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Abstract. We investigate solutions of the two-dimensional Koiter model and of the
three-dimensional linear shell model in the case where the shell is clamped and its mean
surface is elliptic. For smooth data, these solutions admit multiscale expansions in powers
of ε1/2 where ε denotes the (half-)thickness of the shell. Both expansions contain terms
independent of ε and boundary layer terms exponentially decreasing with respect to
r/
√
ε , with r the distance to the boundary of the mean surface. The expansion of the

three-dimensional displacement contains supplementary boundary layers, exponentially
decreasing with respect to r/ε like for plates. Using these expansions we obtain sharp
estimates between the two models in various norms.

1 INTRODUCTION

The goal of the shell theory is to find an approximation of the three-dimensional linear
elastic shell problem by a two-dimensional problem posed on the mean surface. A shell
is a three-dimensional object defined by a compact oriented smooth surface S embedded
in R

3 and a thickness parameter ε . For ε ≤ ε0 sufficiently small, the shell is the image
Ωε of the manifold S × (−ε, ε) via the application

Φε : S × (−ε, ε) � (P, x3) �→ P + x3n(P ) ∈ R
3, (1.1)

where n(P ) is a unit normal vector field on S . Starting from the three-dimensional
equations of standard linear elasticity for a homogeneous and isotropic material, different
models have been derived between 1959 and 1971: see in particular KOITER [19, 20, 21],
NAGHDI [25], JOHN [18], NOVOZHILOV [27]. Most of the shell models rely on a 3 × 3
system of intrinsic equations on S depending on ε , and write

K(ε) := M + ε2B (1.2)

where M is the membrane operator on S and B is a bending operator. If all above
authors agree with the definition of the membrane operator M , different expressions of
B can be found in the literature. For general shell geometry, the most popular and natural
model is the one proposed by KOITER. This model describes the displacement of the



shell by two tensors representing the change of metric and change of curvature of the
surface submitted to a displacement. Moreover this model is elliptic for ε > 0 (see
[2]). However, for ε = 0 , the nature of the membrane operator depends on the geometry
of the surface. In particular, M is elliptic only at the points where S is elliptic. The
Koiter model relies partly upon computations made by JOHN in [18]. But the question of
determining the best model was very controversial (see in particular the introduction in
[3] and discussions in [20, 25]).

In [15] we give the expression of the most general bending operator appearing in the
3D equations, and we show how the Koiter bending operator is linked with this operator
and turns to be the most natural and simple bending operator among the others. In [9] we
also give a general estimate between the 3D solution and a displacement reconstructed
from the Koiter model solution. The result of [15] reduces the 3D problem to a formal
series 2D problem very similar to the Koiter model.

In the case of plates, the Koiter model splits into the membrane operator acting on
the surfacic components of the displacement and the bending operator acting on the trans-
verse displacement. On the other hand, the work in [10, 11, 8] shows the existence of
an asymptotic expansion of the 3D displacement for plates containing boundary layer
terms of scale ε . When such an asymptotic expansion is available, we can estimate the
difference between the solution of the Koiter model and the 3D solution in every norm.

In this work, we focus our attention to the special case where the mean surface S
of the shell is elliptic, that is when the Gaussian curvature of S is strictly positive or
equivalently when the principal curvatures are everywhere of the same sign. In this case,
the membrane operator M is elliptic (see [16, 29, 4]). As the bending operator B is
of order 4 while the membrane operator M is of order 2 , the Koiter operator K(ε) =
M+ε2B is a singular perturbation of the membrane operator. The framework of VISHIK

& LYUSTERNIK [30] for scalar equations can be adapted to this situation, where the
equation is a system. Combining these techniques with the formal series reduction of
[15] giving the structure of the 3D boundary layers, we obtain the following results:

1. We show that the 2D displacement solution of the Koiter equation admits a complete
multiscale expansion including boundary layer terms of scale ε1/2 using a singular
perturbation theory close to [30].

