω,

G0(ϕ) = 0 on γ−+ × ∂ω,

H0(ϕ−Z)
∣∣
t=0

+ v
∣∣
Γ0

= 0,

where H0 = Id in the clamped case, and H0 = T 0 in the free case.

In the next section, we will show how the condition in the space Z will give
boundary conditions on the generators ζk in order to obtain the existence of the
terms ϕk .

6. Clamped shallow shells

In this case, the space Z of Proposition 5.1 is spanned by the four elements

Z1
D =

 1
0
0

 Z2
D =

 0
1
0

 Z1
D =

 0
0
1

 Z2
D =

 −x3

0
t

 .(6.1)
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In the case of Dirichlet boundary conditions on Γ0 , we must have for k ≥ 1 ,

ϕkt = −(ζkn − x3∂nζ
k
3 + vkn),

ϕks = −(ζks − x3∂sζ
k
3 + vks ),

ϕk3 = −(ζk+1
3 + vk+1

3 ).
(6.2)

We then have the following proposition:

Proposition 6.1. Let ζk = (ζ∗, ζ3) be a family of generators satisfying the relations
P (ζk) = rk of Theorem 4.5, and let uk be the displacement constructed in this
theorem. Then there exist hk = (hkr , h

k
s , h

k
3, h

k
n) ∈ C ∞(∂ω)4 depending only on f

and on ζ� , 0 ≤ : ≤ k − 1 , such that if ζk satisfy the conditions

(ζkr , ζ
k
s , ζ

k
3 , ζ

k
3 )

∣∣
∂ω

= hk,

then there exist boundary layer profiles ϕk satisfying equations (5.4).

Proof. For all k ≥ 0 , we search an element ϕk ∈ C ∞(
∂ω,K(Σ+)

)
such that

L0(ϕk) = −
∑k
�=1 L�(ϕk−�) in Σ+ × ∂ω,

G0(ϕk) = −
∑k
�=1 G�(ϕk−�) on γ−+ × ∂ω,

ϕkt
∣∣
t=0

+ (ζkn − x3∂nζ
k
3 + vkn)

∣∣
∂ω

= 0,

ϕks
∣∣
t=0

+ (ζks − x3∂sζ
k
3 + vks )

∣∣
∂ω

= 0,

ϕk3
∣∣
t=0

+ (ζk+1
3 + vk+1

3 )
∣∣
∂ω

= 0.

Hence, using Proposition 5.1 and the expression of the basis (6.1), we see that we
have the existence of ϕk if and only if there exist functions hkr , hks , hk3 and hk+1

n

on ∂ω such that

ζkr
∣∣
∂ω

= hkr , ζks
∣∣
∂ω

= hks , ζk3
∣∣
∂ω

= hk3, and ζk+1
n

∣∣
∂ω

= hk+1
n .

The fact that the field v� depends only on the ζi for i < :− 1 ends the proof.

For the first terms of the asymptotic, we show, as in [11], that

ζ0
n = ζ0

s = ζ0
3 = ∂nζ

0
3 = 0 on ∂ω.(6.3)

We study now the fields ζ1 and ϕ1 . We easily get that

ζ1
3 = 0 on ∂ω.(6.4)

Note that, since the operator (L0,G0) is the same for all functions θ , it is the
same as for plates, and we have a splitting between the operator (L0

t ,L0
3;G0

t ,G0
3)

acting on (ϕt, ϕ3) and the operator (L0
s;G0

s ) acting on ϕs . Hence, as for plates (see
Proposition 4.4 in [11]) we can show that the boundary condition imposed to ζ1

s and
the term ϕ1

s are:

ζ1
s

∣∣
∂ω

= 0 and ϕ1
s = 0.(6.5)

We recall the notations used in [11], viz.,

p1(x3) = − λ

λ+ 2µ
x3, p2(x3) =

λ

2(λ+ 2µ)

(
x2

3 −
1

3

)
.
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Then relation (4.28) can be written as v2
3 = p2∆ζ0

3 + p1(div∗ζ0
∗ −∆θζ0

3 ) . Following
exactly the same computations as in the case of plates, we show that we have

ζ1
n

∣∣
∂ω

= c11div∗ζ0
∗
∣∣
∂ω
,

∂nζ
1
3

∣∣
∂ω

= c14∆∗ζ0
3

∣∣
∂ω
,

ζ2
3

∣∣
∂ω

= c13∆∗ζ0
3

∣∣
∂ω
,

(6.6)

where c11 , c14 , c13 are the same constants as in [11]. We can also give an expression of
the boundary layer terms ϕ1

t and ϕ1
3 , but these are exactly the same as in equations

(6.5) and (6.7) in [11].

