Multiscale Expansionsfor Linear Clamped Elliptic Shells

ERWAN FAOU

Abstract. We investigate solutions of the two-dimensional Koiter model and of the
three-dimensional linear shell model in the case where the shell is clamped and its mean
surfaceiselliptic. For smooth data, these solutionsadmit multiscal e expansionsin powers
of £'/2 where ¢ denotes the (half-)thickness of the shell. Both expansions contain terms
independent of ¢ and boundary layer terms exponentially decreasing with respect to
r/+/e, with r the distance to the boundary of the mean surface. The expansion of the
three-dimensional displacement contains supplementary boundary layers, exponentially
decreasing with respect to /e like for plates. Using these expansions we obtain sharp
estimates between the two modelsin various norms.

1 INTRODUCTION

Thegoal of the shell theory isto find an approximation of the three-dimensional linear
elastic shell problem by a two-dimensional problem posed on the mean surface. A shell
isathree-dimensional object defined by a compact oriented smooth surface S embedded
in R3 and athickness parameter <. For ¢ < ¢, sufficiently small, the shell is the image
QF of themanifold S x (—¢,¢) viathe application

¢ : S x (—¢,¢) 3 (P,a3) — P+ x3n(P) € R?, (1.1)

where n(P) isa unit normal vector field on S. Starting from the three-dimensional
eguations of standard linear elasticity for a homogeneous and isotropic material, different
models have been derived between 1959 and 1971 seein particular KOITER [19, 20, 21],
NAGHDI [25], JOHN [18], NovozHILOV [27]. Most of the shell modelsrely ona 3 x 3
system of intrinsic equationson S depending on ¢, and write

K(e) := M+ £’B (1.2

where M is the membrane operator on S and B is a bending operator. If al above
authors agree with the definition of the membrane operator M, different expressions of
B can befound in the literature. For general shell geometry, the most popular and natural
model is the one proposed by KoITER. This model describes the displacement of the



shell by two tensors representing the change of metric and change of curvature of the
surface submitted to a displacement. Moreover this model is eliptic for ¢ > 0 (see
[2]). However, for = = 0, the nature of the membrane operator depends on the geometry
of the surface. In particular, M is €lliptic only at the points where S is éliptic. The
Koiter model relies partly upon computations made by JOHN in [18]. But the question of
determining the best model was very controversial (see in particular the introduction in
[3] and discussionsin [20, 25]).

In [15] we give the expression of the most general bending operator appearing in the
3D equations, and we show how the Koiter bending operator is linked with this operator
and turns to be the most natural and simple bending operator among the others. In[9] we
also give a genera estimate between the 3D solution and a displacement reconstructed
from the Koiter model solution. The result of [15] reduces the 3D problem to a formal
series 2D problem very similar to the Koiter model.

In the case of plates, the Koiter model splits into the membrane operator acting on
the surfacic components of the displacement and the bending operator acting on the trans-
verse displacement. On the other hand, the work in [10, 11, 8] shows the existence of
an asymptotic expansion of the 3D displacement for plates containing boundary layer
terms of scale . When such an asymptotic expansion is available, we can estimate the
difference between the solution of the Koiter model and the 3D solution in every norm.

In this work, we focus our attention to the special case where the mean surface S
of the shell is dlliptic, that is when the Gaussian curvature of S is strictly positive or
equivalently when the principal curvatures are everywhere of the same sign. In this case,
the membrane operator M is élliptic (see [16, 29, 4]). As the bending operator B is
of order 4 while the membrane operator M is of order 2, the Koiter operator K(s) =
M + 2B isasingular perturbation of the membrane operator. The framework of VISHIK
& LYUSTERNIK [30] for scalar equations can be adapted to this situation, where the
eguation is a system. Combining these techniques with the formal series reduction of
[15] giving the structure of the 3D boundary layers, we obtain the following results:

1. Weshow that the 2D displacement solution of the Koiter equation admitsacomplete
multiscale expansion including boundary layer terms of scale £'/? using asingular
perturbation theory close to [30].

2. Using the result in [15], we then show that the 3D displacement admits a com-
plete multiscale expansions with 2D boundary layers of scale £!/2 like for the 2D
displacement, and 3D boundary layers of scale ¢ like for plates.

3. We use these expansions to bound the difference between the 3D displacement and
2D reconstructed displacements asin [20] or [4, 23]. These estimates are sharp in
the sense that the error term has the same order than the first neglected term in the
asymptotic.

In the following we always take as K(e) the Koiter model. We now present the 3D
and 2D problems, and give the main theorems. We then recall the basic results of [15]
and give the plan of the paper.



1.A THREE-DIMENSIONAL PROBLEM

The boundary of the shell Q¢ defined in (1.1) has three components: A lateral boundary
I's imageof 0S5 x (—¢,¢) by theapplication ®<, and upper and lower faces S.. images
of S x {Ze}. We suppose that the material constituting the shell is homogeneous and
isotropic, characterized by itstwo Lamé coefficients A and 1. . Theloading forces applied
to the shell are represented by a smooth vector field f defined on Q¢ . We suppose that
the shell is clamped along I'; and we impose the traction free condition on S,. and
S_. . The displacement of the shell is represented by the 1-form field w . In Cartesian
coordinates {¢'} the problem then writes

—0j AR e (u) = f1in QF
T(u) = 0 on S, (1.3
u = 0 on Ij,

with AUk = \§U s 4 (5% §7¢ + §757%) , where 0, isthe partial derivative with respect
to t* and e;;(u) = 5(du;+0;u;) with u = u;dt* inCartesian coordinates. On the same
way f* denote the components of the vector field in the basis -2 . The operator T'(u)
isthe natural traction operator on the faces S.. appearing after integration by partsin the
associated bilinear form:

(w,v) — | A% e (u)er(u) dt' dt* dt®. (1.4)
QE
This is the classical problem of linear elasticity set in Cartesian coordinates on a shell-
shaped domain of R?. Korn inequality [13] impliesthat this problem has a unique solu-
tionin H'(Q°)3.

On Q¢ , wecdl “normal coordinate system” a system of the form (x,, x3) induced
by the mapping (1.1), where z, is a coordinate system on S and x3 the transverse
coordinate (see [15] for details). Note that the domain Q¢ is foliated by the surfaces
Sz, imagesof S x {z3} by the diffeomorphism (1.1). In the following, we will dways
identify the mean surface S, with the abstract manifold S'.

1.8 THE KOITER MODEL

On the mean surface S, , a 2D displacement isrepresented by the couple of a1-form field
2, and afunction z3 . Wedenoteby z = (z,, 2z3) € ['(T1.5)) x €>(Sy) such acouple.
Here, I'(71.S,) denotesthe space of 1-formfield on S, . Asit will be of constant use, we
set

Z(So) = F(Tlso) X CKOO(SO)

the space of (smooth) 2D displacements. More generally, we denoteby H”(S;) the space
of 1-forms whose both components belong to the Sobolev space H*(S,) . We keep the
notation H*(S,) for functions. Typical spaces for 2D displacements are H' x L2(S))



and H' x H?(S,) . Weset aqp themetrictensoron S, and b, the curvaturetensor. The
Greek indices are two-dimensional varying indices. The contraction by the metric tensor
yields isomorphisms between tensor spaces on S, . We have for example b§ = a*?b,p .

The Koiter operator isthe operator K(e) : ¥(Sg) — 3(Sp) written
K(e) = M+ &°B.

Here, M isthe membrane operator defined by

{ Ma - —XDUVZ_QMDa%?a

Ms = —Ab2yy — 2ublyg,

«

where )\ and 1 are the Lamé coefficients of the material, \ = 2Mu(A + 2u)~t, D, is
the covariant derivativeon S, , and

Yap(2) = %(Dazg + Dgza) — bagzs (1.5)

isthe change of metric tensor on S .

The operator M is associated with the bilinear form defined for any z and 7 in
H' x L2(S,) by

(2.1) — am(z,m) = / M504 (2)105(m) dSp, (16)

where M@Bo8 — \qoBqod 1 p(a®a® + a*®a) .
The operator B isthe bending operator defined by

«

{ B, = —3A0;Dapl — 5ADabEp, — 313Dyl — SuDybspk,
Bs = $AD®Dapl + 2uDD,pY — $Acapy — 2puchpf,
where ¢? = v”b° and

pap(z) = DaDgzs — capzs + 05D pzs + Dabj2, (1.7)

isthe change of curvaturetensor. Thisoperator isassociated with the bilinear form defined
forany z and n in H' x H?(S,) by

(2,1) — ag(z,7) = /S MO 5 o (2)pos(m) dS. (18)

For agiven g € X(Sy), we consider the solution z € 3(S,) of the problem

Kie)z=g in Sy, (19)
z}aso =0 and 0,z;(e) ’850 = 0.

The existenceof z isprovedin([2].



1.c MAIN RESULTS

We set (r,s) a coordinate system in the vicinity of 05, such that r is the geodesic
distance to the boundary, and s is the arclength adong 0S,. We denote by b(r, s),
b.s(r,s) and b,..(r,s) the components of the curvature tensor in this coordinate system.
Thefact that S, isélliptic impliesthat we can choose the orientation of S, such that b,
and b, arepositiveaong S,. We denoteby x(r) a ¥ cut-off function near 9.5, .

To construct the expansion of the 2D displacement, we suppose that the right-hand
side g = g° dependson ¢ and admits the expansion

g =) d" (1.10)

k>0

wherefor all k, g* € ¥(S;) . Thismeansthat for any Sobolev normon S, andany N,
we have

N
lg = > kgl < eV,
k=0

where Cy isindependent on ¢.

Theorem 1.1 Let z° be the solution of the problem (1.9) with a right-hand side g°© sat-
isfying (1.10). Then z° admits an asymptotic expansion in powers of /2 :

2oy M (cW(xa) + X(T’)ZW(%> s)) , (1.12)
k>0

where for all &, ¢"?* e %(S,) isindependent on ¢ and Z*/*(T,s) is exponentially
decreasingin 7', uniformlyin s and smoothon R* x 9.5, . Moreover, for each fixed s,
the function 7' — " Z*/%(T, s) isbounded on R* for all 1 < 7, where

5 1/4
= <M> Vbu(0,5). (112)

(A +2p)°

Thefirst term ¢ isthe solution of the membrane problem

{ MCO = go in SO7

_ 0, (1.13)

“a }850

where g° isthefirst term of the asymptotic expansion of g¢ . Thefact that the membrane
cannot solve for the boundary conditionson z3 isthe reason for the presence of the 2D
boundary layer terms. Indeed, the third component Mj is an operator of order 0 in z3,
while B; is of order 4 in z3. The first boundary layer terms satisfies Z° = 0 but
Z9 # 0 in general.



Using the expansion (1.11) we obtain estimates between z° and ¢°. For example
we get

127 = Cllggr sy < C* (1.14)

where C' isindependent on ¢ . Thisestimate impliesin particular the convergence result
of [4] and improvesthe result in [24].

To construct the expansion of the 3D displacements we suppose that the right-hand
sde f = f° dependson ¢ inthe following regular way: If (z,,z3) isanormal coor-
dinate system on Q¢ we set X3 = e !z, and define the vector field f(e)(z,, X3) =
f (x4, x3) onthemanifold Q := S x (—1,1). Wesupposethat f(s) admitsthe expan-

sion
SHYES (1.15)

k>0

wherefor all k&, f* isindependent of ¢ in Q. This hypothesisis satisfied in the case
where f isindependent of ¢ inthe physical cartesian coordinates. In this case the Taylor
expansionof f at x3 = 0 around the mid-surface yieldsthe coefficients of the expansion
(1.15).