2. Using the result in [15], we then show that the 3D displacement admits a com-
plete multiscale expansions with 2D boundary layers of scale ε1/2 like for the 2D
displacement, and 3D boundary layers of scale ε like for plates.

3. We use these expansions to bound the difference between the 3D displacement and
2D reconstructed displacements as in [20] or [4, 23]. These estimates are sharp in
the sense that the error term has the same order than the first neglected term in the
asymptotic.

In the following we always take as K(ε) the Koiter model. We now present the 3D
and 2D problems, and give the main theorems. We then recall the basic results of [15]
and give the plan of the paper.
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1.A THREE-DIMENSIONAL PROBLEM

The boundary of the shell Ωε defined in (1.1) has three components: A lateral boundary
Γε

0 image of ∂S×(−ε, ε) by the application Φε , and upper and lower faces S−+ε images
of S × {−+ε} . We suppose that the material constituting the shell is homogeneous and
isotropic, characterized by its two Lamé coefficients λ and µ . The loading forces applied
to the shell are represented by a smooth vector field f defined on Ωε . We suppose that
the shell is clamped along Γε

0 and we impose the traction free condition on S+ε and
S−ε . The displacement of the shell is represented by the 1-form field u . In Cartesian
coordinates {ti} the problem then writes

−∂jA
ijk�ek�(u) = f i in Ωε,

Ti(u) = 0 on S−+ε,
u = 0 on Γε

0,
(1.3)

with Aijk� = λδijδk� + µ(δikδj� + δi�δjk) , where ∂j is the partial derivative with respect
to ti and eij(u) = 1

2
(∂iuj +∂jui) with u = uidt

i in Cartesian coordinates. On the same
way f i denote the components of the vector field in the basis ∂

∂ti
. The operator Ti(u)

is the natural traction operator on the faces S−+ε appearing after integration by parts in the
associated bilinear form:

(u,v) �→
∫

Ωε

Aijk�eij(u)ek�(u) dt1 dt2 dt3. (1.4)

This is the classical problem of linear elasticity set in Cartesian coordinates on a shell-
shaped domain of R

3 . Korn inequality [13] implies that this problem has a unique solu-
tion in H1(Ωε)3 .

On Ωε , we call “normal coordinate system” a system of the form (xα, x3) induced
by the mapping (1.1), where xα is a coordinate system on S and x3 the transverse
coordinate (see [15] for details). Note that the domain Ωε is foliated by the surfaces
Sx3 images of S × {x3} by the diffeomorphism (1.1). In the following, we will always
identify the mean surface S0 with the abstract manifold S .

1.B THE KOITER MODEL

On the mean surface S0 , a 2D displacement is represented by the couple of a 1-form field
zα and a function z3 . We denote by z = (zα, z3) ∈ Γ(T1S0) × C ∞(S0) such a couple.
Here, Γ(T1S0) denotes the space of 1-form field on S0 . As it will be of constant use, we
set

Σ(S0) := Γ(T1S0) × C ∞(S0)

the space of (smooth) 2D displacements. More generally, we denote by Hk(S0) the space
of 1-forms whose both components belong to the Sobolev space Hk(S0) . We keep the
notation Hk(S0) for functions. Typical spaces for 2D displacements are H1 × L2(S0)
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and H1×H2(S0) . We set aαβ the metric tensor on S , and bαβ the curvature tensor. The
Greek indices are two-dimensional varying indices. The contraction by the metric tensor
yields isomorphisms between tensor spaces on S0 . We have for example bαβ = aασbσβ .

The Koiter operator is the operator K(ε) : Σ(S0) → Σ(S0) written

K(ε) = M + ε2B.

Here, M is the membrane operator defined by{
Mσ = −λ̃Dσγ

ν
ν − 2µDαγ

α
σ ,

M3 = −λ̃bααγν
ν − 2µbβαγ

α
β ,

where λ and µ are the Lamé coefficients of the material, λ̃ = 2λµ(λ + 2µ)−1 , Dα is
the covariant derivative on S0 , and

γαβ(z) = 1
2
(Dαzβ + Dβzα) − bαβz3 (1.5)

is the change of metric tensor on S0 .

