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Abstract. — In this paper we study the long time behavior of a discrete ap-
proximation in time and space of the cubic nonlinear Schrödinger equation
on the real line. More precisely, we consider a symplectic time splitting in-
tegrator applied to a discrete nonlinear Schrödinger equation with additional
Dirichlet boundary conditions on a large interval. We give conditions ensur-
ing the existence of a numerical ground state which is close in energy norm
to the continuous ground state. Such result is valid under a CFL condition
of the form τh−2 ≤ C where τ and h denote the time and space step size
respectively. Furthermore we prove that if the initial datum is symmetric and
close to the continuous ground state η then the associated numerical solution
remains close to the orbit of η, Γ = ∪α{eiαη}, for very long times.

1. Introduction

We study numerical approximations of ground states of the focusing non-
linear Schrödinger equation (NLS) on the real line:

(1.1) iψt = −ψxx − |ψ|2ψ, x ∈ R, t ∈ R.

This equation is a Hamiltonian partial differential equation (PDE) associated
with the Hamiltonian function

(1.2) H(ψ) :=
∫

R

[
|ψx|2 −

|ψ|4

2

]
dx,
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and preserving the L2 norm

(1.3) N(ψ) :=
∫

R
|ψ|2 dx.

The goal of this paper is to understand the long time behavior of numeri-
cal integration algorithms for initial data close to the solitary wave solution
ψ(t, x) = eiλtη(x) where

(1.4) η(x) :=
1√
2

sech
(x

2

)
,

and λ ∈ R is the Lagrange multiplier associated with the minimization of H
under the constraint N = 1. It is well known, see for instance [20, 13, 14, 12]
that this solution is orbitaly stable in the sense that for a small pertuba-
tion of the initial data, the exact solution remains close to the orbit of η for
all times. Here we will only consider symmetric initial conditions satisfying
ψ(x) = ψ(−x), a property that is preserved by the flow of (1.1). In this set-
ting, the orbital stability of the continuous ground state can be described as
follows: Let

(1.5) Γ :=
⋃
α∈R
{eiαη(x)}

and assume that ψ(0, ·) is a symmetric function satisfying dist(ψ(0, ·),Γ) ≤ δ
for some δ sufficiently small, then for all times t > 0, if ψ(t, ·) denotes the
solution of (1.1), we have

(1.6) ∀ t > 0, dist(ψ(t, ·),Γ) < Cδ,

where C is a constant independent of δ and t, and where the distance is mea-
sure in H1 norm. The present paper deals with the persistence of this result
by fully discrete numerical methods. It is an old problem that was pointed out
in several papers in the last 30 years, see for instance [7, 18, 8, 5], and the
numerical approximation of (1.4) over long times has now become a classical
benchmark to test the performance and stability of numerical schemes, see for
instance [1, 9, 4] and the references therein. However, as far as we know,
no result of the form (1.6) has been proven in the literature for fully discrete
approximations of (1.1) (see however [2, 5] for the space discretized case).

In particular, the effect of the time discretization yields many mathematical
difficulties. Durán & Sanz-Serna gave in [8] some asymptotic expansion of the
numerical solution close to a ground state, but the lack of a modified energy
acting on H1 and preserved over long time by the numerical scheme (the so
called backward error analysis) was an obstruction to define a possibly stable
numerical ground state. Here, we take advantage of a recent construction of
such a modified energy given by Faou & Grébert in [11] to show the existence
and stability of a modified ground state that is close to (1.4) in energy norm.
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In this paper, the discretization of (1.1) we consider are made of three levels
of approximations:

– A space discretization, where we use a grid with mesh size h > 0
made of an infinite collection of equidistant points of R. The equation
(1.1) is then approximated by the discrete nonlinear Schrödinger equation
(DNLS) where the Laplace operator is replaced by its finite difference
approximation over three points.

– A Dirichlet cut-off, where we replace the integrability condition at
infinity of ψ and its derivative by a Dirichlet boundary condition at the
boundary of a large window of size 2Kh where K >> 1.

– A time discretization algorithm to integrate the DNLS equation
with Dirichlet boundary condition. This discretization introduces a last
parameter τ which represents the time step. To do this we consider a
symplectic time splitting algorithm where the kinetic part and potential
part are solved alternately as described for instance in [19].

Each of these three levels of discretization relies on discretization parameters.
In this paper, we prove orbital stability in the sense of (1.6) for the numerical
solution, where the distance to Γ is estimated in terms of the three discretiza-
tion parameters h, K and τ .

We first present some numerical experiments showing that the solitary wave
rapidly disappears if either the algorithm of integration is not symplectic, or
if it is symplectic, but used with a too large CFL number τh−2.

The proof is organized as follows: we first recall in Section 4 the main
arguments of the proof of the orbital stability result in the continuous case,
following in essence the presentation made in [12]. We then give in Section 5
an abstract result showing that if the energy space H1 is well approximated
by the space discretization, and if the numerical scheme preserves - or almost
preserves - modified L2 norm and energy functions that are close to the exact
ones, we can obtain orbital stability results with precise bounds depending on
the parameters. We then apply this formalism in Section 6 to our three levels
of discretization.

As the proof of orbital stability result is based on the variational charac-
terization of the solitary wave and thus heavily relies on the preservation of
the energy and L2 norm, long time bounds can be straightforwardly obtained
for energy and L2 norm preserving schemes such as the Dufour-Fortin-Payre
scheme, see [7]. This follows directly from the analysis of the space discretized
case (see also Remark 2.6).

The cornerstone of the analysis of splitting method is the construction of
the modified energy. Recall that in the finite dimensional case, the existence
of modified energy is guaranteed by Hamiltonian interpolation: see [3, 15, 16]
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but cannot be applied straightforwardly to Hamiltonian PDEs unless unrea-
sonable a priori assumptions are made on the regularity of the numerical so-
lution, which prevents a fair use of the bootstrap argument underlying the
orbital stability methodology. Here we take advantage of the recent backward
error analysis result of [11] to construct a modified energy acting on H1 for
splitting methods applied to (1.1). Actually we give a simplified proof of a
simpler version of the result presented in [11] or [10], which has some interest
in itself. Note that the construction of this modified energy heavily relies on
the symplecticity of the splitting schemes .

Using this result, we then prove an orbital stability result for fully discrete
splitting method applied to (1.1) with a CFL restriction, and over very long
times of the form nτ ∼ τ−M , where M ≥ 0 is an integer number depending
on the CFL.

Remark 1.1. — We consider in this paper only symmetric perturbations sat-
isfying ψ(x) = ψ(−x). We would like to point out that the general situation
is much more complicated, mainly because of the space discretization. The
presence of a discrete grid actually prevents the group of continuous transla-
tions to act on the solutions of DNLS (as it is always the case for the group
of rotations). The main effect is the introduction of new frequencies in the
system depending on the size of the mesh and interacting with the spectrum
of the DNLS operator, which implies various possible type of behaviors for the
numerical solutions. The complete numerical and mathematical description
of this situation - which is still a work in progress - is in any case out of the
scope of the present paper.

2. Three discretization levels and main results

We now describe more precisely the three levels of approximation of (1.1)
mentioned in the introduction. At each step, we state the orbital result that
we obtain.

2.1. Space discretization. — Having fixed a positive parameter h we
discretize space by substituting the sequence ψ` ' ψ(h`), ` ∈ Z for the function
ψ(x), and the second order operator of finite difference ∆h defined by

(2.1) (∆hψ)` :=
ψ`+1 + ψ`−1 − 2ψ`

h2
,

for the Laplace operator ∂xx. The NLS is thus reduced to the discrete nonlinear
Schrödinger equation (DNLS):

(2.2) iψ̇` = − 1
h2

(ψ`+1 + ψ`−1 − 2ψ`)− |ψ`|2ψ`, ` ∈ Z .
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where t 7→ ψ(t) = (ψ`(t))`∈Z is an application from R to CZ. With this
equation is associated a Hamiltonian function and a discrete L2 norm given
by

(2.3) Hh(ψ) = h
∑
j∈Z

[∣∣∣∣ψj − ψj−1

h

∣∣∣∣2 − |ψj |42

]
and Nh(ψ) = h

∑
j∈Z
|ψj |2.