Theorem 1.2 Let u® be the solution of (1.3) with the right-hand side f° satisfying
(1.15). Then u® admits the following asymptotic expansion in powers of ¢/2:

T r T T
u NZe’“”( (s )XW (s, ) X, ;3)) (1.16)
k>0

where for all k, v*/? isa ¥~ 1-formfield on Q¢ and W"*(T, s, X3) is uniformly
exponentially decreasing in 7' with the same bound 7, asin (1.12). Theterms v*/? and
W*? arepolynomial in X5 = ¢~'z3 and smooth. Theterm */?(R, s, X3) isuniformly
exponentially decreasing in R and has singularities near the edges of the shell.

Under the assumption (1.15), the 2D right-hand side defined by g = 5= [*_ f°da;

admits an expansion of the form (1.10) with g* = %f_ll FF(X5)dXs. In this case, the
precise comparison of the first terms of z° and w® alows to write sharp estimates be-
tween the 3D displacement and the 2D Koiter and membrane models. We define UKLz
the Kirchhoff-L ove displacement associated with z as

ULz = 2, — 23(0,(2) + b220) + 23020, (2) and U5tz = 23,

where 0,(z) = D23 + 0225 and p = A\ + 2u)~'. This displacement satisfies
€Z‘3(U§LZ) =0 foral z

Proposition 1.3 Suppose that f° satisfies the hypothesis (1.15), and let u(e) be the
three-dimensional displacement on the scaled domain . We set g° = & [*_ f“dz;.
Let ¢° bethe solution of the membrane problem (1.13) with right-hand side g€, and z°

6



be the solution of the Koiter model (1.9) with the right-hand side g©. Then we have the
estimates

H'U,({-:) C HH1 (Q)2xL2(Q) — 061/4 ||’U,(€) -z HHl (Q)2xL2(Q) — 061/4

J6e) = e £ C24 and  lule) = ULz <
(1.17)

These estimates imply the convergence results of [5, 6]. Note that ¢° does not converge
towards u(e) inthe H!(Q)® norm. In the membrane norm H'(2)? x L?(2) , the conver-
gence rate obtained with the Kirchhoff-Love displacement UXL2¢ associated with 2¢ is
the best possible using 2D objects: the leading error termsis governed by pure 3D effects
due to the presence of boundary layer near the edges.

In energy norm, we need more terms to get an optimal estimate with the same z°:
Following Koiter [20] we define the three-dimensional reconstructed displacement in nor-
mal coordinates Uz by

Uz = UKLz £ UCmPz  where US°™z =0 and Usz = —z3p7°(2) + %gppg(z).
(1.18)
On the physical shell Q¢ , we define the energy E§p[v] by the equation

Esplv] = / 8 ATMei(v)eg(v) AV, (1.19)

and we write a = O(eP) if wehave cs? < a < CeP for ¢ and C' non zero constants
independent on = . With these notations, we have the result:

Theorem 1.4 Supposethat f° satisfiesthe hypothesis (1.15). Let u© be the solution of
the three-dimensional equations(1.3) and z¢ be the solution of the Koiter equations (1.9)
with the right-hand side g° = & [°_ f°dx; . Suppose that the solution of the membrane
problem ¢° givenin (1.13) is not zero, then we have the estimates:

Eiplu®] = O(e) and Eip[u® — Uzf] < CeEpfuf, (1.20)
where C' isindependent of ¢

This estimates can be compared to the oneinitialy given by KoITER in[20]. Theleading
error termisgoverned by the 3D boundary layers. It improvestheresultin [22] for elliptic
shells.

For ease of use, the standard change of unknown w® = p~!(z3)u® is made (see
[25]), where p(z3) isdefined by

Uy = Wo — 23b2ws  and

u = p(r3)w = { (1.21)

us = Ws.

Theorem 1.2 isequivalent for u° and for the shifted displacement w* .
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1.0 FORMAL SERIES SOLUTION

The proof of Theorem 1.2 is based on the resultsin [15] for the formal series solution of
the 3D problem. We recall here this general framework.

The first step in [15] discards the lateral boundary conditions, and studies the inner
3D equations written in terms of the shifted displacement w :

L(za, 23; Da, O)w® = —f° in
{T($a,x3;Da,33)w5 = 0 on Sia (122)

where 95 isthe partial derivative with respect to x5 . Thescaling X3 = ¢ 'z3 alowsto
state the problem (1.22) on the manifold 2 = S x (—1, 1) with operators L(¢) and T(e)
having the following power series expansions:

L(e) Zz—:kLk and T(e Zeka (1.23)

k=0

with which are associated the formal series L[¢] and Tle| with the same coefficients (see
Theorem 3.3 of [15]).

Recall that if £ and F are two function spaces, if alt] = >_,.,t*a" isaforma
seriesin ¢ with coefficients o* € L(E, F) and b[t] = 3", ., t*b* isaformal serieswith
coefficients b* € F, then the formal series c[t] = a[t]b[t] is defined by the equation
c[t] = Y, 5ot"" wherefor al n, ¢ = >} ,a"b"*. Thisis the classical Cauchy
product for formal series.

Considering the formal series fle] = >, ¢ F* induced by (1.15), the 3D for-
mal series problem writes: Find a formal series w(e] = Y, ., e"w" with 1-form field
coefficients, such that -

Lielwle] = —fle] in Q,
{Tuwu =0 . IOn Iy, (1.24)

where I'; arethe upper and lower facesof ().

Theorems 4.1 and 4.3 of [15] reduce this problem to a 2D formal series problem
on Sy. There exist formal series operators V[e], Q[e], Ale] and G[e] such that if
z[e] = Y2450 €" 2" isaformal serieswith coefficientsin X(S) satisfying the equation

Ale]z[e] = Glelfe] in S, (1.25)
then w(e] defined by the equation
wle] = Vielz[e] + Q] fle] in Q (1.26)
issolution of (1.24). The formal series Ale] writes

Ale] =M+ &A% + - - |
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where M is the membrane operator. The exact expression of A? is given in Theorem
4.4 of [15], and Proposition 4.5 gives an estimate of the difference between A% and the
bending operator B of the Koiter model. Moreover these operators coincide on the space
of inextensional displacements (the 2D displacements z suchthat v,3(z) = 0).

In the following, we will use the fact that the formal series V[e], Ale], Qe] and
Gle] satisfy the functional equations

LielVle]z = —ToAllz, LEQlelf = ZoGllf — f,
{T[ﬁ]V[e]z = 0, and {T[g]Q[g]f _ 0 (1.27)

foral z € ¥(Syg) and f € €>(I,%(Sy)). Here T is the canonical embedding 7 :
(Sp) = E>°(1,%(S))) -

The second step in [15] (Theorem 5.3) deals with boundary layer formal series. In
generd, if z[¢] isasolution of (1.25), the reconstructed displacement (1.26) cannot sat-
isfy the condition w(e] = 0 on the lateral boundary. Similarly to plates (see [26, 10, 8]),
the change of variable R = r/¢ allows to state the formal series problem: Find ¢l¢]
with coefficients " (R, s, X3) exponentially decreasing with respect to R, such that

(Zle), T[e])ple] =0 and  wle] }Fo + p[e] ’R:O =0, (1.28)

where the formal series Z’[¢] and J[¢] are induced by Taylor expansionsin R = 0
and X; = 0 of theoperators L and T in coordinates (R, s, X3), and where the formal
series wle| isgiven by (1.26). Notethat R = 0 coincides with the lateral boundary T, .

Theorem 5.3 in [15] shows that the existence of a formal series ¢[s] solution of
(1.28) relies upon compatibility conditions on z[s] on the boundary 0S,. There exist
formal series operators d[s] and h[s] whose coefficients define four trace operators on
the boundary 05 , suchthat if z[e] satisfiesthe equation

dle]zle] = hle|fle] on OSo, (1.29)

then we can construct aformal series [c| solution of the problem (1.28). Moreover, the
first term of the formal series d[e| writes

(1.30)

d’z = (2, 2, 23, 0,23) ‘aso )

This operator isthe natural Dirichlet operator associated with the Koiter model K(e) for
e > 0. Asbefore, the formal series l¢] is constructed using formal series operator sat-
isfying functional equations of the type (1.27) in 3D boundary layer spaces (see equations
(5.14) and (5.16) in [15]).

Definition 1.5 The equations

A[é‘]z[g] = G[&‘]f[g] in S,
{ de]z[e] = h[e]f[e] on S, (1.31)
define the reduced problem associated with the 3D formal series problem. -



1. OUTLINE OF THE PAPER

The proof of Theorem 1.1 is given in sections 2-5. Section 2 studies the inner equa-
tions based on an inverse of the membrane operator, while Section 3 deals with the two-
dimensional boundary layer terms. In Section 4 we define and solve a formal series
problem in powers of <!/2 and show sharp estimates in Section 5.

The proof of Theorem 1.2 is given in sections 6-8. We note that the Koiter problem
(2.9) and the reduced problem (1.31) have the same first terms. In Section 6, starting
from the reduced problem (1.31) posed on the mid-surface, we define a 2D formal series
problem in powers of £'/2 including 2D boundary layers, similar to the one obtained in
Section 4 for the Koiter model. The solution of this problem allowsto construct the terms
of the 3D expansion in Section 7. The fina error estimates are given in Section 8.

The proof of Theorem 1.4 is given in Appendix B while Appendix A is devoted to a
technical result needed in section 6.

2 KOITER MODEL INNER EQUATIONS

We consider the solution z € 3(Sy) of the problem
{K(e)z =g in S, 2.1)

z}aso =c, and 0,z ’850 = Cp,

where g € %(Sy), ¢. = (¢, ¢5,¢c3) € €*(0S)* and ¢, € €>(Sy). Thisisthe
problem (1.9) with non homogeneous boundary conditions. In the following we set ¢ =
(Cs,c3) € €(0Sy)* . Theexistence of z isaconsequence of the inequality

@)y + 1002 liagsy) = Ozl s (22

foral z € Hy x H2(Sy) , see[2].

The operators M and K(e) split into surfacic and transverse parts, which have the
following block degrees:

2 1 2 3
degM:(1 0) and degK(z—:):(3 4).

According to [1], we say that M is of multidegree (2,0) and K(e) of multidegree
(2,4). The following result gives the ellipticity property of M in the case where S,
iselliptic. Thisresult can befound in[16] and [29].

Theorem 2.1 Supposethat S, isélliptic. The membrane operator M = (M,,, M3) act-
ingon z = (z,,23) € %(Sy) isstrongly eliptic of multidegree (2,0) in the sense of

Agmon, Douglis and Nirenberg. The Dirichlet operator z — (2, 2,) | .5, Satisfies the
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complementing boundary condition. Moreover, the kernel of M with these boundary
conditionsisreduced to {0}, and we havefor z € ¥(S):
(2.3)

Iz s <C(Imz]

HP+1><Hp(SO Hp_lXHp(So) + ||(2r7 ZS) HHp+1/2(850)2 >7

where p > —% isafixed regularity index and C' a constant dependingon Sy and p.

