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Abstract

In this paper, we give a simple proof of the existence of iargs for
reversible perturbations of action-angle systems. Tlggrality of this proof
is that it does not rely on canonical transformations thaidgothe system
gradually closer to a normal form, but rather on a formal ttgweent of the
invariant itself.
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1 Introduction

An adiabatic invariant is a property of a physical systemohlsitays constant when
changes are made slowly. In mechanics, an adiabatic chsiaganall perturbation
of the Hamiltonian where the change of the energy is muchesidiaan the orbital
frequency (see for instancé&in89, LM88]). The area enclosed by the different
motions in phase space are then the adiabatic invariantke loase of a perturbed
Hamiltonian of the form

H(a,0) = Ho(a) +eHi(a,0), (1.1)

with (a,0) € R x T, the classical procedure for deriving the invariants ofiorot
is to look for a change of variables, close to the identitypawers of

I = a+eti(a,0)+e*0y(a,0)+ ... (1.2)
¢ = 0+cKi(a,0)+ e Ka(a,0) + ...



in order to eliminate the angle variables of the Hamiltonidrhis method, that
goes back to Poincaré, was refined in the 20th century byhBifKBir27], Kol-
mogorov/Arnold/Moser (KAM) Kol54, Arn63], NekhoroshevIlek77, and forms
now the classical perturbation theory.

Using this coordinate transform method, the classical lesiun is that the
series (.2), though divergent, are asymptotic in the sense that, &fance,

[1(t) —a(t) —eJi(a(t),0)) — ... — " L u_i(a(t),0(t)] < Ce”

for exponentially large time . Hence, I(¢) is an adiabatic invariant for system
(1.1, in the sense that its variation is small for a long time rveé

In this paper, we consider perturbexversiblesystems for which the classical
method can be applied (see for instanb®§73 Sev86 HLWO06]). The systems
we consider are of the following form:

a = es(a,0) e R™,

(1.3)
= w+er(a,0) €T,

where ¢ is a small parameters is an odd function off and = an even function
of 0

S(av _9) = —8(&,9),

m(a,—0) = 7(a,0).

For such systems, we propose an alternative constructitre afivariants. It stems
from the expansion of itself and involves no change of variables (a, 0) : the
procedure thus remains extremely basic. We assume heredthiata constant
vector, independent ofi. This simplifies further some of the proofs while still
covering most cases of interésWe furthermore suppose that our model is non-
degenerate, a not so serious limitation as most systemsomgegenerate (see
[Arn89)).

Although the form of equationsl(4) seems very specific, a lot of systems in
classical mechanics (reversible integrable ones to basgiecan be transformed
into action-angle variables (see for instance Chapter XHIdV06]). A prominent
example of such a mechanical system is the Fermi-Pasta-diadel [FPU55
which nicely illustrates the persistence of adiabatic djtian (in this model, an
adiabatic invariant is built up from the oscillatory enegof the stiff springs).

Results derived in this paper apply to the Fermi-Pasta-l#quations as much
as to many other systems in celestial mechnanics for instaidoreover, they
might be helpful to analyse geometric properties of nunaériwethods or to obtain

(1.4)

1The case of varying frequencies is more technically inteéi@md would require ultra-violet cut-
off techniques. Itis out of the scope of this paper.



stability results of a more theoretical nature such as tiposeed in Moa0Z or
[HLWO06] Chapter XI.

2 The basic iterative scheme

Instead of studying coordinate transforms that bribg)(closer to some normal
form, we search directly for an invariant df.@) of the form

Is(a,0) =B-a+> eJu(a,0), (2.1)

k>1

where § € R™ and where the functiond}, 's are defined oriR” x T" . Here and
in the sequel, the dot i - a stands for the canonical scalar product of vectgrs
and a . In order to obtain a formula for thd}, 's, we compute the (formal at this
stage) derivative along the exact solution Dif3f:

(ftfﬁ(a 0) = Bt (@it @0)8).
k>1
= ef3- S—I-Z(E - (Oq Jk)—l-& w - (ang)+€k+1T'(ang)>,
k>1
= ZEk (Gk +w - (ang)), (2.2)
E>1
where
Gl(av 9) =p- 3(a7 9)
and
Gk(aa 9) - S(CL?H) : (ank—l)(aa 9) + T(a7 9) : (OGJk—l)(CL?H) (23)

for k£ > 2. Hence, the function/z(a, #) is an invariant of {.3) if the functions
Jy. satisfy
Vk>1, w-(0gJk)(a,8)+ Gi(a,0)=0. (2.4)

For k = 1, this equation yields
V(a,0) e R xT",  (-s(a,0)+w- (JgJ1)(a,0) = 0. (2.5)

Since J; is required to be2r -periodic, the average over the tord®" of g3 -
s(a,d) mustvanish, i.e.