The discrete space of functions is

Vh = {ψj ∈ CZ |ψj = ψ−j}
equipped with the discrete norm

‖ψ‖
h

= 2h
∑
j∈Z

|ψj+1 − ψj |2

h2
+ h

∑
j∈Z
|ψj |2.

Following [2], we identify Vh with a finite element subspace of H1(R; C). More
precisely, defining the function s : R→ R by

(2.4) s(x) =


0 if |x| > 1,
x+ 1 if − 1 ≤ x ≤ 0,
−x+ 1 if 0 ≤ x ≤ 1,

the identification is done through the map ih : Vh → H1(R; C) defined by

(2.5) {ψj}j∈Z 7→ (ihψ)(x) :=
∑
j∈Z

ψj

(x
h
− j
)
.

Recall that Γ is the curve of minima of the continuous Hamiltonian and is
given by (1.5). With these notations, we have the following result

Theorem 2.1. — There exist δ0 and h0 such that for all δ < δ0 and h ≤ h0,
if (ψ0)j∈Z ∈ Vh is such that

dist(ihψ0,Γ) ≤ δ,
where the distance is measured in the continuous H1(R; C) norm, then the
solution (ψj(t))j∈Z of (2.2) satisfies

∀ t ≥ 0, dist(ihψ(t),Γ) ≤ C(δ + h)

for some constant C independent of h and δ.

Notice that the DNLS flow is not defined globally everywhere, i.e. for all
initial data in Vh and all times t. However since a solution of DNLS issued from
an initial datum close to Γ remains unconditionally close to Γ, such solution
is automatically global.

The proof of this Theorem is given in Subection 6.1, as a consequence of
the abstract orbital stability Theorem 5.3.
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2.2. Dirichlet cut-off. — In order to reduce to a finite dimensional system
we fix a large number K ≥ 1, substitute the sequence −K, ...,K for the set
Z in (2.2), and add Dirichlet boundary conditions ψ−K−1 = ψK+1 = 0. The
equation we consider is thus the (large) ordinary differential system

(2.6)

 iψ̇` = − 1
µ2

(ψ`+1 + ψ`−1 − 2ψ`)− |ψ`|2ψ`, −K ≤ ` ≤ K

ψ±(K+1) = 0.

Note that here, we use the convention that ψ` = 0 for all |`| ≥ K + 1, so
that the previous system is indeed a closed set of differential equations. The
corresponding discrete function space is

(2.7) Vh,K := {(ψj)j∈Z ∈ Vh |ψj = 0 for |j| ≥ K + 1},

on which we can define the Hamiltonian function and discrete L2 normHh,K :=
Hh|Vh,K and Nh,K := Nh|Vh,K as restrictions of the functions (2.3) to Vh,K ⊂
Vh. Similarly, we define ih,K = ih|Vh,K . In the following, we often use the
notation (ψj)Kj=−K to denote an element of Vh,K with the implicit extension
by 0 for |j| ≥ K + 1 to define an element of (2.7). With these notations, we
have the following result, which is proven in Subsection 6.2:

Theorem 2.2. — There exist constants C1, C2, δ0 and ε0 such that for all
δ < δ0 and all h and K such that h + 1

h2 e
−C1Kh ≤ ε0, if (ψ0

j )
K
j=−K ∈ Vh,K is

such that
dist(ih,Kψ0,Γ) ≤ δ,

then the solution (ψj(t))Kj=−K of (2.6) satisfies

∀ t ≥ 0, dist(ih,Kψ(t),Γ) ≤ C2

(
δ + h+

1
h2
e−C1Kh

)
.

Remark 2.3. — The exponentially small term in the previous estimate rep-
resents the effect of the Dirichlet cut-off. As we will see below, it directly
comes from the fact that the function η is exponentially decreasing at infinity.

2.3. Time discretization. — In this work the time discretization of (1.1)
that we consider is a splitting scheme: we construct ψn the approximation of
the solution ψ(t) of (1.1) at time nτ iteratively by the formula

ψn+1 = Φτ
A ◦ Φτ

P (ψn),

where the flow Φτ
P is by definition the exact solution of

iψ̇` = −|ψ`|2ψ`, ` = −K, . . . ,K ,
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in Vh,K which is given explicitly by formula Φτ
P (ψ)` = exp(iτ |ψ`|2)ψ`. The

flow Φτ
A, is by definition the solution of

(2.8) iψ̇` = − 1
h2

(ψ`+1 + ψ`−1 − 2ψ`), ` = −K, . . . ,K ,

with the convention ψ` = 0 for |`| ≥ K + 1. The implementation of this
numerical scheme requires the computation of an exponential of a tridiagonal
matrix at each step. It could also be done in discrete Fourier space in which the
operator on right-hand side is diagonal. The main advantage of this splitting
method is that it is an explicit and symplectic scheme.

Our main result is the following

Theorem 2.4. — There exist constants C1, C2, δ0 and ε0 such that for all
δ < δ0 and all h, τ and K such that h+ 1

h2 e
−C1Kh ≤ ε0 and the following CFL

condition is satisfied

(2.9) (2M + 3)
τ

h2
<

2π
3
,

then if (ψ0
j )
K
j=−K ∈ Vh,K is such that

dist(ih,Kψ0,Γ) ≤ δ,
we have

(2.10) ∀nτ ≤ τ−M , dist(ih,K(Φτ
A◦Φτ

P )nψ0,Γ) ≤ C2

(
δ+h+

τ

h
+

1
h2
e−C1Kh

)
.

The proof of this result is given in Subsection 6.3 as a consequence of the
abstract Theorem 5.3 and the existence of a modified energy for the splitting
scheme given in Theorem 6.1. The proof of this latter result occupies the entire
Section 7. As we will see below by numerical simulations, the symplecticity of
the numerical scheme is essential to ensure the orbital stability. In our case,
this is due to the existence of the modified energy whose existence heavily
relies on the symplecticity of the splitting scheme.

Remark 2.5. — In the last estimate (2.10), the term τ/h represents the error
induced by the modified energy constructed with the method of [11] (see
Section 7 below). Note that under the condition (2.9), this term is actually of
order O(h).

Remark 2.6. — An alternative time approximation of (2.6) is the modified
Crank-Nicolson scheme given by Delfour-Fortin-Payre see [7, 17] defined as
the application ψn 7→ ψn+1 such that

ψn+1
` = ψn` +

iτ

2
(∆h(ψn+1 + ψn))` +

iτ

4
(|ψn+1

` |2 + |ψn+1
` |2)(ψn+1

` + ψn` ),

for ` = −K, . . . ,K. It can be shown using a fixed point argument that for τ
sufficiently small, ψn+1 is well defined, and that this scheme preserves exactly
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the discrete L2 norm and discrete energy (2.3). Using this property, it can eas-
ily be shown that the conclusions of Theorem 2.2 extends straightforwardly to
this specific fully discrete case. Notice that this method has the disadvantage
to be strongly implicit.

3. Numerical experiments

In this section, we would like to illustrate the results given in Theorem 2.4,
and prove that if the condition (2.9) is not satisfied, we can observe numerical
instabilities after some time and the destruction of the solitary wave solution.
In contrast, we show that if the CFL number τ/h2 is small enough, a numerical
stability can be indeed observed which illustrates the results given by Theorem
2.4. On the other hand, we show that for non symplectic integrators, even used
with a very small CFL number, numerical instabilities appear.

In a first example, we take h = 0.1875, K = 80 (so that Kh = 15), τ = 0.2
and the initial condition (1.4). The CFL number τ/h2 is equal to 5.7. We
consider the integrator Φτ

A ◦ Φτ
P defined above. As mentioned in the previous

section, the flow of ΦP τ can be calculated explicitely, while the computation
of ΦA - see (2.8) - is performed using the expm MATLAB procedure.

In Figure 1, we plot the absolute value of the fully discrete numerical so-
lution ψn = (Φτ

A ◦ Φτ
P )n(ψ0). We can observe that the shape of the solitary

wave solution is destroyed between the times t = 100 and 200.
In a second example, we take the same initial data and parameters K = 80

and h = 0.1875, except that we take a much smaller τ = 0.001 making the
CFL number equal to 0.028. However, we break artificially the symplecticity
of the integrator by replacing the exact evaluation of the exponential in the
flow Φτ

A by its Taylor approximation of order 2:

exp(τA) ' I + τA+
τ2

2
A2.

As before, we observe in Figure 2 some instability phenomenon after some
time, despite the fact that the CFL number is very small. Such an instability
is due to the non symplectic nature of the integrator, which prevents the
existence of a modified energy preserved by the numerical scheme.