As corollary we will mainly use the following result:

Theorem 2.2 Supposethat S, iselliptic. Let g € ¥(S,) andlet ¢, and ¢, two func-
tionsof € (05) . Then there existsa unique ¢ € X(Sy) such that

{Mc —g in S,

Gr ‘aso = ¢, and Cs}aso = Cs-

Suppose that the right-hand side g = g° in (2.1) expandsin powers seriesof ¢ (see
(1.10)). We first seek the solution z° of (1.9) under the form z = >, e"2*. This
yields the formal series problem -

Klelzle] = gle] (24)

where K[e| isthe finite formal series M + ¢?B and g|¢] isinduced by the expansion of
g° . Thisproblem is equivalent to the collection of equations:

V>0, MzF=-BzF?2+g" (2.5)

whereweset z*¥ = 0 for k < 0. The previous Theorem shows by induction the existence
of solutions of these equations. However we cannot satisfy in general the whole boundary
conditions d°z° = ¢ by a power series representation of the solution.

3 TWO-DIMENSIONAL BOUNDARY LAYERS

Asthe mean surface S, iselliptic, we have for all coordinate systemand all (£,,) =

(&1, &) € R?
b*PEs > c(E2 4+ €2) with ¢> 0.

Using the fact that » is the geodesic distance to the boundary of Sy, it is easy to show
that we have a,.(r,s) = 1 and a,s(r,s) = 0 for al (r,s). As s isthe arc-length
on 0S5y, we aso have as(0,s) = 1 for al s. We thus compute that the Christoffel
symbols satisfy I'7,, = I'7, = I'/, = 0 for al (r,s). Similarly we have I"} (r,s) =
2a*(r, $)0rass(r, s), T (r,s) = —30,a55(r,s) and T3,(r,s) = L0,a.(r, s) . In partic-
ular we have I'3_(0,s) = 0.
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In order to construct the boundary layers, we have to match the operators M and B .
The transverse component Bs of the bending operator B isan operator of order 4 in z3
while M3 isan operator of order 0 in z3 . Following [30], we hence set (see aso [28]):

T=e"%  andthus 9, = Y20,. (3.1)

Setting K(e)(r, s;0,, 05) the operator K(e) in coordinates (r, s) , we define the operator
K(e) as

K(e)(T, 5;0r,0) = K(e)(e"*T, 671 0r, 0,). (3.2
The operator /C(e) acts on the manifold
S :=[0,+00 [x8S,. (3.3)

Using the Taylor expansionin 7' = 0 of the coefficients of the operator IC(¢), we can
associate with this operator aformal seriesin /2, written IC['/2]. As M is of order
2, we have

]C[{-jl/Q] _ Z 6k/2K:k/2, (3.4)

k>—2
where K*/2 : %(5) — %(S) areoperatorsin 9, and 9, , polynomialsin 7.

Here, as the formal series (3.4) involves powers of !/2 | it is natural to consider the
genera formal series problem

K[e'?) Z['?] = G[e'/?, (3.5

where Z[e'?] = 37,.,e"2Z"? and G[e'?] = 3, c"/*G*/* are formal series with
coefficientsin %(9).

The first non-zero termin the formal series KC[¢'/?] isthe operator K~ :

K (Z) = —(N+2u) 022y, K NZ)=—-pd2Z, and K;(Z)=0. (36)

S

In the operator }C~'/2 , the component Ky 1/2 depends only on the operator M; :
K5 2(Z) = —2(AH + pby,) 01 Zy — 241bys 00 Zs, (3.7)

where b,.., b.s and b, are the components of the second fundamental form b,..(0, s) ,
bs(0,s) and bss(0,s) on the boundary and H = %(brr + bss) IS the mean curvature
along 09 .

The influence of the operator B; after the homogenization only appears in the oper-
ator K9 . That iswhy we make a scaling in the problem (3.5) in order to obtain a formal
series problem with afirst operator term having all non-zero components, and taking into
account the influence of the operator B3 . We set

Za[gl/Q] _ Za[81/2] é«a[&.l/Q] _ €Ga[€1/2]
! and 9y ! 3.8
{ G3[€1/2] — 61/2G3[81/2]. ( )

Y

23[61/2] — 61/2Z3[81/2],
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Theserelations read

gk2 _ g2 G2 _ ;0 k+2)/2
Vk >0, i and 3.9
> {Z§/2 _ ng+1)/2’ Gk/Q _ G k+1)/2 (3.9)

If the formal series Z|[s!/?] starts with a power 0 of /2, thisimplies that the corre-
sponding formal series Z[¢'/?] startswith apower —1/2 of ¢

We define the formal series K[¢1/2] by the formal series equation
KV Z[e] = (e K[ 2], &7Ks[e1%) Z[17]). (3.10)
The problem (3.5) isthus equivalent to the problem
K[e'/? Z[eY?] = G2, (3.12)

The formal series
1/2 Z ch/2§ck/2

k>0

has then for first term the operator K° whose componentswrite, for Z € %(S) :

K%(Z) = — (X +2p) 02 Zy + 2(AH + pb,,) drZs,
Z

KNZ) =— 022, + 2pubys OpZs,
vs(u) :u~T K 7: 3 ; (312)
ng(Z) == Q(AH + ,Ubrr) aTZT - 2Mbrs aTZs

+ 3 (AN +20) 0425 + 4((N + 20) H? — pK) Zs,

where K = b,,.b,, — b2, isthe Gaussian curvature of S, along 9.5 .

Note that the variable s only appearsin the coefficients of the operator K° and thus
can be considered as a parameter. For fixed s, the operator K° is a system of ordinary
differential equationsin 7' ontheinterva [0, +oo .

Proposition 3.1 Let s € 05, fixed, and let c3, ¢, € R . There exists a unique function
@ € ¢°(R")? exponentially decreasing, solution of the system

{ko(gb)zo in [0, +00] (3.13)

¢3T 0203 and aT(,bgT

0= Cn-
Moreover, for all 7 < n; where 7, isgivenin (1.12), e’ isboundedas T — oo .

Proof. Let us write the symbol of the operator K° by replacing formally d, by ir
where 7 isacomplex number. This symbol writes

(X + 2p)72 0 2%i(NH + by, )7
0 ut? 2ipib,sT ,
—2i(AH + pbp )T —2ipibpst (A +2u)74 4D

(3.14)
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where b = 4((A + 2u)H? — uK) . The determinant of this matrix is

1 ~ ~
prt (g()\ +2u)2 7% + dp(X\ + ,u)bgs) . (3.15)
Thispolynomial in 7 has 0 asroot of order 4, and 4 complex roots
i i 3im i 12 X
erva, et a, 637\4/5 and 6_37\4/5, where a = MZ)?S >0
(A +2p)?

Among these roots, only two have positive imaginary parts: ¢ 7 /a and ¢ /a . These
roots are

m(1+), m -4, -m@d+i) ad —n(l—i)

For fixed s, consider now the equation K°(¢) = 0 in Rt . As (AH + ub,,) # 0, we

can transform this system in a triangular system written

2(NH + pibyr) Orpr + 24ibrs Ords
2+ 20) 0t gs — 4((A+ 2p) H? — pK) g3 = 0,
10555 — 2ubys Orps = 0,
(3 + 20020} + 4p(h + )82, ) orgs =
We deduce from the last equation that (5 writes

4'53 — Al + A26—T771(1+i) + A3€—Tn1(1—z‘) + A46Tn1(1+z‘) + A56Tm(1+i),

where A, Ay, Az, Ay and A; are complex numbers. Aswe seek ¢ exponentially
decreasing in 7', we deducethat A; = A, = A5 = 0. Using the boundary conditionsin
(3.13) we deduce that

(3.16)

1
@3(T) = e T (n—cn sin(m T') + 3 ( cos(mT) + sin(mT))) . (3.17)
1
The second equation in (3.16) then shows that
+o0
o) =2b, [ pymyar (3.18)
T

isthe unique solution ¢, exponentially decreasing. Finally the equation
Gr(T) = —pbrs(NH + pibyy) ™ 5,(T)

+ (H + puby,) ™ / (B 4 200) 94p(T) + 2((X + 20 H? = uK) o(T) )T
T
(3.19)
yields the unique solution exponentially decreasing of the first equation in (3.16). [ |

In order to solvethe system (3.13) with non-zero right-hand sides, we define the space
TR :={feCR") | VikeN, Vn<mn, 7T0.fecl?R")}. (3.20)
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To this function space we associate the displacement space
TRY) :={@ = (p1, 85, ¢3) € TR’ }. (3.21)

If G € T(R"), we can construct on the interval [0, 4oco[ a solution exponentially
decreasing of the system

K°(Z)=G in [0,400],
Zg = 6T23 =0 for T = 0,

using explicit integral representation: see the formulae page 48 in [1]. This particular
solution is then exponentially decreasing with an exponent smaller than 7, . Hence we
have the following result:

Theorem 3.2 Let s € 95, fixed. Let G € T(RY), andlet c3,c, € R. There exists a
unique Z € T(R*) solution of the system

{1%:0(2):(“; in RY, 322

Zg and aTZ:g

Cp-

T=0 — 3 }T:O -

Moreover, if theright-hand side G' € € (0S,, T(R*)) andif c3(s) and c,(s) are €
functionson 99, , thenthesolution Z of (3.22) defines an element of € (05, T(RY)).

4 CONSTRUCTION OF THE KOITER MODEL EXPANSION
4.A FORMAL SERIES PROBLEM

The operator K(¢) inducesin anatural way aformal seriesin £'/2 by setting

K[al/z] =M+e’B = Zek/QKk/Q,
k>0

with K = M, K2 = B and K¥2 = 0 for £ = 1,2,3 and k£ > 5. Hence if
C[eV?] = 300e™2¢H? and g[e'?] = 3,.,¢"2g"/* are formal series with coeffi-

cientsin X(Sy), the equation
Kl ¢le'?) = gle'”] (4.1)

makes sense.

Let g[c'/?] and Gc'/?] be formal serieswith coefficientsin the spaces ¥(S,) and
€ (05, T(R)) respectively. The equations (4.1) and (3.5) yield the equations to be
satisfied by ¢[¢/?] and Z['/?] intheinterior of the domains. The goal isnow to match
these formal series along the boundary.
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On the boundary 95, , which correspond to theset 77 = 0 in S, we can define the
foIIowing formal series, with coefficientsin € >°(0.5) :

2] }as ngﬂck/?}as and  Z[s"?] ’aso ng/2zk/2}T 0
5>0 k>0

Moreover, we can define the reentrant normal derivative of the formal series ¢[¢!/?]
inthevicinity of 9S by the formula

) C 1/2 . ng/2a Ck/2
k>0

Buttherelation T = ¢~ '/2r allowsto definetheactionof 9, ontheformal series Z[c'/?]
by the formula

0,Z["?) =7 PorZ[e'?) = Y Moz TV (T, ).