3-s(a,0)dd = 0. (2.6)
’]Tn



Equation 2.5 then becomes solvable, as stated by Lemma X.4.Hof\06].
It is important at this stage to underline the fundamenttd of the reversibility
assumptionX.4). As a matter of fact, this condition ensures that the irge(y.6)
is null, as can be seen from the elementary calculus

B-s(a,0)dd = B-s(a,0)dd+ B-s(a,0)dd
T T

T}

= B - s(a,0)dd — G- s(a,0)dd =0,
T

'
e

where we have assumed, for instance, ffiét= [—; 7] so thatT" = T} UT”
with T, = [0,7] x T*~! and T, = [-7;0] x T"~!. At each step, one needs
the solution of equation?(4) to be even with respect t6: Assume thatJ,_; is
known and even. Taking into account that

e s isoddw.rt. @,
e T isevenw.rt.g,
e 0,J;_1 isevenanddyJ,_1 isodd,

we see that7;, in (2.3) is odd and hence of zero-average, so thiatexists and is
even.

3 Main result

Our construction requires a slight refinement of Lemma Xof.[HLWO06], that
we now formulate together with some estimates using theviatlg norms: let

U, = {0 € T" +iR"™ |S(0)]| < p}.

where || - || denotes the maximum norm iR" . If F' is a real-analytic function
from B,(ag) x U, onto C, where forr > 0, B,(ap) is the complex ball of
radius » and centeray € R™ , we denote

£l = sup |F'(a,0)],
"P (a,0)€By(a0)xU,

and wheneverF' is vector-valued, say' € C™ ,

m
1EN,, = IE, .
=1



Lemma 3.1 Supposew € R" satisfies the diophantine condition
dy >0, 3v>0,Va € Z"/{0}, |a-w| > ~|a|™". (3.1)

Let ag € R™, and consider positive numbersand p and let G be an analytic
function on B,.(ag) x U, . Let (G) denote the average af over T" . Then, for
all positive 6 < min(1, p) and p < r, the equation

w8y + G = (G) (3.2)

has a unique analytic solutioo/ on B,(ag) x U,—s with zero average(.J) = 0
on T", and we have the estimates

10, 5 <rod ™Gl and [0pFl,  ,<mé |Gl . @B3)

wheren = v+n+1, kg = v 182" ! and Ky = 4~ 18"2" P2 (v + 1)!.
Moreover, if G is an odd function o), .J is an even one.

Proof: We take over the proof of Lemn&alin order to show that/ is even as
soon asG is odd: denoting

G(a,0) = > ga(a)e™’ and J(a,0) = > ja(a)e™”
aeZ™ aeZn
the Fourier expansions off and J, we have for a non-zerax € 2", j,(a) =
— 99 The function G being odd, g, (a) = —g_a(a) forall a € Z" and all

a € By(ap), so that

i.e. J is even. It has zero-average singg = 0. The estimates3(3) are then
obtained just as in Lemma X.4.1 dfifW06]. O
We are now in position to state the main result of this paper.

Theorem 3.2 Assume that the functions and 7 are analytic on B, (ag) x U,
for a given ap € R™ and for given numbers: > 0 and p > 0, and satisfy
conditions(1.4), i.e. that s is odd andp even w.r.t. # . Suppose in addition that
the vectorw is constant and satisfies conditi¢®.1). Then, there existsy, > 0
such that for alle € (0,¢9) and for any 8 € R™ , there exists a functiodz(a, 0)
analytic on B,./5(ag) x U, /» and such that

15(a,0) = 3 - all < Coe (3.4)
r/2,p/2
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for some constant’y, depending on bounds of the derivativessoénd 7. More-
over, if (a(t),0(t)) denotes a solution of1.3) starting at a(0) € B, 2(ap) , then
as long asa(t) € B, 2(ao)

d

g 1e(al?),0(2)) = R(a(?),0()) (3.5)
where R(a, ) satisfies
IR, 5,5 < exp (= =2) (3.6)

with 0 = 1/n, n = v+ n+ 1 and wherec, is a constant depending on, p,
~, v, n and the functionss and 7 .