Finally, we consider the same initial condition and numbers K and h, but
we take τ = 0.02 making the CFL number be equal to 0.57 and we compute
the exponential exactly making the scheme symplectic. In Figure (3) we can
observe that the solitary wave solution is preserved for a very long time, up
to t = 106 which corresponds to 2.108 iterations. This result illustrates our
Theorem 2.4.
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Figure 1. Instability for τ/h2 = 5.7

4. The continuous case

Before giving the proofs of the Theorems presented above, we recall here
the main lines of the proof of the orbital stability result in the continuous
and symmetric case obtained first by [20] (see also [13, 14, 12]). The proofs
of the discrete results will be essentially variations on the same theme. The
method is based on the variational characterization of the ground state η as
the unique real symmetric minimizer of the problem

(4.1) min
N(ψ)=1

H(ψ)

where H is the Hamiltonian (1.2) and N the norm (1.3). Note that by the
method of Lagrange multipliers there exists λ > 0 such that

−∂xxη − η3 = −λη.

Remark 4.1. — We only consider the case where N(η) = 1 in order to avoid
the introduction of a supplementary parameter. It is clear to the reader that
we could also consider the numerical approximation of any given ground state,
provided that its L2 norm enters into all the constants appearing in the esti-
mates below.
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Figure 2. Instability of non symplectic integrators

In the following, we set

V = { ψ ∈ H1(R; C) | ψ(−x) = ψ(x) }.

We also define the real scalar product

〈ϕ,ψ〉 = Re
∫

R
ϕ(x)ψ(x)dx.

This scalar product allows to identify H1(R; C) with the product H1(R; R)×
H1(R; R) as follows: If ψ = 1√

2
(q+ ip) and ϕ = 1√

2
(q′+ ip′) where p, q, p′ and

q′ are real symmetric H1(R; R) functions, then we have

〈ϕ,ψ〉 =
1
2

∫
R
q(x)q′(x) + p(x)p′(x)dx.

The real scalar product on H1(R; C) ' H1(R; R)×H1(R; R) is then given by

(ϕ,ψ) = 〈ϕ,ψ〉+ 〈∂xϕ, ∂xψ〉,

and we set

‖ϕ‖2

H1 := (ϕ,ϕ) =
1
2

∫
R
|∂xp|2 + |∂xq|2 + |p|2 + |q|2dx
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Figure 3. Long time stability for τ/h2 = 0.57

for ϕ = q+ip√
2

. In the rest of this paper, we often amalgamate the two complex
and real notations.

In the following, we set

(4.2) U(R) = {ϕ ∈ V | dist(ψ,Γ) < R},

where Γ is defined in (1.5), and the distance is measured in H1 norm.
Note that the Hamiltonian function H and the norm N are smooth in

H1 (using the fact that H1 is an algebra). Moreover, these functions are
gauge invariant, in the sense that for all ϕ ∈ H1 and all α ∈ R, we have
H(eiαϕ) = H(ϕ) and N(eiαϕ) = N(ϕ). Due to this invariance, it is immediate
to realize that the whole manifold Γ is formed by minima of the minimization
problem (4.1). Then it is well known [20, 13, 14, 12] that these minima are
nondegenenerate in the directions transversal to the orbit Γ defined in (1.5),
for symmetric functions.

More precisely, following [12], we define the following set of coordinates in
the vicinity of Γ: set

(4.3) W = {u ∈ V | 〈u, η〉 = 〈u, iη〉 = 0},
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equipped with the H1 norm induced by the space V . As iη is tangent to
the curve Γ and orthogonal(1) to η, the previous W can be interpreted as the
space orthogonal to the plane containing the planar curve Γ. Note that W
is invariant under the multiplication by complex number: for any z ∈ C, if
u ∈W then zu ∈W .

We define the map χ as follows:

(4.4) T× R×W 3 (α, r, u) 7→ χ(α, r, u) = eiα((1 + r)η + u) ∈ V,
where T = R/(2πZ) is the one-dimensional torus.

The following Lemma can be found in [12, Section 5, Proposition 1]. In
our symmetric situation, we give here an independent proof that will later be
easily transfered to the situation of discrete systems:

Lemma 4.2. — There exist constants r0 and R such that the application χ
is smooth and bounded with bounded derivatives from T × [−r0, r0] × B(R)
to V , and such for all ϕ ∈ U(R), there exists (α, r, u) ∈ T × R × W such
that ϕ = χ(α, r, u). Moreover, the application χ−1 is smooth with bounded
derivatives on U(R), and there exists a constant C such that for all ψ ∈ U(R),
we have

(4.5) ‖u(ψ)‖
H1 ≤ C dist(ψ,Γ).

Proof. — The first part of this lemma is clear using the explicit formula for
χ. To prove the second one, let us consider the projection of ψ onto the plane
generated by (η, iη):

〈ψ, η〉η + 〈ψ, iη〉iη =: z(ψ)η
with z(ψ) = 〈ψ, η〉+ i〈ψ, iη〉 =

∫
ψη̄ ∈ C. Note that the application ψ 7→ z(ψ)

is smooth with bounded derivatives from V to C. Moreover, we have

dist(ψ,Γ)2 ≥ inf
α
N(ψ − eiαη) ≥ ||z(ψ)|2 − 1|.

Hence for R ≤ 1/2 and for all ψ ∈ U(R), we have |z(ψ)| ∈ [1/2, 3/2]. This
shows that the applications

U(R) 3 ψ 7→ α̂(ψ) = arg(z(ψ)) ∈ T
and

U(R) 3 ψ 7→ r̂(ψ) = |z(ψ)| − 1 ∈ [−1/2, 1/2]
are well defined and smooth with bounded derivatives on U(R) (as compo-
sition of smooth functions with bounded derivatives). Moreover, we have
ψ − z(ψ)η ∈W : as W is invariant under the multiplication by complex num-
bers, the function

û(ψ) := e−iα̂(ψ)ψ − (1 + r̂(ψ))η = e−iα̂(ψ)(ψ − z(ψ)η)

(1)Recall that here 〈 · , · 〉 is a real scalar product.
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is in W , smooth for ψ ∈ U(R), and satisfies ψ = χ(α̂(ψ), r̂(ψ), û(ψ)).
To prove (4.5) let ψ∗ ∈ Γ be the element of Γ realizing the minimum in

the right-hand side (which exists by compactness of Γ). As ψ∗ ∈ Γ we have
û(ψ∗) = 0. As the fonction ψ 7→ û(ψ) is uniformly Lipschitz in U(R), we have

‖û(ψ)‖
H1 ≤ C‖ψ − ψ∗‖H1 = C dist(ψ,Γ),

which gives the result.

Let us now define the function u 7→ r(u) from W to R by the implicit
relation

N(χ(α, r(u), u)) = 1.
By explicit calculation, we have

(4.6) r(u) = −1 +
√

1−N(u),

from which we deduce that r(u) is well defined and smooth in a neighborhood
of 0 in H1, and moreover that ‖r(u)‖

H1 = O(‖u‖2

H1) if u is sufficiently small.
Hence, (α, u) 7→ χ(α, r(u), u) is a local parametrization of S in a neighborhood
of Γ ⊂ S, where

(4.7) S := {ψ ∈ V |N(ψ) = 1} .
Now let us define the function

(4.8) H(u) = H(χ(α, r(u), u)),

which is well defined on W by gauge invariance of H. Moreover, this function
is smooth in a neighborhood of 0. Then it can be shown (see [12]) that u = 0
is a non degenerate minimum of H(u): we have

dH(0) = 0, and ∀U ∈W, d2H(0)(U,U) ≥ c‖U‖2

H1 .

Note that as H is smooth with locally bounded derivatives, the last coerciv-
ity estimate extends to a neighborhood of 0 uniformly: there exist positive
constants c and ρ such that

(4.9) ∀u ∈ B(ρ), ∀U ∈W, d2H(u)(U,U) ≥ c‖U‖2

H1 ,

where B(ρ) denotes the ball of radius ρ in W . In other words, the function H
is strictly convex on B(ρ) and has a strict minimum at u = 0.