E>—1
If weset (;/* = 0, wethus can consider the sum
1/ 2 1 2 _ k/2 k/2 (k+1)/2
0, Csle ’as + 0, Zse / ’T 0o Z / (8§ ‘as +8TZ ’T 0 (4.2)
k>—1
Suppose given formal seriesin £'/2
c.le 1/2 ng/Q k2 and cn 1/2 ng/ch/Q’ (4.3)

k>0 k>0

wherefor al k, /? = (", %, /%) € €(05,)%, and i/* € €>(85,) . Wewrite
cle 1/2] _ Zk>0 ck/20k/2 \with ck/2 — (c 5/2’05‘1/2>_
The formal series problem states as follows: Find ({[e'/?], Z[!/?]) solution of the
equations
KEV2) ¢ ) = gle)
K[/ Z["?] G[s'),
¢[e 1/2]’ + Z[eV?] ’T . c.[e1?), (4.9)
0,Gsle"?] ’as +8 Z3[e"?] |, o = Cale!?].
Using the previous equations and the relations (3.9), the system (4.4) is equivalent to
the following problem: Find formal series ¢['/2] = 3,.,e"/2¢"? and Z['/?] =
Ym0 €2 Z%/? solutions of the following equations, for al k >0,

( M) = —B(C" %) + gt in- S,
k:O(Zkﬂ) _ _ZIZZI fcé/2(2(k—é)/2)+ék/2 in 57
k/2 k)2 k2
k;’as +%ki2’T0 - 2;’ (4.5)
k/2 7l Ovj(Lkis)m ’T:O - CZ/Q’
3 }as + 23 ‘T: = G,
[ G|, + 002y =



In the following, we always set the terms with negative indices to zero. We will see now
how the properties of the operators M and KC° yield a solution of the system (4.5).

4.8 EXISTENCE THEOREM
The goal of this section isto prove the following result:

Theorem 4.1 Supposethat S, isdlliptic. Let g[e'/?] = 3", ., c"/?g"/* aformal series
with coefficients in $(S,), G[e¥/?] = 3., e"/2G*/*> aformal series with coefficients
in € (95, T(RT)), and ¢[c?] = ., c*/2c*/> aformal serieswith coefficientsin
€>(9S,)* . Then there exists a unique couple (¢[e'/2], Z[¢'/?]) of formal series with
coefficientsin ¥(S,) and € (9S,, T(R™)) respectively, solution of the system (4.4).

Proof. We show the result by induction. The relations (3.9) show that the first terms of
the formal series G'[¢'/?] write

G'=0 and GY2=(0,G9).
We divide the equations (4.5) into two parts:

k()(Zk/z) _ _Zz 1;@/2( ké/Q) Gk/Q in S*,
Vk >0, Z;f/Q‘T:O gk /2 g(k; 1/2}85 7 (4.6)
i M
for the boundary layer terms, and
M(CH?) = —B(" )+ g2 in S,
V>0, { P = &P =2, (4.7)
kﬂ’aso = CE/Q_ZE/Z’T:O?

for the termsin X(Sy) . Note that these two groups of equations are linked by terms on
the boundary 0.5 .

For k£ = 0, these equations write

ch(ZO) = 0 in S, M(¢) = ¢° in S,
2,y = 0, and Plose = =29 20 (4.8)
8TZ0 =0 Cso‘aso = &= ZO =0"

Using Theorem 3.2, thefirst group of equationsimpliesthat Z° = 0. Theorem 2.2 shows
that there exists ¢° € £(S,) solution of the second group.
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For k = 1, the equations (4.6) and (4.7) write, using Z° = 0

Kz = GY? in S, M(¢Y?) = g2 in S,
2172 1/2 12 g2
%31;2 ’T:O = Cg - C:? }as ) and ’1/2 89Sy Cg/z B fo/z }T:O ’
OrZs ’T:O 0, s lag, — G T Zs ‘TzO'

(4.9
Theorem 3.2 showsthe existence of Z'/2 € (95, T(R™)) satisfying the first group
of equations (the term ¢° being determined), and Theorem 2.2 shows the existence of
¢'/? € 3(8S,) satisfying the second group of equations.
Let us suppose that ¢/ € ¥(S) and Z/? € €>(dSy, T(R*)) are determined for
¢=0,...,k—1 where k£ isaninteger, such that the equations (4.6) and (4.7) are satisfied
up tothe order % . Thanksto the structure of the operators K%2 for ¢ > 0 and using the
definition of the space T(R™), we see that the right-hand side of the inner equation of
(4.6) isan element of €' (9Sy, T(R*)) . Theorem 3.2 then showsthe existence of Z*/2
in the space € (0Sy, T(R™)) .

Theorem 2.2 then shows the existence of a solution ¢*/2 € ¥(Sp) of the equations (4.7)

This shows the induction hypothesis at the rank % and concludes the proof. [ |
In the previous proof, the fact that Z° = 0 impliesusing (3.9) that Z; '/* = 0 and
79 = 0. Thefirst boundary layer term ishence Z° = (0, Z3) . Thus we have
S =¢0+) e and Z[EV?) = (0,Z9)+ ) Mz (4.10)
k>1 k>1

4.Cc |INFLUENCE OF THE RIGHT-HAND SIDES

We study now 6 generic cases mentioned in Table 1 for the formal seriesright-hand sides
in the problem (4.4). For certain cases we can show that some first terms vanish and the
structure of the formal series ({[e/?], Z[¢'/?]) isnot the same as (4.10).

Using the linearity of the problem, we only consider right-hand sides formal series of
the form g[e'/?] = g°, G['/?] = G° and c[c'/?] = " = (%, 2, 3, %) and we study
successively the cases where only one component does not vanish in these formal series.

Notethat in all cases, the proof of Theorem 4.1 showsthat Z° iszero. We summarize
the results by the following table. Thefirst three columns give the expression of the right-
hand sides formal series, and the last two give the expression of the first terms in the

expansionsof ¢[¢'/?] and Z[¢!/?] of the solution.
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gle'?) | GEYL | e Z[e"/?) ¢l
g’ 0 0 (0,29) + - - O
0 (G2 0) 0 (0,227 + ... ¢l
0 (0,G%) 0 0,29) + - - el/2¢1/2 4
0 0 (¢6,0,0) (0,29) + -+ I
0 0 (0,¢3,0) 0,29) + - e1/2¢1/2 4
0 0 (0,0,¢%) (0,/223%) 4 ... el 4.

Table 1. Sructure of the solution with respect to the right-hand sides.

For example in the case where ¢° = 0, G° = (G%,0) and ¢ = 0, we have
G° = G2 = 0. Studying succvelythe equations (4.8) and (4.9), we easly see that
¢ =0, ZY2 =0 and ¢"? = 0. In general we have Z! # ( because this latter term
satisfies

KNz =G'=(G%0) in S ad Zj|,, =0rZi|,,=0.

Thisimpliesthat in general ¢* # 0. Thusthe expansion is of the form

1/21 _ k2 k)2 1/2 1/2 770 k/2 7k/2
Ce' ="'+ ) e and Z[e/7]=(0,e7°Z5)+ )y £M°Z

k>3 k>2

The other cases are studied similarly (see [14] for details).

5 ESTIMATESFOR THE KOITER MODEL ASYMPTOTICS

We consider the solution z¢ of the equations (1.9) inthe case where g = g° satisfies
(1.10). Using the results of the previous section, there exist two formal series ¢[¢'/?] and
Ze'/?) satisfying the equations (4.4) with formal series right-hand sides c[¢'/?] = 0,
G[e'/?] = 0 and g[¢'/?] the formal seriesinduced by the expansion (1.10).

Note that for & > 0, thesum ¢*/2 + Z*/2 does not make sense, because the terms
¢*? and Z*/? are not of the same nature and lives on different manifolds. However the

sum ¢"? 4+ x(r)Z"* makes sense and defines an element of %(.S,) . In this section we
prove that the expansion
ng/Q (Ck/Q + X(T)Zk/2) (51)
k>0
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is an asymptotic expansion of the solution z¢ of the problem. Notice that we could also
make the more general assumption

gs ~ ng/Q (gk/Q + X(’I’)Gk/Q),
k>0

and similarly the data on the boundary may expand in powers of ¢'/2,
For N € N we define the 2D displacement

N
2V(e) =) (M + x(r) Z2M7) € £(S)). (5.2)

k=0

We thus have 2V (c) = 6" (¢) + x(r)AY (¢) with

N N
0V (e) = Zek/QCk/z and AN(e) = Zek/QZk/Q.
k=0

k=0

Using the estimate (2.2) we see that we have
2
(K1) 25,0 = C Il gz s (5.3)

for al n € %(S,) satisfying the boundary conditions "”aso = 0 and 3#73!850 =0.
In the following C' denotes always a constant independent of <. Using this estimate we
show the following result:

Proposition 5.1 For all N € N, we have the estimate
< C N, (5.4)

12 = 2 )l g sy <

Proof. Using the proof of Theorem 4.1, we see that theterm 2% (¢) satisfies
zN(e) ’850 =0 et &zév(e) ’850 = 5N/28TC§V/2

We thus define the following element of 3(S) :

N . 0
vs (—(arcém !aso>rx<r>) '

It is clear that the term zV(¢) := 2V (e) + eV/%t" satisfies the homogeneous Dirichlet
boundary conditions z¥(¢) |, =0 and 9,73 () |, = 0. Wethus can apply estimate
(5.3) totheterm z¢ — " (e) and we haveto estimate theterm K(e) (2° — 2" (¢)) .

The formal series ¢[¢!/?] satisfiesthe equation K[e'/2] ¢[e!/?] = g[e'/?]. Thusfor N ¢
N we have

‘850 ’

K(e)0™ () — g° = O(eWH72),
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where O((V+1/2) denotes an element of Y(.Sy) bounded in any functional normon S
by CneW+D/2 where Cy isindependent of . We deduce that we have

K(e) (0 (e) + "*tN) — g° = O(N/?). (5.5)

Moreover, for y € 3(5) satisfying the homogeneous boundary conditions, we have the
relation

(K(9) (Y (), 9y 0 — (KA (0)) X0 2, | <

Ce IB/\/_”y”H1><H2 SO)

(5.6)
where 1, > § > 0. Thisrelation is due to the fact that the support of 0, x(r) liesinan
open set (pi, p2) x 05y of Sy with 0 < p; < po. Asthisdomain is at a distance of
dS, independent of ¢ and astheterms Z ( f,s) are uniformly exponentially decreasing
withrespectto 7' = f , We get the exponential termin (5.6).

Using the scaling (3.8) and the definition (3.2), we have in coordinates (7', s) for all y
satisfying the homogeneous boundary conditions,

(KA E) Wy = = KRN0, )
where we set
y(T,s) = X(gl/zT) (yT, Ys, 61/2y3) (61/2T, s),
and where

N
AN e) = ng/QZk/z + €(N+1)/2(07 Z§N+l)/2)-

Note that the scalar product in (5.7) makes sense since ¢ has compact support.

Itisclear that the Taylor expansionin 7" = 0 of the operator k:(a) correspondsto thefor-
mal series KC[c'/%] . Astheformal series Z[c!/?] satisfiestheequation K[e'/?] Z[e1/?] =
0 . We thus deduce that

(K (A ()XW 260 = OE B g1 o
By doing the change of coordinates, we easily see that

< Ce” My

||y||H1><H2 H!'xH2(Sp) °

Finaly, we have
(KEAYE)x¥) 1260 = O Yl s - (58)

Grouping together the equations (5.5), (5.6) and (5.8), we obtain that for y € 3(S,) , we
have

(K() (= = 2() W) s = O Dl s -

As (25 —zN(¢)) =0 and 0, (2 — 2V = 0, we can apply this estimate to

’850 ’850
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y = z° — z"(g) . Using (5.3) we obtain

”H1><H2(So) -
But we have ||zV(¢) — zN(e)HHleQ(SO) = O(e"/?), and hence the previous estimate
shows the proposition. [ |

This proposition gives a rough estimate for the difference z° — 2% (¢) . We deduce now
the following result:

Theorem 5.2 Let z¢ bethesolution of (1.9) with a right-hand side satisfying (1.10), and
let 2™V(e) defined by (5.2). For all N € N, we have the estimates:

”25 — ZN((C:)HHleQ(So) < C V214 and st _ ZN(&,)HHlXLQ(SO) < C N2+
(5.9)
This Theorem implies Theorem 1.1.
Proof. The estimate (5.4) showsthat fo V € N, we have
Hza N zN+6(6)||H1XH2(SO) < CeN/2+3/4
Thuswe have
125 = 2 )l g cre s
N—+6
< 20 P i ingsy N2 gy ) + O (6.10)
k=N+1

For & > 0, the terms ||C’“/2]|Hle2(SO) are bounded by constants independent of ¢ .
Moreover we see that for afixed component 7 and for all £ > 0, we have the estimates

k k — k _
I 2 sy < % IXNZ s,y < Ot and (I 2oy, < C ™™
(5.12)

L2 (So (So)

Plugging these estimatesinto (5.10), we get
125 — 2" (e)
where Cy isaconstant independent of <. This showsthe result.