Finally, using Theorem 4.5 and Proposition 6.1, we prove Theorem 3.1 by using
classical energy estimates (see [9, 8]).

7. Free shallow shells

In this case, we can find a basis (Z1
N,Z

2
N,Z

3
N,Z

4
N) of the space Z in Proposition

5.1, and moreover, give directly the expression of Z in this basis with respect to the
right-hand sides Ψ and v (see [11, 8]). Hence, by doing the same computations as
in the citated papers, we establish the following proposition:

Proposition 7.1. Let ζk = (ζ∗, ζ3) be a family of generators satisfying the relations
P (ζk) = rk of Theorem 4.5, and let uk be the displacement constructed in this
Theorem. Then there exist gk = (gkn, g

k
s , g

k
3 , g

k
m) ∈ (C ∞(γ))4 depending only on f

and on ζ� , 0 ≤ : ≤ k − 1 , such that, if ζk satisfy conditions(
Bn(ζ

k), Bs(ζ
k), Nn(ζ

k
3 ),Mn(ζ

k
3 )

)∣∣
∂ω

= gk on ∂ω,

then there exist boundary layer profiles ϕk satisfying equations (5.8). Moreover,
conditions (3.14) are satisfied.

Proof. The proof is the same as for plates (see [11, 8]). In order to prove that the
condition (3.14) is satisfied at k -th order, we construct three-dimensional displace-
ment satisfying the boundary conditions and the outer and inner equations up to the
order k , and we use the compatibility conditions (2.11), see [8].

For k = 0 , we find:

Bn(ζ
0) = Bs(ζ

0) = Mn(ζ
0
3 ) = 0 and Nn(ζ

0
3) = −1

2
nγq

γ on ∂ω.(7.1)

Therefore, ζ0 has to solve a two-dimensional problem of the type (3.12) for r0 =
1
2
(pα, ∂αq

α+p3) and g0 = (0, 0,−1
2
nβq

β, 0) . Then the compatibility condition (3.14)
has to be satisfied

∀η ∈ K(ω),

∫
ω

pαηα +

∫
ω

(∂αq
α + p3)η3 −

∫
γ

nβq
βη3 = 0.(7.2)

Using Green’s formula and the definitions of pi and qα , this compatibility condition
becomes:

∀η ∈ K(ω),

∫
Ω

f iηi − x3f
α∂αη3 = 0.(7.3)

It is enough to check that it holds for a basis in K(ω) , for example for the vectors
(3.10). We have the following result:
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Lemma 7.2. Let vRi (ε) , i ∈ {1, 2, . . . , 6} be a basis of R(ε,Ω) . The following
expansion holds

vRi (ε) ∼
∑
k≥0

vR;2k
i ε2k,(7.4)

with

vR;0
1 =

 1
0
0

 , vR;0
2 =

 0
1
0

 , vR;0
3 =

 −x2

x1

0

 , vR;0
4 =

 ∂1θ
∂2θ
1

 ,

vR;0
5 =

 x2∂1θ
x2∂2θ − θ − x3

x2

 , vR;0
6 =

 x1∂1θ − θ − x3

x1∂2θ
x1

 .

Proof. The proof uses the rigid displacements lemma in curvilinear coordinates, see
[5] and Proposition4.2.

Therefore, the compatibility condition (7.3) for the two-dimensional basis (3.10) fol-
lows if we identify the coefficient of ε0 in the three-dimensional compatibility condi-
tion (2.11) for the basis given by Lemma 7.2.

Using energy estimate (exactly like for plates), we then obtain the result of Theorem
3.1.
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