With these results at hand, let ψ ∈ S, and assume that dist(ψ,Γ) is small
enough so that we can write

ψ = eiα((1 + r(u))η + u),

for some (α, u) ∈ T ×W . Then for some constant C an sufficiently small u,
we have

dist(ψ,Γ) ≤ ‖ψ − eiαη‖
H1 ≤ C(r(u) + ‖u‖

H1) ≤ C‖u‖
H1 .
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Now as u = 0 is a minimum of the strictly convex function H on the ball B(ρ),
we can write

H(ψ)−H(η) = H(u)−H(0) > γ‖u‖2

H1 > cdist(ψ,Γ)2

for some constants γ and c > 0 depending only on ρ. Then a Taylor expansion
of H around u = 0 shows that

|H(u)−H(0)| ≤ C‖u‖2

H1 ,

for some constant C depending on ρ and H but not on u ∈ B(ρ). Hence using
(4.5) we obtain the existence of constants c, C and R0 > 0 such that for all
ψ ∈ S such that dist(ψ,Γ) < R0, we have

cdist(ψ,Γ)2 ≤ |H(ψ)−H(η)| ≤ C dist(ψ,Γ)2.

The stability result (1.6) is then an easy consequence of this relation: As-
sume that ψ0 ∈ S satifies dist(ψ(0),Γ) ≤ δ < δ0 where δ0 < R0, and let ψ(t),
t > 0 be the solution of (1.1) starting at ψ(0) ≡ ψ0. Then by preservation of
the energy H and norm N , we have ψ(t) ∈ S for all t > 0, and moreover as
long as ψ(t) is such that dist(ψ(t),Γ) < R0 we can write
(4.10)
cdist(ψ(t),Γ)2 ≤ |H(ψ(t))−H(η)| = |H(ψ(0))−H(η)| ≤ C dist(ψ(0),Γ)2.

Hence if δ0 is small enough, this shows that for all t, dist(ψ(t),Γ) < R0 and
that (4.10) is in fact valid for all times t > 0. This implies (1.6) in the case
N(ψ) = 1.

5. An abstract result

In this section, we prove an abstract result for the existence and stability
of discrete ground states. We first give conditions ensuring that a discrete
Hamiltonian acting on a discrete subspace ofH1 possesses a minimizing ground
state. We then show how the existence of a discrete flow (almost) preserving
the Hamiltonian and the L2 norm ensures the numerical orbital stability over
long times. In the next sections, we will apply this result to the three levels
of discretization described above.

5.1. Approximate problems. — We consider a set of parameter Σ ∈ Rp

and a function ε : Σ→ R+. This function will measure the “distance” between
the discrete and continuous problems.

For all µ ∈ Σ, we consider a Hilbert space Vµ equipped with a norm ‖·‖
µ
. For

a given number R, we denote by Bµ(R) the ball of radius R in Vµ. Moreover,
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for a given k ≥ 0 a function F : Vµ → C of class Ck, and a given ψµ ∈ Vµ, we
set for all n = 0, . . . , k

‖dnF (ψµ)‖
µ

= sup
U1,...,Un∈Vµ\{0}

|dnF (ψµ)(U1, . . . , Un)|
‖U1‖

µ
. . . ‖Un‖

µ

and we set
‖F‖Ck(Bµ(R))

= sup
n=0,...,k

sup
ψµ∈Bµ(R)

‖dnF (ψµ)‖
µ
.

Moreover, we say that F is gauge invariant if it satisfies, for all α ∈ T and all
ψµ ∈ Vµ, F (eiαψµ) = F (ψµ). Similarly, we say that G : Vµ × Vµ → C is gauge
invariant if for all ϕµ and ψµ in Vµ, and all α ∈ T, we have G(eiαϕµ, eiαψµ) =
G(ϕµ, ψµ).

We assume that the family (Vµ)µ∈Σ satisfies the following assumptions:
(i) For all µ ∈ Σ, there exist a linear embedding iµ : Vµ → H1 and a

projection πµ : H1 7→ Vµ that are gauge invariant in the sense that
for all α ∈ T and ψµ ∈ Vµ, eiαiµψµ = iµe

iαψµ and for all ψ ∈ V ,
eiαπµψ = πµe

iαψ. Morever, we assume that iµ and πµ are real in the
sense that iµψµ = iµψ and πµψµ = πµψ, and that they satisfy the relation
πµ ◦ iµ = id|Vµ . Finally, we assume that there exists a constant R0 > 1
such that for all µ ∈ Σ, and ϕµ ∈ Bµ(R0),∣∣‖ϕµ‖2

µ
− ‖iµϕµ‖

2

H1

∣∣ ≤ ε(µ)‖iµϕµ‖
2

H1 .

(ii) For all µ ∈ Σ, there exists a gauge invariant real scalar product 〈 · , · 〉µ
such that setting Nµ(ψµ) = 〈ψµ, ψµ〉µ, we have Nµ(ψµ) ≤ ‖ψµ‖

2

µ
and

‖N ◦ iµ −Nµ‖C2(Bµ(R0))
≤ ε(µ).

(iii) For all µ ∈ Σ, there exists a gauge invariant function Hµ : Vµ → R which
is a modified Hamiltonian in the sense that

‖H ◦ iµ −Hµ‖C2(Bµ(R0))
≤ ε(µ).

(iv) If η is the continuous ground state (1.4) defined in the previous section,
we have for all µ ∈ Σ

(5.1) ‖iµπµη − η‖H1 ≤ ε(µ).

Note that using (i), there exist constants c, C and ε0 such that for ψµ ∈ Vµ
and µ ∈ Σ such that ε(µ) < ε0, we have

(5.2) c‖iµψµ‖H1 ≤ ‖ψµ‖µ ≤ C‖iµψµ‖H1 .

In the rest of this Section, we will assume that the hypothesis (i)–(iv) are
satisfied.
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5.2. Local coordinate system. — We will assume here that all the µ ∈ Σ
considered satisfy the relation ε(µ) < ε0 for some constant ε0 to be precised
along the text. In echo to (4.7) we define for all µ ∈ Σ

Sµ = {ψµ ∈ Vµ |Nµ(ψµ) = 1},
and the tangent space to πµη (compare (4.3)):

Wµ = {uµ ∈ Vµ | 〈uµ, πµη〉µ = 〈uµ, iπµη〉µ = 0}.
Note that iµWµ is not included in W .

By a slight abuse of notation, we will write uµ ∈ Bµ(γ) the ball of radius
γ in Wµ (instead of Bµ(γ) ∩Wµ) for γ > 0. We also set for R > 0 (compare
(4.2))

(5.3) {ψµ ∈ Vµ | distµ(ψµ, πµΓ) ≤ γ},

where distµ denotes the distance measured in the norm ‖ · ‖
µ

and where

πµΓ :=
⋃
α∈R
{eiαπηη}.

We then define the discrete application χµ (see (4.4)):

T× R×Wµ 3 (α, r, uµ) 7→ χµ(α, r, uµ) = eiα((1 + r)πµη + uµ) ∈ Vµ.

Lemma 5.1. — There exist constants ε0, r0, C and R such that for all µ ∈
Σ with ε(µ) < ε0, the application χµ is smooth and bounded with uniformly
bounded derivatives (with respect to µ) from T× [−r0, r0]× Bµ(R) to V , and
such for all ϕµ ∈ Uµ(R), there exists (α, r, uµ) ∈ T × R ×W such that ϕµ =
χµ(α, r, uµ). Moreover, the application χ−1

µ is smooth with uniformly bounded
derivatives on Uµ(R), and for all ψµ ∈ Uµ(R), we have

(5.4) ‖uµ(ψµ)‖
H1 ≤ C distµ(ψµ, πµΓ).

Proof. — The proof is exactly the same as the one of Lemma 4.2 by replacing
〈 · , · 〉 by 〈 · , · 〉µ, N by Nµ and η by πµη. The fact that the constants are
uniform in µ is a consequence of the direct construction made in the proof of
this Lemma and of the hypothesis (i)-(iv). Note that we use the fact that

(5.5) |Nµ(πµη)− 1| ≤ Cε(µ),

for some constant C independent on µ, which is a consequence of (ii) and
(5.1), provided ε(µ) < ε0 is small enough to ensure that ‖πµη‖µ < R1 (which
is possible upon using (5.1) and (5.2)).