Similarly we obtain inequalities of the form (5.10) for the norm H' x L?(S;) and con-
clude using (5.11). |

gy < Cve™2 4, (5.12)

Using the previous Theorem, we can compare z© with the solution of the membrane
problem.

Proposition 5.3 Let g € X(S;) independent of ¢, and let ¢ € ¥(5,) and z° € X(.Sy)
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be the solutions of the problems

{M(C):g n S {K(g)zazg in S,

Ca }aso =0. = O0nz3 }aso =0,

then we have the estimate

z }aso

12 = Cllgg o < 7 (5.13)

Proof. The previous Theoremfor N = 0 andthe H' x L?(Sy) normyields
e 0 0 1/4
HZ C XZ HH1><L2(SO) S 06 .
As ¢ = ¢° wethusfind
e _ 0 1/4
HZ CHHIXLQ(SQ) S ||XZB||L2(SO) + 06 )
and the equation (5.11) shows the result. [ |

6 FORMAL SERIESSOLUTION OF THE REDUCED PROBLEM

We study now the problem (1.31). Note that this problem is close to the Koiter equa-
tions(1.9). In particular, thefirst term (A° d°) in(1.31) isequal tothefirst term (K°, d°)
of the Koiter operator and is non invertible. As before, we introduce 2D boundary layers
to solve the problem.

6.A STATEMENT OF THE FORMAL SERIES EQUATIONS

Inthe following, we denote by f[<'/?] theformal seriesinduced by the expansion (1.15).
Notice that every formal seriesin powers of ¢ isalso aformal seriesin powersof /2.
We denote for example by A[z!/?] the formal series Al] viewed as a formal seriesin
€72 and we use similar notations for the formal series of the paragraph 1.D.

(i) INNER EQUATIONS. Let C[e'?] = 3, ek/2¢k/2 be a formal series with coeffi-
cientsin X(Sp) . We consider the equation (see (1.31))

Ale"?] "] = G| FI'7] (6.1)
which means N .
Vn > 0, ZAZ/Qc(n—Z)/2 _ Z GZ/Qf(n—Z)/2’
=0 =0

where A2 = (0 when ¢ isodd.
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In order to define the equations acting on 2D boundary layer terms, we make the
change of variable (r,s) + (T,s) with T = ¢~'/?r in the formal series A[s'/2]. In
coordinates (7, s) , the operators A* changeto operators depending on ¢ inthevariable
(T, s) . We define A(’“ (¢) the operator actingon S by the equation

Vk>0, AW()(T,s;0p,0,) = AF (V2T ;67 Y207, 0,).

Note that these operators contains negative powers of <!/2, depending on the degree
of A¥. The Taylor expansions of the coefficients of these operatorsin 7' = 0 yield
formal series A" ['/2] with operator coefficientsin variables (T, s) . We then have the
following result:

Lemma6.1 TheTaylor expansionsin 7" = 0 of the coefficients of the operators A®) (g)
defines operators .A4%‘/2 actingon S, polynomialsin 7', such that

VE>0 AW = Y PANE (6.2)
£>—(k+2)
The equation
1/2 . ngA(k 1/2 (63)
k>0

then defines a formal series

n+2
A 1/2 . Z €n/2An/2 with An/2 ZAk,(n—Qk)/Q. (64)
n>-—2 k=0

Proof. Theequation (6.2) is aconsequence of the estimate of the derivative orders of the
operators A* (see equation (4.25) of [15]): The components of the operators A* are at
most of degree k + 2.

The fact that (6.3) indeed defines a formal series is then easily seen by identifying the
powersof /2 in (6.3). m

Theformal series A[z!/?] correspondsto thethe formal series KC[¢1/2] for the Koiter
model. We thus consider the problem: Find aformal series Z['/?] with coefficientsin
the space ¢ (05y, T(R™)) such that

Ale'/? Z[V?] = 0. (6.5)

As for the Koiter model, we make a change of unknown in order to obtain a new formal
series problem with aformal series operator having al its first components non zero: We
define the formal series .A[c'/?] by the equation (see (3.10))

.VA[gl/Q] 2[61/2] _ (6.A [ 1/2] [ 1/2] 1/2A [ 1/2] [ 1/2]). (66)
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where Z[¢!/?] and Z[¢'/2] arelinked by (3.8). The problem (6.5) is hence equivalent to
the problem } }

Ale'/? Z[eV?] = 0. (6.7)
Now we have:

Proposition 6.2 The operator A° isthe same as the operator K° defined in (3.12). In
particular the operator A" satisfies Theorem 3.2.

Proof. Thefirst termsof the formal series A[e] write
Afe] = tA 472472 4 A0 4
with, using the fact that A' =0,
A=A A=A and AY = A% A%2 (6.8)

As A’ isthe membrane operator, we have that A%~ = IC~! givenin (3.6). Similarly,

the transverse component A"/ isthesameas k5 /% given by (3.7).

Moreover, from the expression of A? (see Equation (4.32) of [15]) we have
_ 1~
Ag’ 2(Z) = g()\ + 2#) aTTTTZB- (69)
Using (6.6), we then compute directly the expression of LA~ whichisequalto K°. m

(i) BOUNDARY CONDITIONS. If ¢[e'/?] = 3°,.,€*2¢"?* isaformal serieswith co-
efficientsin the space ©(S) , we can consider the formal series (see (1.31))

dle 1/2 1/2 Zgnﬂ(ZdZ/Q n— z)/2> (6.10)

n>0

with coefficientsin the space 6> (955,)* .

With the formal series d[¢!/?] is associated a formal series D[e'/?] with operator
coefficientson Sy suchthat de'/?|z = (D[e'?]z) |, fordl z € %(Sy) (see Propo-
sition 5.4 and Equation (6.1) of [15]). As before we define the operators D™*)(<) on
S =Rt x 0S5y by

Vk>0  DW(e)(T,s;0r,0,) := D¥(eV?T, 5;67 Y207, 0,).
AsinLemma6.l, we have the expansion
Vk>0, DW= Y DR (6.11)
£>—(k+1)

Hence we can define the formal series
n+1

1/2 Z€kD k) 1/2 Z 8n/2Dn/2 with Dn/? _ ZDk,(n—2k)/2

k>0 k>—1
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The formal series d[c'/?] = Y°,._, €*/2d"/* with operators coefficients d*/? : $(5) —
©>(9S,)" , isthen defined by

de'?)Z = (D[ Z)|,_,

for Z € %(5) . Inthefollowingwewrite d*/? = (d5/*, d5"* d4/?, d/*) the components
of the operators d*/2.

We have Dz = (z,,z,,23,0,23). Using the orders of derivative of the operators
D", we see that the formal series d[¢!/?] writes

de'?) = Va7 V24 d" + -
with

d'?Z =(0,0,0,0rZ5 and d'Z = (Z,,2,,25,d3(2))|,_,. (612

) ‘T:O
The formal series boundary equation finally writes:

dl"/]¢[e"?] + d[e'?] Z[e'/?] = h[e'?] £[='77). (6.13)

_In order to obtain equations on Z[e'/], we define the formal series D[<'/?] and
d[='/?] by

D[e'/?) Z[e"?] .= D[V Z[e'?), and d['*) Z = (D[e"/?] Z) (6.14)

}T:0 )

Using the equations (3.9), we compute that we have

3[51/2] _ Z Sk2gk/2 — gt 4 122 L g0 4 7

k>—2

with d,'Z = 9rZ;|,_,, d5'Z =0 and d;"*Z = Z;|,,_, . Moreover we have

J;IZ == J;IZ == J;l/zz == Cis_l/QZ - O, d%z = ZT
Grouping together the equations (6.1), (6.5) and (6.13) we define the problem: Find
aformal series ¢[e1/2] = Y., e¥/2¢""* with coefficientsin $(S,) and aformal series
Z[eV?) = 3, e"2Z*? with coefficients in the space € (9S,, T(R*)) satisfying
therelations

{ Ale' I ¢[e?] = Gl fle17),
Ale'?) Z[eY?] = 0, (6.15)
de"?I¢[e?] + d[e'?] Z[e1?] = h[e"?] flV?).
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6.B SOLUTION OF THE FORMAL SERIES PROBLEM

We now prove that the system (6.15) admits a solution. The method is close to the proof
of Theorem 4.1.

Theorem 6.3 Suppose that S, isdliptic, and let f[='/2] be a formal series with coef-
ficientsin € (1,%(Sy)) . Then there exists a unique formal series ¢[e'/?] with coef-
ficients in the space ¥(S;) and a unique formal series Z[¢'/?] with coefficients in the
space ¢ (95,, T(R™)) satisfying the equation (6.15).

Proof. Weset g[e'/?] := G[e/?|f[e'/?] and c[¢'/?] := h[e'/?] £]c'/?] . The coefficients
g"? and c¥/? arethusin X(S,) and €>(0S,)* respectively. Notethat ¢® = 0 because
h® isthe zero operator (see Theorem 5.3 and Equation (6.1) of [15]).

The last equation of (6.15) is equivalent to
dl="?) e + d[="/?] Z[e'/%] = h[e"?) fIEY7).

Thiswrites, for £ > —2,
k
Zd2/2<c (k—20) /2) + d (Z(k+2 /2) + d 1/2<Z(k+1 /2 + ZdZ/Q k é)/Q) Ck/Q.
=0 =0
Using the expressions of the first operators, we get:

k k
G2y, + D4 + 24y DB =
=1

and . .
G2 gy T D d2CHI) 1+ 2P | DT A2 = P,
=1 =1
for the surfacic components. For the transverse components we get

k/2 £/2 ¢ w(k—1) 2 k+1 )/2 5/2 (k—£)/2 k/2
’as +Zd C( !/ ‘T 0+Zd )/) €
=0
and similarly,

k/2 5/2 (k—0)/2 (k+2)/2 0/2 ( rz(k—10)/2 k2
s+ DS ACE ) £ 0y | Y O - 8
(=1 =—1

Note that these last two equations express Z§"/?|_and 9,Z{"?"*| _ with re

spect to terms of lower order in & . Moreover, these two terms corr%pond to the boundary
conditions we can impose when solving for the operator .A°. Finally, the formal series
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¢['/?] and Z[c'/?] solvethe reduced formal seriesproblem (6.15) if for k£ > 0 we have:
AO(Zk/z) _ _ZE 1A£/2( VAGS 5/2) in 5«’

k/Q ’T . = Bk 1)/2 ZZ 1 f 1)/2(Z(kf€)/2) . Z?;Ol dé/Q(C(k:—l—é)/2)7
k/2 2 k 0—2)/2 _ k-2 0/2 o
OrZy |,y = &P AR (2002 ”/2)(,6 "
and
M) = =S AR ) 4 g2 in S,
k 2 k 2 Z 2 k 2 k /2 ¢ B (f—
/ ’850 = / ZE 1 / ( k g)/Q) / ‘T 0 2521 d’]'( (Z(k f)/Q)’ (617)
k/2 k/2 5/2 (k—¢ k/2 ko 50/2/ S (h—
’850 Zz . d ( )/2) ‘T . Zz=1 ds (Z(k f)/Q),

where we agree that ¢/2, ¢“/? and Z'/* arezerofor ¢ < 0.