The operator M is associated with the bilinear form defined for any z and η in
H1 × L2(S0) by

(z,η) �→ aM(z,η) =

∫
S

Mαβσδγαβ(z)γσδ(η) dS0, (1.6)

where Mαβσδ = λ̃aαβaσδ + µ(aασaβδ + aαδaβσ) .

The operator B is the bending operator defined by{
Bσ = −1

3
λ̃bασDαρ

ν
ν − 1

3
λ̃Dαb

α
σρ

ν
ν − 2

3
µbασDνρ

ν
α − 2

3
µDνb

α
σρ

ν
α,

B3 = 1
3
λ̃DαDαρ

ν
ν + 2

3
µDαDνρ

ν
α − 1

3
λ̃cααρ

ν
ν − 2

3
µcβαρ

α
β ,

where cβα = bναb
β
ν and

ραβ(z) = DαDβz3 − cαβz3 + bσαDβzσ + Dαb
σ
βzσ (1.7)

is the change of curvature tensor. This operator is associated with the bilinear form defined
for any z and η in H1 × H2(S0) by

(z,η) �→ aB(z,η) =

∫
S

Mαβσδραβ(z)ρσδ(η) dS. (1.8)

For a given g ∈ Σ(S0) , we consider the solution z ∈ Σ(S0) of the problem{
K(ε)z = g in S0,

z
∣∣
∂S0

= 0 and ∂rz3(ε)
∣∣
∂S0

= 0.
(1.9)

The existence of z is proved in [2].
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1.C MAIN RESULTS

We set (r, s) a coordinate system in the vicinity of ∂S0 such that r is the geodesic
distance to the boundary, and s is the arclength along ∂S0 . We denote by bss(r, s) ,
brs(r, s) and brr(r, s) the components of the curvature tensor in this coordinate system.
The fact that S0 is elliptic implies that we can choose the orientation of S0 such that bss
and brr are positive along S0 . We denote by χ(r) a C ∞ cut-off function near ∂S0 .

To construct the expansion of the 2D displacement, we suppose that the right-hand
side g = gε depends on ε and admits the expansion

gε �
∑
k≥0

εkgk, (1.10)

where for all k , gk ∈ Σ(S0) . This means that for any Sobolev norm on S0 and any N ,
we have

‖gε −
N∑

k=0

εkgk‖ ≤ CNε
N ,

where CN is independent on ε .

Theorem 1.1 Let zε be the solution of the problem (1.9) with a right-hand side g ε sat-
isfying (1.10). Then zε admits an asymptotic expansion in powers of ε1/2 :

zε �
∑
k≥0

εk/2

(
ζk/2(xα) + χ(r)Zk/2(

r√
ε
, s)

)
, (1.11)

where for all k , ζk/2 ∈ Σ(S0) is independent on ε and Zk/2(T, s) is exponentially
decreasing in T , uniformly in s and smooth on R

+ × ∂S0 . Moreover, for each fixed s ,
the function T �→ eηT Zk/2(T, s) is bounded on R

+ for all η < η1 where

η1 =

(
3µ(λ̃+ µ)

(λ̃+ 2µ)2

)1/4√
bss(0, s). (1.12)

The first term ζ0 is the solution of the membrane problem{
Mζ0 = g0 in S0,

zα

∣∣
∂S0

= 0,
(1.13)

where g0 is the first term of the asymptotic expansion of gε . The fact that the membrane
cannot solve for the boundary conditions on z3 is the reason for the presence of the 2D
boundary layer terms. Indeed, the third component M3 is an operator of order 0 in z3 ,
while B3 is of order 4 in z3 . The first boundary layer terms satisfies Z0

α = 0 but
Z0

3 	= 0 in general.
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Using the expansion (1.11) we obtain estimates between zε and ζ0 . For example
we get

‖zε − ζ0‖
H1×L2(S)

≤ Cε1/4 (1.14)

where C is independent on ε . This estimate implies in particular the convergence result
of [4] and improves the result in [24].