Note that using the gauge invariance of iµ, we have for all (α, r, uµ) ∈
T× R×Wµ

iµχµ(α, r, uµ)− χ(α, r, iµuµ) = eiα(1 + r)(iµπµη − η)
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and hence for all uµ ∈Wµ, and r ∈ R,

(5.6) ‖iµχµ(α, r, uµ)− χ(α, r, iµuµ)‖
H1 ≤ (1 + |r|)ε(µ).

Following the formalism of the previous section, we define for all µ ∈ Σ the
function uµ 7→ rµ(uµ) on Wµ by the implicit relation

Nµ(χµ(α, rµ(uµ), uµ)) = 1,

so that (α, uµ) is a local coordinate system close to a rescaling of πµΓ. Using
the definition of Nµ and χµ, we immediately obtain that

rµ(uµ) = −1 +

√
1− Nµ(uµ)

Nµ(πµη)
.

With this explicit expression, and using again (ii) and (5.6) there exist con-
stants ρ0, C and ε0 such that for all µ ∈ Σ with ε(µ) < ε0, rµ is C2(Bµ(ρ0)),
and

(5.7) ‖rµ − r ◦ iµ‖C2(Bµ(ρ0))
≤ Cε(µ),

where the function r is defined in (4.6). Now defining (compare (4.8))

Hµ(uµ) := Hµ(χµ(α, rµ(uµ), uµ)),

the previous relations, together with (iii) and (5.6) imply that if ρ0 is suffi-
ciently small, Hµ is well defined on Bµ(ρ0), and moreover

(5.8) ‖H ◦ iµ −Hµ‖C2(Bµ(ρ0))
≤ Cε(µ).

for some constant C independent of µ, and for all µ ∈ Σ such that ε(µ) < ε0.

5.3. Existence of a discrete ground state. — In the previous section,
we have shown that the continuous function H can be approximated by a
function Hµ on balls of fixed radius ρ0 in Vδ. This is the key argument to
prove the following result:

Theorem 5.2. — Under the previous hypothesis, there exists ε0 such that for
all µ ∈ Σ with ε(µ) ≤ ε0, there exists a discrete ground state ηµ ∈ Vµ that
realizes the minimum of Hµ under the constraint Nµ(ψµ) = 1, and such that

(5.9) ‖ηµ − πµη‖Vµ ≤ ε(µ).

Moreover, there exist constants C, δ0 and γ0 such that for all µ ∈ Σ with
ε(µ) < ε0, and all δ < δ0,

(5.10) dist(iµψµ,Γ)2 ≤ C(|Hµ(ψµ)−Hµ(ηµ)|+ ε(µ) + δ),

for all ψµ such that dist(iµψµ,Γ) ≤ γ0 and |Nµ(ψµ)− 1| ≤ δ.
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Proof. — Let us take ε0 and ρ0 as in the previous section. Recall that as η is
a minimizer of the continuous Hamiltonian H, and by definition of H, we have
dH(0) = 0. Using (5.8), we deduce that for all µ ∈ Σ such that ε(µ) < ε0,

(5.11) ‖dHµ(0)‖
µ
≤ Cε(µ).

Moreover, for all U ∈Wµ, and uµ ∈ Bµ(ρ0), we have using again (5.8)

|d2Hµ(uµ)(U,U)− d2H(iµuµ)(iµU, iµU)| ≤ Cε(µ)‖U‖2

µ
.

Using (4.9) and (5.2), this shows that Hµ is uniformly strictly convex in
Bµ(ρ0), i.e. satisfies

∀uµ ∈ Bµ(ρ0), ∀U ∈Wµ, d2Hµ(uµ)(U,U) ≥ c0‖U‖
2

µ
,

with a constant c0 independent on µ such that ε(µ) < ε0 small enough.
As Hµ is strictly convex on the closed ball Bµ(ρ0), Hµ reaches its minimum

on Bµ(ρ0) at some point u∗µ ∈ Bµ(ρ0) (see for instance [6]). We want to prove
that the minimum is reached in the interior of the ball. So assume on the
contrary that u∗µ is such that ‖u∗µ‖µ = ρ0, then we have

Hµ(u∗µ)−Hµ(0) = dHµ(0) · u∗µ + h(u∗µ)

with h(u∗µ) > c0‖u∗µ‖
2

µ
. Hence, as |dHµ(0) · u∗µ| ≤ Cε(µ)‖u∗µ‖µ (see (5.11)) we

get
Hµ(u∗µ)−Hµ(0) > c0ρ

2
0 − Cε(µ)ρ0.

This shows that for ε0 sufficienly small, Hµ(u∗µ) > Hµ(0) which is a contradic-
tion. Hence the u∗µ is in the open ball Bµ(ρ0) and thus

dHµ(u∗µ) = 0.

Moreover, as Hµ is uniformly convex on the ball Bµ(ρ0), we have

‖u∗‖
µ
≤ C‖dHµ(u∗)− dHµ(0)‖

µ
≤ Cε(µ).

for some constant C independent on µ. Then setting

(5.12) ηµ := χµ(0, rµ(u∗µ), u∗µ) = (1 + rµ(u∗µ))πµη + u∗µ,

we verify using (5.7) and (5.12) that we have ‖πµη − ηµ‖µ ≤ Cε(µ) for some
constant C independent on µ.

It remains to prove (5.10). Let ψµ ∈ Vµ and α ∈ T, we have

‖iµψµ − eiαη‖H1 ≤ ‖iµψµ − eiαiµπµη‖H1 + ‖iµπµη − η‖H1

≤ C‖ψµ − eiαπµη‖µ + Cε(µ),

where we used (5.2). Hence we have for all ψµ
(5.13) dist(iµψµ,Γ) ≤ C distµ(ψµ, πµΓ) + Cε(µ)



NUMERICAL GROUND STATES FOR DNLS 19

for some constant independent of µ. Similarly we prove that

(5.14) distµ(ψµ, πµΓ) ≤ C dist(iµψµ,Γ) + Cε(µ),

for some constant C independent on µ. Now let ψµ be a function such that
dist(iµψµ,Γ) < γ0, with γ0 small enough. Assume first that Nµ(ψµ) = 1.
Using (5.14), ψµ belongs to a set Uµ(γ) with a constant γ depending on γ0

and ε0. If these parameters are sufficiently small, we can define an element uµ
of Bµ(ρ0) and α ∈ T such that ψµ = χµ(α, rµ(uµ), uµ) (recall that Nµ(ψµ) = 1)
with uµ satisfying (5.4). Hence we have

|Hµ(ψµ)−Hµ(ηµ)| = |H(uµ)−H(u∗µ)|,

where u∗µ is the minimizer of H, associated with the discrete ground state ηµ.
This implies that there exists a constant C independent of µ such that

‖uµ − u∗µ‖
2

µ
≤ C|Hµ(ψµ)−Hµ(ηµ)|.

Then using that ‖u∗µ‖µ ≤ Cε(µ), that ‖uµ‖µ = distµ(ψµ, πµΓ) +O(ε(µ)), and
the inequalities (5.13) and (5.14) we obtain (5.10) in the case Nµ(ψµ) = 1.
Now if Nµ(ψµ) 6= 1 but |N(ψµ)− 1| ≤ δ with δ sufficiently small, there exists
a point vµ such that ‖vµ‖µ ≤ δ and N(ψµ − vµ) = 1. We can then apply the
previous estimate to ψµ−vµ, and we use the uniform bounds on the derivative
Hµ to conclude. The approximation ψµ ∼ vµ gives rise to the terms Cδ in
(5.10).