The end of the proof is similar to the proof of Theorem 4.1, using the theorems 2.2 and
3.2 andthefact that A% = K°. n

6.c COMPARISON WITH THE KOITER MODEL

Proposition 6.4 Let ({[e'/?], Z['/?]) be the solution of the problem (6.15) given by
Theorem6.3and ({'['/?], Z'[¢'/?]) the solution of the system

KEeV? ¢V = GO fle?),
K[eV? Z'[e1?] = o, (6.18)
dO¢'[eY2) 4 (dY, dO, dY, e/2d, ) Z' [V = 0,

given by Theorem 4.1. Then we have
C[gl/Q] _ C/[gl/Q] —ce! + ng/2ek/2’
k>3

and
Z[€1/2] B Z/[81/2] _ (0,61/2E§/2) + ng;/QEkﬂ

k>2

where e*/? € $(S;) and E*? € (95, T(RY)) .

Proof. We set
gle'?) = G"?] f[e'%] and  ele/?] = h[e"?] Fle'/7).
We easily seethat wehave ¢ =0, ¢/2 =0 and g'/> = 0.
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Comparing the proofs of Theorems 4.1 and 6.3, we see that the two solutions have the
samefirst terms Z° = 0 and ¢° solution of the system

1t .
M(¢0) = GO0 = B /_1 fOdzs in Sy, and Gr \aso = CS‘BSO =0.

For k =1, theequations (6.16) write:

AYZ'V? =0 in S, 23" and 0r23%| =0,

‘T 0o C3 ’85 ’ ‘T 0

and using KO = A°, we see that thlssystem isidentical to the first system of (4.9) with
the right-hand sides G° = 0 and ¢} = 0. We deduce that the term Z'/2 solution of the
previous system is the same for both solutions of (6.15) and (6.18).

The equations (6.17) then write

M) =0 i So. (P =2 s, and (P = =20
and we verify that the equations (4.7) for k& = 1 arethe same. Theterm ¢'/? solution of

this system is then common in both formal series ¢[¢'/?] and ¢'[¢'/?].
For k = 2, the equations (6.16) write ,A4°(Z') = —A4/2(Z'/2) with

Ll =—d3(Z) = G s, and 23|, = —d A2 = 0.,
and the equation (4.6) associated with the problem (6.18) writes
k)O(Z’l) _ _’”C1/2(Z/1/2)7 Z’é }T:O _ /1/2 ‘as and aTZ% }T:O -9,
The proposition is a consequence of the following result, proved in Appendix A:

/0‘
3185q °

Lemma 6.5 The operators .A'/2 and K!/2 are the same, the operator 9 is the zero
operator, and the operator d,, "/ writes

J;1/2(Z) = 023TT23 ’T:O .

where ¢, > 0 isa constant depending only on the Lamé coefficients A and 1 .

(6.19)

The operator (6.19) being not equal to the zero operator, theterms Z' and Z'' do differ
ingeneral. Thisimpliesthat theterms ¢! and ¢’* aso differ. Thisprovesthe proposition.
[

7/ THREE-DIMENSIONAL FORMAL SERIES SOLUTION

We recall the definition of the three-dimensional boundary layer spaces ([11, 8, 15]):
After the change of coordinate R = <~ !r inaneighborhood of T’ , the coordinate system
(R, X3,s) isdefined on the manifold X x 05, where ¥ := RT x I 5 (R, X3) isa
semi-strip. Let $H(X1) bethe space of > functions ¢ onthe semi-strip ¥ exceptin
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the non regular points (R = 0, X3 = 1), and such that ¢ isexponentially decreasing
with R inthefollowing sense:

Vi, jkeN,  FRFOLO p € LX),
where § > 0 isareal dtrictly lessthan the smallest Papkovich-Fadle exponent (see [17]).
In the neighborhood of the two corners of the semi-strip, we impose the following: if p
denote the distance in ©* to apoint (R = 0, X3 = £1), we suppose that each ¢ in
H(ET) satisfies
VijeN, i+j£0,  pT R0k e e LA(EY).
We then define the corresponding displacement space
H(EY) = {@ = (¢r, ¢s, 03) € HTT)*}.
In this section, we construct three formal series:
A formal series v[!/?] = Y, e*/2v"/? with coefficients
V"2 (21, 10, X3) € € (1,2(S))),
aformal series W[e'/?] := 3, e*/2W*/? with coefficients
WH(T, s, X3) € € (I x 9S,, T(RT)),
and aformal series ®['/2] = 37, e/?®"** with coefficients
P2 (R, s, X3) € €°(05, H(Z1)),

solutionsathe 3D formal series equationsin the corresponding coordinates, and satisfying
the boundary condition:

v[e ]| + W[e'/? + P[c1/? = 0.

HFO HT:O HR:O_

These three formal series are constructed using the formal series reduction of [15],
and the formal series obtained by Theorem 6.3. To this aim, we define the action of the
operator formal series V[1/?] and W[c!/?] (see Theorem 5.3 of [15]) on the 2D boundary
layer formal series, taking valuesin ¢ (I x 9S,, T(R*)) . From now on, ¢[e/?] and
Z|['/?] arethe formal series given by Theorem 6.3.

7.A  CONSTRUCTION OF THE FORMAL SERIES
(i) CONSTRUCTION OF w[e'/2]. We define the formal series
vle'?] = Ve[ + Qe =),
with coefficientsin the space ¢ (I, £(S,)) . As ¢[¢'/?] is solution of the equation
Al ¢[e"?] = Gle'] Fle'),
we easily see using (1.27) that we have
L[@l/z] v[&tl/z] = —f[gl/z] and T[gl/z] v[&tl/z] =0.
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(i) CONSTRUCTION OF W e!/?]. In order to define the formal series Ws'/?], we
make the change of variable in the operator formal series V[c!/?]. Recal that the op-
erators V*/2 vanish if k isodd. If we denote by V*(r, s, X5:;0,,0,) the operator V*,
polynomial in X3, in the coordinate system (r, s, X3) , thenwe set for all £ > 0,

VW (e)Z = VE (2T, 5, X336 20r,0,)(Z),
where Z isal-formfield onthemanifold S . AsinLemma6.1the corresponding formal
series V¥ [1/2] obtained by Taylor expansionin T = 0 of the coefficients write

1/2 Z 65/2vk Z/Q (71)

>—k

where the operators V**/2 are polynomial in 7" and X3 and act on %(5) (see[15]).
We define the formal series V[¢!/?] by the equation

n

1/2 . ngv(k 1/2 Zgn/Ql}n/27 with vn/2 _ ka,(n72k)/2. (72)

k>0 n>0 k=0

Using the definition of the space T(R*),, we see that the formal series V[¢!/?] has
operator coefficients

V2 6% (08, T(RT)) — € (I x 8Sp, T(R))
polynomial in 7" and X5. We have V°Z = Z . We now define the formal series

WIe'?) = VI 27,

with coefficientsin the space € (1 x 05,, T(R™)) .
(iii) CONSTRUCTION OF ®[¢'/?]. Recall that Theorem 5.3in [15] yields the existence
of a formal series W[e] mapping %(Sy) to the space of three-dimensiona boundary
layers € (050, H(Z1)) .

We first note that we can consider the formal series W[e'/?]¢[¢!/?] with boundary
layer coefficients. We now define the action of the formal series ¥[¢!/2] on the formal
series Z[1/?].

The formal series W[¢'/?] contains only terms in even powers of ¢!/2 and we have
(see Proposition 5.4in[15])

VE>0, Uz=> (Pz

JEFY

}850 d

where Fj, is a finite subset of N. The coefficients ¢"7(R, s, z3) are in the space
¢ (85, $9(X")) and the operators P} take values in 4>(S,) and are of order at

most & in 9, . Asinthelemma6.1, we definefor all Z € %(5),
P{(e)Z = Pi(e"°T, 5:27 /07, 0,)(2),
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and the associated formal series P](k) [£1/2] ofter expansion of the coefficients around

T =0.As PFisof order k in 9, wecan definetheformal series ¢[¢'/?] with operator
coefficients

P21 6% (0S0, T(RT)) — €>(9S0, H(ZT)),
by the equation (recall that the F), arefinite sets)

VEe)z = > ety (PUEIZ) |

k‘>0 ]EFk
_ Zgnmzz k:(é 2k)/2 o } . Sak; (6=2k)/2.
’I’L>O k= O]EFk

We then define the formal series ®[=!/2] with coefficientsin ¢ (9.5, H(XT)) by
D[] = W[ ¢[e?) + O?) 2] + w[eV?] Z[£17].

where Ole] istheformal series given by Theorem 5.3 of [15].

7.8 THREE DIMENSIONAL FORMAL SERIES EQUATION

In the coordinate system (7', s, X3) , we define the operator (L(s), T (¢)) by:

{c(g)(T,s,Xg;aT,as,axg). L(e¥/2T, s, e X5~ Y20p, 05,6 10x,) and 73

T(E)(T,S,Xg;a'f,as,axg) . T( 1/2T, S,EXg, —1/2 8T,8s,€_18X3).
where (L, T) isthe 3D elasticity operator on €2° . We then define the two corresponding
formal series (L[e'/?], T[c'/?]) in powersof £!/? by expanding the coefficients of this

operatorin 7= 0 and X3 = 0. Itisclear that we have operators of order 2, polynomial
inT and X3

L2 6 (1 x 98, T(RT)) — € (I x 05y, T(RY)),

e Th? . ¢ (I X 850,‘1(R+)) — ¢ (850,‘1(R+)),
such that
E[ 1/2 ng/zﬁkm and T 1/2 _ ng/szﬂ
k>0 k>0

In the same way, the change of variable (r,s,z3) — (R,s,,X3) where R = ¢~ r
inthe operator (L, T) yieldsformal series (Z[¢], 7¢]) (seetheequation (5.5) in [15]).