Proof: As soon ask > 2, the ¥ -term in the derivative oflg (compare 2.2))
vanishes for all(a, #) if and only if

w- (Ogdg) = =5 (0 Jp—1) — 7 - (OpJ—1),

where, for brevity, we have omitted the argumeiits ) in the functionss, =
and J; . We now proceed by induction. We have already establishad.ih is
even. Assume that there exist real-analytic functiohs- - - , J,_1, k> 2, 27 -
periodic and even w.r.td . Then, the function(d, Jx_1) is even w.r.t.# and the
function (9pJi—1) is odd, so that, upon applying the rule

odd x even= odd,

we deduce that the function- (9, Jx_1) + 7 - (JpJx—1) is odd and hence of zero-
average. The hypotheses of Lem&ahold with G = s- (9, Jix—1) + 7 (OgJk—1)
and (G) = 0, thus ensuring the existence of a real-analytic functinwhich is
even w.r.t. tof .

Assume thatJ;,_; is analytic on B, (ag) x U,, for some positive numbers
re < r and p, < p. Let p < min(1,r,) and § < min(1,p,) be positive
constants. We have, using.§),

[kl 5 <27 o MO (||0g T |, +[0a -1,

Ty P — «— P —0/2 o s P —5/2)

Now, as Ji,_; is analytic on B, (ag) x U,, , we obtain using Cauchy estimates

9
19Tkl <=

Ta—lpx—0/2 T § HJk_l”m

—H,Px
and

1
10Tl . —5y2 < ;IIJk_l\IT*,p*_é/z.
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Gathering previous estimates, we thus get

— 1 1
oA < 0o (54 )i

Te—H,px—06 ey

where C' is a constant independent of and 1. For L € N, let § = p/(2L)
and u = r/(2L) . By induction we easily obtain

nL
”Jk”r/Z,p/Z < C(CL)

for some constant§’ and ¢ depending om, v, v and M . We then define

K
Is(a,0) =B-a+> e Ji(a,0)
k=1

with the optimal truncation indeX = FIoor((eec)‘l/”> (see for instanceHLWO6,
Nek77). O

Corollary 3.3 Under the hypotheses of Theor@m, ¢, can be taken sufficiently
small so that the following holds: Ldt(t),6(t)) be a solution of(1.3) such that
a(0) € B, 4(ag) . Then we have for alt < exp(cope™7/2),

|[Z5(a(t),0(t)) — I5(a(0),0(0))| < exp(—coe™"/2) 3.7)

where ¢, Is the constant appearing i{3.6) and

|6~ a(t) = G- a(0)] < Cge
for some constantC; independent ot .

Proof: It is clear that 8.7) is valid as long as we have(t) € B, /y(ag) . This
result combined with3.4) for  scanning all vectors of the canonical basis of
R™ leads to

la(t) —a(0)]| < Coe

for some constanCy , as long asu(t) € B, 2(ag) . Hence, we deduce thatéf, <
r/(4Co) , we havea(t) € B, 3(ap) for t < exp(coe™?/2) which completes the
proof. O



4 Some comments on the resonant case

Suppose that the diophantine conditi@1j holds only for o ’s such thata - w #
0, a set which is not assumed to be reduced@® C Z", in constrast with the
situation considered before:

Definition 4.1 For a given set of frequencies = (w1, ...,w,) € R", the reso-
nance moduleM is defined as

M=AaeZ" |aywi + ...+ aw, =0}
The vector of frequencies is said to be non-resonant outsidet if
dv,v >0, VaeZ"\M, |a-wl>~vlal™. 4.1)
The orthogonal of the resonant module is defined by
ME={BecZ"'\Vae M, a1f+- +ayB, =0}
Under the assumption4.4), equation {.3) admits a formal invariant of the form
(2.7) if and only if equations4.4) hold for all £ > 1. At each stepk, we thus
have to solve once again the homological equation
w-0gJ +G=0 (4.2

Now, in contrast with the nondegenerate case,G >= 0 is not a sufficient
condition to ensure the existence of a solution. As a mafttrob,

w - (%J(a, 0) = Z (w- a)ja(a)eia.e _ Z (w - a)ja(a)ew"e,
OZEZ" ann/M
so that one should have

w-go=0foralae M, (4.3)

a condition which is not satisfied in general. Consider fgtance the system
a = esin(6; —69)
06 = 1+¢
92 = 1+ 26,

with exact solution

01(t) = 0:1(0)+ (14 e)t
Hg(t) = 92(0)+(1+2€)t.

We see thata(t) is not an adiabatic invariant, implying that.8) is indeed nec-
essary. Even when conditiod.@) is fullfiled, the construction can not be carried
on further thank = 2. It seems that in this situation, a more elaborate analgsis i
needed.

{ a(t) = a(0) + cos(et)
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