5.4. Discrete orbital stability. — In the previous paragraph, we have
shown that the conditions (i)–(iv) are sufficient to ensure the existence of
a modified ground state for the modified energy Hµ, and that this ground
state is sufficiently close to the exact ground state η to allow the control of
the distance between Γ and ψµ via the distance between the Hamiltonian of
Hµ(ψµ) and Hµ(ηµ), see (5.10). As a consequence we obtain the following
stability result

Theorem 5.3. — Assume that the hypothesis (i)–(iv) are satisfied, and as-
sume moreover that for all R0 and all µ ∈ Σ there exist β(µ) > 0 and an
application Φµ : Bµ(R0)→ Vµ such that

∀ψµ ∈ Bµ(R0), Nµ(Φµ(ψµ)) = Nµ(ψµ)

and

(5.15) ∀ψµ ∈ Bµ(R0), |Hµ(Φµ(ψµ))−Hµ(ψµ)| ≤ β(µ).

Then there exist δ0 > 0 and a constant C such that for all positive δ < δ0 and
all µ ∈ Σ such that ε(µ) < ε0 and ψ0

µ satisfying dist(iµψ0
µ,Γ) ≤ δ then the
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sequence (ψnµ)n≥0 defined by

∀n ≥ 0, ψn+1
µ = Φµ(ψnµ)

satisfies
∀n ≥ 0, dist(iµψnµ ,Γ) ≤ C(δ + ε(µ))

as long as nβ(µ) ≤ ε(µ) + δ.

Proof. — Using the hypothesis on ψ0
µ and (5.2), there exists R0 depending

only on δ0 such that ψ0
µ ∈ Bµ(R0/2) uniformly in µ and there exists ν̃ ∈ Γ

such that ‖iµψ0
µ − ν̃‖H1 ≤ δ. Thus using the gauge invariance of H, we have

|H(iµψ0
µ)−H(η)| ≤ Cδ. Then with hypothesis (iii) and (5.9), we get

|Hµ(ψ0
µ)−Hµ(ηµ)| ≤ C(δ + ε(µ)).

On the other hand, using (5.15), we have for all n ≥ 0

|Hµ(ψnµ)−Hµ(ηµ)| ≤ |Hµ(ψ0
µ)−Hµ(ηµ)|+

n−1∑
k=0

|Hµ(ψk+1
µ )−Hµ(ψkµ)|

≤ C(δ + ε(µ)) + nβ(µ) ≤ (C + 1)(δ + ε(µ))

as long as nβ(µ) ≤ ε(µ) + δ and ‖ψµ‖µ ≤ R0. Using the fact that Nµ(ψnµ) =

Nµ(ψ0
µ) = 1 +O(δ) and (5.10), we get

(5.16) dist(iµψnµ ,Γ) ≤ C̃(δ + ε(µ))

as long as ‖ψµ‖µ ≤ R0 and for some constant C̃ independent of µ and n.
Then by a bootstrap argument, there exists δ0 and ε0 sufficiently small such
that, for 0 < δ < δ0 and 0 < ε < ε0, (5.16) ensures that this is the case for
nβ(σ) ≤ ε(µ) + δ. This proves the result.

6. Applications

We now prove the three Theorems presented in Section 2. We only need to
verify the hypothesis (i)-(iv) and to precise the constants ε(µ) and β(µ).

6.1. Discrete Schrödinger equation. — Consider the DNLS equation
(2.2) for a given positive number h > 0. In the previous formalism, we set
Σ = {h ∈ R+}, and the natural modified Hamiltonian and L2 norm are given
by (2.3). We also define the real scalar product

〈ψ,ϕ〉h := <
(
h
∑
j∈Z

ψjϕj

)
.
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For all µ ∈ Σ, the embedding ih is defined by (2.5), and the projection πh by
the application

∀ j ∈ Z, (πhψ)j = ψ(jh),

for some ψ ∈ H1. Defining the semi norm

|ψ|2
h

= 2h
∑
j∈Z

|ψj+1 − ψj |2

h2

on Vh, we have by explicit calculation that

(6.1) |ψ|
h

= |ihψ|H1

where |ψ|
H1 denotes the semi norm in H1. This fact allows to prove (i) and

(ii) with the function ε : Σ → R defined by ε(h) = h. This has already been
proved in [2, Lemma 4.2]. Similarly, (iii) has been proved in [2, Proposition
4.1] with ε(h) = h.

Finally, by classical arguments on finite elements approximation, there ex-
ists an universal constant C such that for any function ψ ∈ H2

(6.2) ‖πhψ − ψ‖H1 ≤ Ch‖ψ‖H2 .

This proves (iv) upon using (5.2).
Let us define Φt

h(ψ) the flow associated with the Hamiltonian Hh. Using
standard estimates, one shows that it is well defined for sufficiently small t,
say 0 ≤ t < t0, uniformly in h. Theorem 2.1 is then a consequence of Theorem
5.3 with β(h) = 0 and Φµ = Φt

h with t ∈ (0, t0). Remark that, in particular,
since Φnt

µ = (Φt
µ)n remains localized around the curve Γ of ground states for

all n and for all t ∈ (0, t0), the flow Φt
h(ψ) is defined globally.

6.2. Dirichlet cut-off. — Recall that in comparison with the previous case,
the space Vh,K defined in (2.7) is a finite dimensional space included in Vh.
We have seen that the modified energy and norm Hh,K and Nh,K , and the
embedding ih,K are defined by restriction to Vh,K . To define the projection
πh,K , we set

(πh,K(ψ))j =

{
ψ(jh) if |j| ≤ K

0 if |j| > K.

With these definitions, it is clear that the hypothesis (i)-(iii) are satisfied with
Σ = {(h,K) ∈ R+,×N} and with a priori ε(µ) = h for µ = (h,K). However,
the estimate (5.1) is no longer true with the space cut-off without changing
the definition of ε(µ).
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To have an estimate of ‖ih,Kπh,Kη−η‖H1 , we only need to estimate ‖πh,Kη−
πhη‖h which is equal to

‖πh,Kη − πhη‖
2

h
= 2h

∑
|j|>K

|η(jh)|2

h2
+ h

∑
|j|>K

|η(jh)|2

By definition of η, there exist constants C1 and ν such that for all x ∈ R,
|η(x)| ≤ C1e

−ν|x|. Substituting this estimate in the previous one, we get

‖πh,Kη − πhη‖
2

h
≤ 2C2

1h
∑
|j|>K

e−2νjh

h2
+ h

∑
|j|>K

e−2νjh

≤ 4C2
1 + 2
h2

h
∑
n>K

e−2νnh

≤ γ

h2
exp(−νKh)

for some constant γ, and provided h < h0 sufficiently small.
This shows that (iv) is valid with the function

(6.3) ε(µ) = h+
1
h2

exp(−νKh), µ = (h,K) ∈ Σ

With these notations, Theorem 2.2 is a consequence of Theorem 5.3 with
β(µ) = 0.

6.3. Time splitting method. — Let us now consider the case where (2.6)
is discretized in time by a splitting method of the form Φτ

A ◦ Φτ
P as described

in Section 2. The space discretization being the same as in the previous Sec-
tions, the hypothesis (i)-(iii) will be automatically fulfilled with the function
ε defined in (6.3). In particular, we can check directly that the norm Nh,K is
preserved by splitting schemes. However, splitting methods do not preserve
the energy Hh,K for given h and K: more precisely, taking Hµ = Hh,K in
(5.15) only yields an error of order β(µ) = hτ .

In this section, we set

Σ := {(h,K, τ) ∈ R+ × N× R+}.

For µ = (h,K, τ) ∈ Σ, we set Vµ = Vh,K , iµ = ih,K = ih, and πµ = πh,K .
In the next section we will prove

Theorem 6.1. — Let R0 > 0 and M ∈ N be fixed. There exist τ0 and h0

such that for all µ = (h,K, τ) ∈ Σ satisfying τ < τ0, h < h0 and

(6.4) (2M + 3)
τ

h2
<

2π
3
.
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then there exist a constant C, depending only on R0 and M , and a smooth
gauge invariant polynomial function Hµ = Hh,K,τ defined on Vµ such that

(6.5) ‖Hµ −H ◦ iµ‖C2(Bµ(R0))
≤ C τ

h

and

(6.6) ‖Φτ
P ◦ Φτ

A(ψ)− Φτ
Hµ(ψ)‖

µ
≤ CτM+1 for all ψ ∈ Vµ with ‖ψ‖

µ
≤ R0.

With this result, the final statement of Theorem 2.4 is a consequence of
Theorem 5.3 applied with

ε(µ) = h+
1
h2

exp(−νKh) +
τ

h

and β(µ) = τM+1. The proof of Theorem 6.1 occupies the rest of this paper,
and is a variant of the theory developed in [3, 11]. Here we summarize it
and repeat the proofs with some details in order to have a quite self contained
presentation.