We thus have the 3 couples of formal series: (L[e'/2], T['/?]), (L[], T["/?))
and (ZL[¢'/?], 7[e'/?]) corresponding to the expansionin powersof /2 of the operator
(L, T) in thethree coordinate systems associated with the three kind of terms.
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Theorem 7.1 The formal series v['/?], W s'/?] and ®[c'/?] constructed in the pre-
vious subsection fromthe solution (¢[e'/?], Z[¢'/2]) of the problem (6.15), are solutions
of the following equations: the formal series v[¢!/?] satisfies

(L["2], Tl 2] wle'?) = = (£1€'/%],0) (7.4)
the formal series W['/?] satisfies
(L[, TV WY =0, (7.5)
and the formal series ®[=!/?] satisfies
(L2, Z7[e2) @[V = o. (7.6)
Moreover, we have the relation

v[gl/QHr + WIe'?] e o+ Pl [£'/7] }R o =0 (7.7)

Proof. The equation (7.4) is clearly satisfied.
Theformal series Z[¢'/?] satisfiesthe equation (6.5). But by definition, the formal series
Ale] and V[e] satisfy the first group of equations in (1.27). By doing the change of
variable (r,s,xz3) — (7' s,X3) and by expanding the coefficientsin 7" = 0 and X3 =
0, weseethat for al 1-formfield Z onthe manifold S, we have

L\ Ve Z = -To AleV?Z and TV V[eVHZ =0,
and this clearly shows the equation (7.5) using the relation W [e'/?] = V[e!/2] Z[¢1/?].
Recall that theformal series ¥[¢] and O[¢] satisfy the equations (see the equations (5.14)

and (5.16) of [15]),
ZLel, Tel)Vle] = 0,
{ (w1 o s 2 VAIL 7

{ oy P TENE = 0
(@[5] ‘R o T Qle ’r

where the formal series d[¢] isaformal series with operator coefficients taking valuesin
the four dimensional space of rigid displacements on the semi-strip (see Theorem 5.3 of
[15]). Thisformal seriesisrelated to d[e] by therelations v;[¢] = d;[¢] for i = 1,2,3
and d,[e] = e '04[e] — b0 [] —bi0o[e] (Seethe equation (6.1) of [15]). A similar relation
holdsfor h[e] and h[e] .

By doing the change of variable (r,s) — (7, s) in the equation (7.8), and using the
definition of the operator formal series [¢'/?] , we find that:

3[81/2],9[ 1/2] 1/1[ 1/2] _—
{ (v —E[gl/QD }R 0+V)1/2 ’r _— (7.10)

(7.9)

I
o
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where the formal series ¢['/?] is obtained by doing the change of variable (r,s)
(T, s) inthe coefficients of the formal series d[¢] .

The formal series ¢[c'/?] isthus related to the formal series d['/?] in the same way as
the formal series o[¢!/?] isrelated to the formal series d['/2] . In particular the equations

d[e"/?] ¢["/%] + d[e'?] Z[e/?) = h["/?] £V,
and
o[ I + e Z[e'?) = bl £V, (7.11)

are equivalent. Thislast equationisthus satisfied for theformal series ¢[¢'/?] and Z[s'/?]
solutions of Theorem 6.3.

Applying the equation (7.8) to the formal series ¢[¢!/?], the equation (7.9) to the formal
series f[¢'/?] and the equation (7.10) to the formal series Z[='/?], and summing the
expressions so obtained, we find

(L), T @[] = 0,
and this shows (7.6). Similarly we obtain
P[c1/? + v[e'/?] ’Fo + Wt ‘Fo
— o[ 2 ¢ + bl 2] F[eV] — e[e'?] Z[1?) = 0,

using the definition of v[c'/?] and W [e!/?]. The equation (7.11) then shows (7.7). This
ends the proof of the Theorem. [ |

] ‘R=O

7.c COMPARISON WITH THE KOITER MODEL

We compare now the first terms of the formal series v[e'/2], W[e'/?] and ®[¢!/2] with
the first termsin the expansion of the Koiter model.

Proposition 7.2 Let v[e'/?], W [s'/2] and ®[!/?] be the formal series defined in the
previous subsection. The first terms of these serieswrite

v[el/?] = €0 + V3¢V 1 O(e), (7.12)
Wrle¥/?] = eV2( 237 — X30079) 4+ O(e),
W =4 W[V = €22, +0(e), (7.13)
Wsle?2] = 20 + /22,2 +O(e),
and
P2 =@ + O, (7.14)

Let ¢'[¢'/?] and Z’['/?] be the solution of the formal series problem (6.18). We have
CO _ Czo C1/2 _ C/1/2 70 _ 710 Z1/2 _ Z/T1/2 and 712 — 7'1/2
- ) - ) - ) T - S - S )

but Z3/* # Z4Y/2 in general.



This Proposition is a consequence of Proposition 6.4 and the expression of the oper-
ators V¥ invariables (T s, X3) . See[14] for further details.

8 ESTIMATESFOR THE THREE-DIMENSIONAL ASYMPTOTICS

We consider the shifted displacement w*® solution of the equations (1.22). We denote
by w(e) the corresponding displacement in €2, solution of the equations (see (1.23)):

(L(e), T(e))w(e) = (—f(¢),0) in QxTIy and w(e)=0 on Iy (81)

8.A  ANSATZ OF 3D EXPANSION
With the formal series defined in the previous section, we set for all N € N,
’LU[N](ZS)(ZL‘l,.I'Q,Xg) =

N
Z Ek/z ('Uk/z(.l’l, T2, Xg) + X('f’)‘/‘/k/2 (671/2707 S, X3) + X(r>¢k/2 (8717)7 S, X3)> : (82)

This defines an element of H!(Q2) . We writeit
wl(e) = vW(e) + x(NWM(e) + x(r) @™ (e), (8.3)
with evident notations. Using (7.7) we see that

vNeN wlhe)|, =0, o w(e)eV(Q),

where V(2 {u e HY(Q) |u\ =0} isthevariational space associated with the 3D
problem. Weset asp the bilinear form defined by the formula
ip(w,0)i= [ A (w)es (o). 82

where é;;(v) = e;;(p~"(z3)v) with p(zs) the shifter defined in (1.21). This bilinear
form corresponds to the energy (1.19) for shifted displacements. We denote by asp(e)
the corresponding bilinear formon V' (€2) .

We have the following Korn estimate (see section 4 of [7]):

VoeV(Q), v eflCHeij(xa,ng;Da,é’laxs)('v) (8.5)

Hl(Q)S — HLQ(Q) )

where C' isindependent on <. Moreover, the operator p(e) actson V() andisin-
vertible with bounded inversein < : We have

Vo e H(Q),  ellvllgn < 180000 < Clollas (86)
where ¢ and C' are constantsindependent on ¢ . Using (8.5) and (8.6) we find
Vv € V<Q)7 ”U”Hl(ﬂ) < 6*200@3])(6)(,0’ U)7 (87)

where Cy isindependent on ¢ .
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8.B VALIDATION
Similarly to the section 4 and Proposition 5.1, we first give the rough estimate:

Lemma 8.1 With the notations of the previous section, we have

lw(e) = wi™ ()l g < CEM (8.8)

We do not give the proof of thislemma, asit isvery close to the proof of Proposition
5.1 and very technical (see [10, 14] for similar calculations). We use the formal series
eguations satisfied by the formal series and the Korn inequality to conclude.

Let v[e'/?], We'/?] and ®[¢'/?] be the formal series defined in the previous sub-
sections. We easily see that

k/2 .
VE20, [0 < C
Similarly, using the exponential decay of the boundary layer terms, we have

HXWk/QHLQQ < 081/4 o ”XCI)k/QHLQQ <C€1/2 .
W gy < OV I ®2 gy < 02, 8D

where the constants C' are independent on . Using the previous lemma, we get the
following result:

Theorem 8.2 Let w(e) be the shifted displacement solution of the three-dimensional
equations, and let w!™(¢) bethe 1-formfield defined in (8.3). Then we have:

VN >0, |w(e)- w[N](z-:)HHl(Q)B < CeN2, (8.10)

Proof. Let N > 0. Using the estimate (8.8), we get

|w(e) — w!N+10] (8)HH1(Q)3 < C«gN/QJrl’

whence
lw(e) = W™ ()]
N+10

< 3 (0 g+ X2 g + @2

k=N+1
The previous estimates of thetermsin ¢ yieldsthe result. [ |

N/2+41
HI(Q)3 )+(J€/ .

Recall that the 3D displacement u(¢) and the shifted displacement w(e) arerelated

by
Uy (€) = Wy(e) — X3S (21, x9)wa(e) and  wug(e) = ws(e). (8.11)
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We deduce that we have a similar asymptotic expansions for the 3D displacement. More-
over, as the shifter differs from the identity by aterm of order « of order of derivation
zero, we deduce that the terms of order 0 and 1 in ¢'/? areequalsfor w(e) and wu(e).
Thus the proposition 7.2 is the same for these displacements.

Note eventually that using Lemma8.1 writtenin 2¢, and using estimates of theterms
of the expansion in physical variables, we obtain the multiscale expansion for the shifted
displacement in €2¢ . This shows Theorem 1.2.

Finally, using Theorem 8.2 and Proposition and 7.2, we easily show Proposition 1.3.

APPENDIX A: PROOF OF LEMMA 6.5

1. We first compare the operators .4'/2 and K/2. We have the following estimate
(see Proposition 4.2 of [15]):

4 5
3
deg A® < (5 4) . (8.12)

Moreover, the operators A* are of order at most k£ + 2 for k > 4.
Using the definition (6.6) of the formal series .A[¢'/2], we have, similarly to (6.3):

1/2 ng;A k) 1/2 (813)
k>0
with

)

AP 2] = (e APV 2], S PAPV ) Z[E), (814)

where the formal series Z[c1/2] and Z[c/2] arerelated by (3.8). Using (8.14) and (6.2),
we see that we have

k,l/2 k,l/2
V>0, APV = (T 2457 Y o £ APT?).

Using (8.13) we see that
n+1
A, V7 Zzg2k+5kl/2Ak(5kl Z n/QZAk(n 2k)/
k>0 €>0 n>—1
where we used the fact that A5/% = 0 for ¢ < —(k + 1) . Similarly, for the transverse
component we see that
n+2
V 1/2 Z n/QZAk: ,(n— 2k)/2

n>—2
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In particular, we have that

A2 = Q0N 4 AL L 200 and Y = A T B
] (8.15)
Similarly, for the computation of the operator X'/, we have

KY? = MY2+ B%2 and Ky = My* + B2, (8.16)

where the operators M*/2 and B*/2 are defined as before from the operators M and
B. The equations (8.15) shows that for k& > 4, the operators AF play no role in the
computation of the operator A'/2 .

As A3 isonly of order 4in z3 (see (8.12)), we have A3 2 0. The operator

Al being the zero operator, we have AL ~"? = Ay 12— 0. As A° isthe membrane
operator, it is clear that AY"/? = MY? and AY"? = My,

Now using the expression of the operators A? (see Theorem 4.4 of [15]) and B? , we
compute directly that A% = 5,%/* = 0 and

vo > 33— - 2~ %
A7 = B3 7 = g)\ I.,(0, s) OrrrZs.

This eventually showsthat KC1/2 = A2
2. We now compute the operator d) or equivalently the operator DY (see (6.14)).
We have that
12 Z 6/k;,D(/k; 1/2
k>0

where the formal series D*)[¢1/2] are associated with the formal series D*)[c1/2] by
the formula D®)[e1/2) Z[1/2] = DW[1/2) Z[e1/?].

Asthe operators D% are of order at most % in r, we haveasin Lemma6.1:

n+1
Dyl = S PDL? with DY = DhOB2
n>—1 k=0

We thus deduce that
1“)0 — be,O + ,bl,fl/2

As D} isthe zero operator, we deduce that Dy '/

havethat D5° = 0. Thisshowsthat dlz = z;.
1/2

= 0. Moreover as DYz = z3, we

3. We compute now the operator D;,'/*. As the operators DF are of degree of
derivativeat most £ + 1 in r, we have with evident notations:

042
D“n 1/2 Z 65/21)@/2 with Dz/z ZD (=2k)/2
>—2 k=0
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We deduce that } } }
D;Ll/Q _ Dg,fl/z + Di’*g/z.