7. Construction of the modified energy

7.1. Formal part.— We start by recalling the algorithm of construction of
the modified energy Hµ introduced in the previous section. As a variant of the
theory developed in [11], we work here at the level of the vector fields instead
of Hamiltonian functions. Recall that at the continuous level, we identified
the space H1(R; C) ' H1(R; R)2 through the identification ψ = 1√

2
(q + ip).

This identification obviously transfers to the space V of symmetric functions,
and to the discretized space Vh,K via the identification

(7.1) ψj =
1√
2

(qj + ipj), j = −K, . . . ,K.

Hence we can endow Vh,K with the Hamiltonian structure induced by the
symplectic form

∑K
j=−K dpj ∧ dqj . In the following we make the constant

identification between ψ = (ψj)Kj=−K and (q, p) = (qj , pj)Kj=−K given by (7.1).
For a given real functional H(ψ) = H(q, p), we associate the Hamiltonian
vector fied XH by

(7.2) XH(q, p) :=
(
∂H

∂p`
(q, p),−∂H

∂q`
(q, p)

)K
`=−K

.

Note that this formula makes sense, because all the Hamiltonian functions
H(ψ) that we consider are real valued.
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In this setting, A and P denote the vector fields associated respectively to
the real Hamiltonian functions

HA(ψ) = h

K∑
`=−K

|ψ` − ψ`−1|2

h2
, and HP (ψ) = −h

2

K∑
`=−K

|ψ`|4,

which can obviously be expressed in terms of (qj , pj). Note that A and P
depend on h, but we omit this dependence in the notation. We look for a
formal vector field, namely a formal power series

(7.3) Z(ε) :=
∑
n≥0

Zjε
n,

where each Zn is a Hamiltonian vector field on Vh,K , such that

(7.4) ∀ |ε| ≤ τ, Φε
P ◦ Φ1

A0
= Φ1

Z(ε), A0 := τA .

Here Φt
X denotes the Hamiltonian flow on Vh,K associated with the vector field

X at time t.
Notice that, in particular, at order zero (7.4) implies

(7.5) Z0 := A0 = τA .

Ideally, the approximate Hamiltonian we are looking for would be Hh,K,τ :=
1
τHZ(τ) (see (7.19)) but the formal series defining Z is not convergent and we
will have to truncate the sum in (7.3).
It is well known that it is convenient to look at the equality (7.4) in a dual way,
namely to ask that the following equality is fulfilled for any smooth function
w : Vh,K → C:

(7.6) w(Φε
P ◦ Φ1

A0
) = w(Φ1

Z(ε)) .

The key ingredient of the construction is given by the formal formula

∀ t, etLXw = w ◦ Φt
X ,(7.7)

where LX is the Lie operator associated with X. In our Hamiltonian case if
X := (Xj

q , X
j
p)Kj=−K is a vector field (according to the decomposition (7.2)),

we have in real coordinated (qj , pj),

LXw :=
K∑

j=−K
Xj
p

∂w

∂pj
−Xj

q

∂w

∂qj
,

and the exponential is defined in a formal way by

eεLXw :=
∑
k≥0

1
k!
εkLkXw .
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In this formalism (7.6) reads

eLA0eεLPw = eLZ(ε)w.

Deriving with respect to ε one gets (by working on the power series)

(7.8) eLA0eεLPLPw = eLZ(ε)LQ(ε)w,

where

(7.9) Q(ε) :=
∑
k≥0

1
(k + 1)!

adkZ(ε) Z
′(ε) with adZ X := [Z,X] ,

where [ ·, · ] denote the Lie bracket of two vector fields. Finally (7.8) leads
to the equation Q(ε) = P from which we are going to construct Z(ε). The
construction goes as follows: first one remarks that the r.h.s. of (7.9) has
the formal aspect of an operator applied to Z ′(ε), so the idea is first of all
to invert such an operator. We remark that the power series defining the
wanted operator is

∑
k≥0 x

k/(k + 1)! = (ex − 1)/x, so that one would expect
its inverse to be x/(ex − 1) ≡

∑
k≥0 x

k(Bk/k!), where Bk are the so called
Bernoulli numbers and the power series is convergent provided |x| < 2π. So
one is tempted to rewrite Q(ε) = P in the form

(7.10) ∀ |ε| ≤ τ, Z ′(ε) =
∑
k≥0

Bk
k!

adkZ(ε)P.

Plugging an Ansatz expansion Z(ε) =
∑

`≥0 ε
`Z` into this equation, we get,

for n ≥ 0, the recursive equations
(7.11)

(n+ 1)Zn+1 =
∑
k≥0

Bk
k!
A

(n)
k , with A

(n)
k :=

∑
`1+···+`k=n

adZ`1 · · · adZ`kP.

Remark 7.1. — The analysis made to obtain this recursive equation is for-
mal. To obtain our main result, we will verify that some of the series we
manipulate are in fact convergent series, while the others will be truncated in
order to get meaningfull expressions.

Remark 7.2. — Assume that P is a polynomial of degree r0 (in our case
r0 = 3), and that Z` is a collection of vector fields satisfying the previous
relation, then for all n, Zn is a polynomial of degree (n− 1)(r0 − 1) + r0.

Remark 7.3. — If the vector fields P and A0 are Hamiltonian then the same
is true for the vector fields Zn. This is an immediate consequence of the
fact that all the construction involves only Lie Brackets, which are operations
preserving the Hamiltonian nature of the vector fields.
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7.2. Analytic estimates. — We first introduce a suitable norm for mea-
suring the size of the polynomials. In echo with the notations of the previous
sections, we consider in the following a fixed µ = (h,K, τ) ∈ Σ. Recall that
the space Vµ = Vh,K does not depend on τ , as well as the norm ‖ · ‖

µ
. If

X is a vector field on Vµ which is a homogeneous polynomial of degree s

we can associate to it a symmetric multilinear form X̃(ψ1, . . . , ψs1) such that
X(ψ) = X̃(ψ, . . . , ψ). We put

‖X‖
µ

:= sup
‖ψi‖

µ
=1

i=1,...,s1

‖X̃(ψ1, . . . , ψs1)‖
µ
.

We then extend this norm to general polynomial vector field X by defining its
norm as the sum of the norms of the homogeneous components.

Definition 7.4. — We denote by Ps the space of the polynomials of degree
less than s, which furthermore have a finite norm ‖ · ‖

µ
.

Remark 7.5. — With this definition, we note that the norm ‖P‖
µ

is uni-
formly bounded with respect to µ.

Lemma 7.6. — Let s1 ≥ 1 and s2 ≥ 1, and let X ∈ Ps1 and Y ∈ Ps2. Then
[X,Y ] ∈ Ps1+s2−1, and

(7.12) ‖[X,Y ]‖
µ
≤ (s1 + s2)‖X‖

µ
‖Y ‖

µ
.

Proof. — We give the proof in the case of homogeneous polynomials, the
general case immediately follows. Denote again by X̃ and Ỹ the symmetric
multilinear forms associated to X and Y , then one has

[X,Y ](ψ) = s1X̃(Y (ψ), ψ..., ψ)− s2Ỹ (X(ψ), ψ..., ψ),

from which the result immediately follows.

Lemma 7.7. — For h ≤ 1√
2
, the operator A0 = −τ∆h satisfies

(7.13) ‖A0‖µ ≤ 3
τ

h2
.

Proof. — Let us first note that if (uj)Kj=−K is in Vµ, we have

(7.14) ‖u‖2

µ
= 2h

K∑
j=−K

|uj+1 − uj |2

h2
+h

K∑
j=−K

|uj |2 ≤ (
4
h2

+1)
(
h

K∑
j=−K

|uj |2
)
.

Note that A0 = −τ∆µ is homogeneous of degree one. Moreover, we can write

(A0ψ)` = τ
ψ`+1 + ψl−1 − 2ψ`

µ2
=
τ

h
(a` − a`−1),
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where a` = (ψ`+1 − ψ`)/h. Using the discrete Sobolev inequality (7.14) and
the Minkowski inequality, we get that

‖A0ψ‖µ ≤ 2

√
(

4
h2

+ 1)
τ

h

(
h

K∑
j=−K

|aj |2
)1/2

.