But it is clear that DY /> = 0, using D%z = 8,23 . To compute the operator Dy~ */?

we only need to know the termswith 2 derivativesin r actingon z3 in the expression of
the operator 92 (see Theorem 5.3in [15]).

We will show later the following equation, for z € ¥(Sy) :

0z = (cgawzg + Pz) (8.17)

’850 ’

where ¢, is anon zero constant depending only on A and ., and P is an operator
taking valuesin € >°(.Sy) such that in coordinates (r, s) , we have

Pz = Pz, + Pz, + Pz,
where P" and P* are operatorsof order 2 actingon z,. and z, respectively, and where
PBZ?) = pzl)’(ra 8)87’523 + pg(ra 8)83523 + ngi’n

with Q3 and operator of order 1in z3 and p?, p3 functionsof the variables (r,s) .
The equation (8.17) shows that

DVE)(2) = e PerdrrZs + Y | PDY(2).
>-2

We deduce that }

DL Z) = cy0pr Zs.

and thisyields the resullt.

Proof of (8.17). Using the proof of Theorem 5.3 of [15], the operators ¥2 and 02 are
suchthat if =z € 3(Sy), ¢ := ¥?z — 0z isthe unique solution of the problem
L = —LWlz in 95, x X7,
T% = —TWlz on 0Syx vy, x v,
I +V2Z‘r0 = 0

with ¥2z € ¢ (650,.6(2+)) (see the beginning of Section 6) and 9%z in the space
spanned by the 4 rigid displacement in coordinates (R, s, X3) (see the equation (5.8) of
[15]). Here, ~. denote the two upper and lower lines { X3 = +1} of X' . The operator
V2 writes (see[15]):

2

X X2
Vo(z) = SrDova(z) and Vi(z) = —Pp(pa(z) - Phas(2) — 20075 (2)).

As in the proof of Theorem 5.3 of [15] we split the solution ¢ of the previous system
into the solution of

P = — LYWz in 9, x T,
T% = —T1W'lz on 0Syx vy X, (8.18)
¢‘R=O =0,
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and the solution of the system

L% = 0 in 95, x 5+,
TO0% — 0 in 05 X vy X, (8.19)
¢’R:0+V2z]FO = 0.

Using the expression of the operator ¥! (seethe equation (5.13) of [15]), we see that the
right-hand side of (8.18) isalinear combination of elementsof 4> (95,, &(X")) whose
coefficientsaretraceson 0.5, of operatorsactingon ¥(.Sy) with degrees of derivative at
most equal to 2 in z, and 1 in z3. Thus the corresponding parts of the operators W2
and 9% are only involved in the definition of the operator P of the equation (8.17).

Similarly the solution of (8.19) splitsinto the sum of the solutions of systems with only
one single non vanishing component in the right-hand side, polynomial in X5. The ex-
pression of V2 show that in the coordinate system (r, s), only V;2z contains derivatives
of order 2 in z3. The components V?z and V?z only enter into the expression of P .
In the coordinate system (r, s) , we have

X2
V}fz = 73]78”23 + Op(2)

where Op(z) denotes an operator of order 2 with derivative of order 1in r on zs.
We seek the solution of the system of the form (8.19) with a polynomial right-hand side,
and we use the splitting of the operator (£°,.7°) into the operators (-#?,.7) and
(L8, L9, T2, T) (see the equation (5.6) of [15]). We show (see section 6.1 of [12])
that there exist (%, %3) € H(X)? and two constants ¢ and ¢’ such that

(Lp, £5) (@R %5) = 0 in X7,

(Z%l%o)(%,@%) = 0 on 7y X9, (8.20)
@R}R:O + CX3 = 0,
@% }R:O —c = Xi’%'

The coefficients ¢ and ¢ are the coefficients of the rigid displacements Z* et 23 (see
[12] and the equation (5.8) of [15]). For parity reasonsin X3, the coefficientsof Z! is
zero, and the displacement Z? is not involved. We can show that the coefficient ¢’ is
non zero (seelemma6.1in [12]).

We construct the solution ¢ of (8.19) depending on the term p0,..z3 in the operator
V2 by multiplying the solution of (8.20) with —1pd,,z; . We thus deduce that v%z =
—%C'pawzg + Pz, where P satisfies the correct order conditions. We get the result by
setting 02:—%c’p7é0. [

APPENDIX B: PROOF OF THEOREM 1.4

1. We first compute the energy norm of «°. We define the energy for the shifted
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displacement:
E§D[w] :/ Aijkgéij(w)ékg(w)dv,

where ¢&;;(w) isdefined as ¢;;(w) = e;; (1" (r3)w) isthe strain tensor associated with
the shifted displacement. We have E5,[w*] = E5p[uf]. The expansion of the operator
€;; on Q° isgivenin Proposition 3.2 of [15].
Using the positivity of the rigidity tensor, we have that
~ e\||2 e € ~ e\||2
ellég (@)} 2 ey < Biplw?] < Cllés ()l (8.21)
for constants ¢ and C' independent on ¢ .

Recall (see Theorem 4.4 of [15]), that the operators V! and V2 of the formal series
Vie] write

X3 a
vz = § ~Xsbe(2) and V?z = ;Dﬂa@ ,
—X3p75(2) Fp(p5(z) — pbovs(z) — 26575(2))
(8.22)
where p = A\(\ + 2u) ! . The following lemma precise the first part of Proposition 7.2.

Lemma 8.3 With the notations of Proposition 7.2, we have

Co = X3(DoCs +05¢7),

& — Xapa(c), (8:23)

'Ul :Cl _'_Vlco — {
and in the coordinate system (7', s, X3) ,
7y X300

Wl=| Z!} —X30,78 . (8.24)
2
Z3 = XapdpZy® + Xapb? (0,8) 29+ pdrr 23

Proof of Lemma 8.3. The equation (8.23) is clear using the definition of v[¢'/?] and
the expression of V!.

Now using the formal series (7.2), we have
Wl =V'7!' + vl/QZl/Q + v1ZO7 (8.25)
with
VO — VO’O, v1/2 _ v0,1/2 + v1,71/2 and V' = VOl 4 pLo + V20

But using the definition of the operators V™, we easily see that V° = V0 isthe
identity operator. Similarly, using the expression of V! and V? we seethat

2
—X30rZ3, %paTTZTa

v1,71/2Z — 07 v?,flz — 07
—X3porZr, Xép@TTZ&

41



_XB(b:<07 S)ZT + bf'(Oa S)Zs>7

VYZ = —X5(0,Z5 + b2(0, ) Zr + b3(0, ) Z,,),
—X3p(0sZs +1%,(0,8) Zr +1%,(0,5) Zs — 02(0, ) Z3),
and this shows the result. ]

We now give estimates corresponding to (8.9) on the physical shell.

Lemma 8.4 Supposethat ¢ € %(5,) and Z € €>(0Sy, T(RT) are generic, indepen-
dent of ¢, non zero 2D displacement and 2D boundary layer term respectively. Then we
have

1€l gaey = OE2), 112 ey = OE),
101l ey = O, and [[0aZ] = O,

Let v € €°(1,(5)), W € €>(I x 85, T(R")) and ® € € (95, H(X)) be
generic non zero termsindependent of = corresponding to the three types of terms present
in the expansion of w* . Then we have

L2(Q#)

10l 2 0e) = O("?), 1000l 2 ey = O(e'?), and 105]] 2oy = =017,
||VVHL2 0°) (9(53/4)7 || 0a W||L2(Qs - 0(61/4), and “ag‘/ang(QE _ (9(6_1/4),
and
1] 2y = O), and [[0:®]] , ., = O(1).

Using these two lemmas, Proposition 7.2 and Proposition 3.2 of [15] giving the ex-
pansions of the operators ¢é,; , it isnot hard to prove that

leap(v® + 202 4 cvt)| = 0(c'?),

L2(Qe)
where we use the fact that ¢° # 0. Moreover, for al £ > 3,

”éaﬁ( k/2 k/2)”L2 @) < O( (k+1) /2)

Similarly, writing the expansion of ¢é;; in coordinates (7, s, X3) yields

[Eap(WO + 2W2 L cWY)| < O,

L2(Qf) =

andforal k>3,
|Eas (2 W)

Moreover, we havefor al & > 2

L2y < 0(8(2k+1)/4).

leas(*2@%2)] < O("?).

L2(Qe)
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Using the Kirchhoff-Love structure of the first terms of the formal series V[e|, we
see (see [14] for further details) that under the condition ¢° # 0,

|Eas (v + ' 4 evt + 52072, . = O(Y?),

L2(QE
whileforal k£ > 4,

€03 (20" <O,

1.2 QE) —
Similarly, we compute that

|€as(WO + 2W2 4 WY < O,

L2(Q#)

andforal £ >3

||é ( k:/QWk/Q)H (9(5(2k_1)/4),

L2 (Qs
For the 3D boundary layer terms, we get for al &

€03 ("2 @)

| AN

O(e"?).

L2(Q¢)
Finally, for the transverse strain, we obtain the estimates

(0 + 072 0| g, = O2)

andfor al k >3, ||és3(cF/20"/?)|| < O(e*=1/2) | Similarly, we have

L2(Qf)

|E33(WO + e2W 2 4 WY < O

LQ(QE
and for k > 2,

e W) o < O and (e (2@H)] o, < O,

L2 QE L2 (QE

Grouping together the previous estimates and using Theorem 8.2 for a sufficiently
large N, we see that
1€as (W)l 2 ey = O("?),

where the main contribution comes from the first term ¢° # 0. Similarly,
s (@)l 2y < O,

where the main contribution comes from the first 3D boundary layer term &' (this term
may vanish evenif (% # 0, asit depends only on traces of (°: seethe equation (5.13) of
[15]). Eventualy,

€53 (w) | 2 gy = O("?),

where the main contribution comes from ¢° . These estimates show the resullt.
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2. We prove now the second estimate in (1.20). Let Wz be the operator correspond-
ingto Uz through the shifter, that is Wz = p~!(x3)Uz . We now prove that

Eg[) ['wa — WZE] S C€E3D ['wa]

and this shows the result.

Recall that with 2z we associate two formal series ¢'[¢!/2] and Z'[¢] given by The-
orem 4.1. Using Proposition 7.2, it is easy to prove that we have an asymptotic expansion

w® — Wz ~ Zz—:kﬂ(ek/2 + x(E*? 4 ®4?2)),
k>0

where we have B
e=e’?=0 and e'=¢,

where ¢! = ¢! — ¢!, and similarly

0 Z’:lf — $38T7§/2
E’=0, EY2=| 0 and E'=| 7!
—1/2 =
Zy Z)

where ZF/? = Z5/? — 71k/2 for k=1 and 2. Asbefore, we compute that

”éaﬁ(eo —0—61/261/2 +861)HL2(QE) < 0(63/2)
and
”éaﬁ(EO —|—81/2E1/2 +8E1)HL2(QE) < 0(85/4),
Moreover we have
||éa3(60 +€1/261/2 +661)HL2(95) < 0(65/2)
and
Jeua (B + < 2BY2 + B < O

Eventually, we have
533(80 4 el/2el/2 +€el) —0 and 533(E0 + 2L/ +6E1) —0.
We conclude as before using Theorem 8.2 that
Eiplw” — W27] < O(e) = O(cEp [w)),

where the mean contribution comes from the first 3D boundary layer term ®'. This
shows the Theorem.
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