We conclude by remarking that(
h

K∑
j=−K

|aj |2
)
≤ 1

2
‖ψ‖2

µ
.

We deduce that

‖A0ψ‖µ ≤
τ

h2

√
8 + 2h2 ‖ψµ‖ ,

which shows the result.

Remark 7.8. — Lemmas 7.6 and 7.7 can be rephrased in a form suitable for
the following by saying that, for X ∈ Ps, one has that the operator

adX : Ps1 → Ps+s1−1

is bounded and its norm (induced by the norm ‖ · ‖
µ

and for fixed s and s1)
fulfills

(7.15) ‖ adX‖
µ
≤ (s+ s1)‖X‖

µ
.

In particular, using the previous result we have for a given s1 ≥ 2

(7.16) adA0 : Ps1 → Ps1 and ‖adA0‖µ ≤ 3(s1 + 1)
τ

µ2
.

Proposition 7.9. — Let M be an integer satisfying

(7.17) (2M + 3)
τ

µ2
<

2π
3
.

Then, for all n ≤ M , Zn is well defined and Zn ∈ Prn with rn = 2n+ 1, and
the norm of Zn is uniformly bounded with respect to µ.

Proof. — We prove the proposition by induction. We set Z0 = A0. Assume
that Z` ∈ Pr` for ` ≤ n ≤ M − 1 are constructed. Let us prove that (7.11)
defines a term Zn+1 ∈ Prn+1 . Rewrite (7.11) by incorporating the terms
containing Z0 = A0 and by substituting the estimate of the single terms to
the ad terms. The advantage of doing that is that the product of the estimates
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is commutative, while the multiplication of the ad operators is not. We get
first

‖A(n)
k ‖µ ≤

k∑
i=1

‖ adA0 ‖
k−i
µ

k!
(k − i)!i!

∑
`1+...+`i=n

`j≥1

‖ adZ`1 ‖µ ...‖ adZ`i ‖µ ‖P‖µ

≤
n∑
i=1

‖ adA0 ‖
k−i
µ

k!
(k − i)!i!

∑
`1+...+`i=n

`j≥1

(2rM )n‖Z`1‖µ ...‖Z`i‖µ ‖P‖µ ,

where we used that, if i > n and `j > 0 then `1 + ... + `i > n and the fact
that, since by hypothesis the involved polynomials have degrees smaller then
rM , one has ‖ adZ` ‖µ ≤ 2rM ‖Z`‖µ for ` ≤ n.

Remarking that the result of the above sum with respect to `1, · · · , `i does
not depend on k, using (7.16) with s1 = rM , and noticing that ‖P‖

µ
is uni-

formly bounded with respect to µ, we get

‖Zn+1‖µ ≤
1

n+ 1

∑
k≥0

Bk
k!

n∑
i=0

(
rMτ

µ2

)k−i k!
(k − i)!i!

Cn

=
Cn
n+ 1

 n∑
i=0

di

dxi

∑
k≥0

Bk
k!
xk


x=

rMτ

µ2

,

for some constant Cn independent of µ. This shows that the series defin-
ing Zn+1 is convergent, that Zn+1 ∈ Prn+1 and that ‖Zn+1‖µ is finite and
uniformly bounded with respect to µ.

7.3. Proof of Theorem 6.1. — First remark that in our case all the vector
fields are Hamiltonian. Explicitely, by Poincaré Lemma, the Hamiltonian
function of a Hamiltonian vector field X is given by

(7.18) HX(ψ) :=
∫ 1

0
sω(X(sψ), ψ)ds ,

where ω is the symplectic form. In particular, this formula shows that the
Hamiltonian function of a smooth polynomial vector field is also a smooth
polynomial function. For ε ≤ τ , let us define

Z(M)(ε) :=
M∑
j=0

εjZj .

By construction Z(M)(ε) satisfies (7.10) up to order εM included from which
we deduce that it satisfies (7.4) up to order εM (see [11] Theorem 4.2 for
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details). Therefore defining for µ = (h,K, τ),

(7.19) Hµ :=
1
τ
HZ(M)(τ) =

M∑
j=0

τ j−1HZj ,

estimate (6.6) holds true with a constant independent of µ.
It remains to compare the two Hamiltonians Hµ = Hh,K,τ and Hh,K in the

C2 norm on the ball centered at the origin and of arbitrary radius R0 in Vµ.
Let us define

H(1)
µ =

1
τ

(HZ0 + τHZ1)

and recall that Z0 = A0 = τA, and that by construction

(7.20) Z1 =
∑
k≥0

τkBk
k!

adkA0
P .

Now we have

H(1)
µ −Hµ =

M∑
j=2

τ j−1HZj .

But using (7.18) and the fact that Zj is of degree rj , we get for all ψ ∈ Bµ(R0),

(7.21) |H(1)
µ (ψ)−Hµ(ψ)| ≤

M∑
j=2

τ j−1‖Zj‖µR
rj+1
0 ≤ Cτ ,

for some constant C independent of h, K and τ ≤ τ0 sufficiently small. To
estimate H(1)

µ −Hh,K , we notice using (7.20),

(7.22) X
H

(1)
µ
−XHh,K = Z1 − P = τ

∑
k≥0

τkBk+1

(k + 1)!
adkA0

 adA0 P.

But in view of (6.4), 3τ
µ2 < π, and thus the operator

[∑
k≥0

τkBk+1

(k+1)! adkA0

]
is

bounded on P3, uniformly with respect to µ. Therefore for ψ ∈ Bµ(R0), we
have

|H(1)
µ (ψ)−Hh,K(ψ)| ≤ C|HadA0

P (ψ)|.
for some constant C independent on µ = (h,K, τ). Now we calculate explicitly
that the Hamiltonian associated with adA0 P is given by

HadA0
P (ψ) =

iτ

µ2

K∑
−K

(ψ`+1 + ψ`−1 − 2ψ`)|ψ`|2ψ` − (ψ`+1 + ψ`−1 − 2ψ`)|ψ`|2ψ`

=
τ

µ2

K∑
−K
=((ψ`+1 + ψ`−1 − 2ψ`)|ψ`|2ψ`).
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But we have

K∑
`=−K

(ψ`+1 + ψ`−1 − 2ψ`)|ψ`|2ψ`

=
K∑

`=−K
(ψ`+1 − ψ`)|ψ`|2ψ` − (ψ` − ψ`−1)|ψ`|2ψ`

=
K∑

`=−K
(ψ`+1 − ψ`)|ψ`|2ψ` −

K−1∑
`=−K−1

(ψ`+1 − ψ`)|ψ`+1|2ψ`+1

=
K−1∑
`=−K

(ψ`+1 − ψ`)(|ψ`|2ψ` − |ψ`+1|2ψ`+1)− ψK |ψK |2ψK + ψ−K |ψ−K |2ψ−K

using the boundary conditions ψK+1 = ψ−K−1 = 0. Taking the imaginary
part, we obtain

HadA0
P (ψ) =

τ

µ2

K−1∑
`=−K

=((ψ`+1 − ψ`)(|ψ`|2ψ` − |ψ`+1|2ψ`+1)).

But we have∣∣=((ψ`+1 − ψ`)(|ψ`|2ψ` − |ψ`+1|2ψ`+1))
∣∣ ≤ 5|ψ`+1 − ψ`|2(|ψ`|2 + |ψ`+1|2).

Then we use that

|ψ`+1 − ψ`|2 ≤ µ‖ψ‖
2

µ
,

to obtain

|HadA0
P (ψ)| ≤ 2

τ

µ
‖ψ‖4

µ

and therefore for ψ ∈ Bµ(R0),

(7.23) |H(1)
µ (ψ)−Hh,K(ψ)| ≤ C τ

µ
.

Combining (7.21) and (7.23) we get, for all ψ ∈ Bµ(R0),

(7.24) |Hµ(ψ)−Hh,K(ψ)| ≤ C τ
µ
.

Furthermore, since both functionals are analytic in ψ and the above estimate
is uniform in ψ ∈ Bµ(R0), we have similar estimates for the first and the
second derivative of ψ 7→ Hµ(ψ)−Hh,K(ψ).
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