To construct the expansion of the 3D displacements we suppose that the right-hand
side f = f ε depends on ε in the following regular way: If (xα, x3) is a normal coor-
dinate system on Ωε we set X3 = ε−1x3 , and define the vector field f (ε)(xα, X3) =
f ε(xα, x3) on the manifold Ω := S × (−1, 1) . We suppose that f(ε) admits the expan-
sion

f(ε) �
∑
k≥0

εkf k, (1.15)

where for all k , f k is independent of ε in Ω . This hypothesis is satisfied in the case
where f is independent of ε in the physical cartesian coordinates. In this case the Taylor
expansion of f at x3 = 0 around the mid-surface yields the coefficients of the expansion
(1.15).

Theorem 1.2 Let uε be the solution of (1.3) with the right-hand side f ε satisfying
(1.15). Then uε admits the following asymptotic expansion in powers of ε1/2 :

uε �
∑
k≥0

εk/2

(
vk/2(xα,

x3

ε
) + χ(r)W k/2(

r√
ε
, s,

x3

ε
) + χ(r)ϕk/2(

r

ε
, s,

x3

ε
)

)
(1.16)

where for all k , vk/2 is a C ∞ 1-form field on Ωε and W k/2(T, s,X3) is uniformly
exponentially decreasing in T with the same bound η1 as in (1.12). The terms vk/2 and
W k/2 are polynomial in X3 = ε−1x3 and smooth. The term ϕk/2(R, s,X3) is uniformly
exponentially decreasing in R and has singularities near the edges of the shell.

Under the assumption (1.15), the 2D right-hand side defined by gε = 1
2ε

∫ ε

−ε
f εdx3

admits an expansion of the form (1.10) with gk = 1
2

∫ 1

−1
fk(X3)dX3 . In this case, the

precise comparison of the first terms of zε and uε allows to write sharp estimates be-
tween the 3D displacement and the 2D Koiter and membrane models. We define UKLz
the Kirchhoff-Love displacement associated with z as

UKL
σ z = zσ − x3(θσ(z) + bασzα) + x2

3b
α
σθα(z) and UKL

3 z = z3,

where θα(z) = Dαz3 + bβαzβ and p = λ(λ + 2µ)−1 . This displacement satisfies
ei3(U

KL
σ z) = 0 for all z .

Proposition 1.3 Suppose that f ε satisfies the hypothesis (1.15), and let u(ε) be the
three-dimensional displacement on the scaled domain Ω . We set gε = 1

2ε

∫ ε

−ε
f εdx3 .

Let ζε be the solution of the membrane problem (1.13) with right-hand side g ε , and zε
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be the solution of the Koiter model (1.9) with the right-hand side g ε . Then we have the
estimates

‖u(ε) − ζε‖
H1(Ω)2×L2(Ω)

≤ Cε1/4, ‖u(ε) − zε‖
H1(Ω)2×L2(Ω)

≤ Cε1/4,

‖u(ε) − zε‖
H1(Ω)3

≤ Cε1/4 and ‖u(ε) − UKLzε‖
H1(Ω)2×L2(Ω)

≤ Cε3/4.

(1.17)

These estimates imply the convergence results of [5, 6]. Note that ζ ε does not converge
towards u(ε) in the H1(Ω)3 norm. In the membrane norm H1(Ω)2×L2(Ω) , the conver-
gence rate obtained with the Kirchhoff-Love displacement UKLzε associated with zε is
the best possible using 2D objects: the leading error terms is governed by pure 3D effects
due to the presence of boundary layer near the edges.

In energy norm, we need more terms to get an optimal estimate with the same zε :
Following Koiter [20] we define the three-dimensional reconstructed displacement in nor-
mal coordinates Uz by

Uz = UKLz + UCompz where UComp
σ z = 0 and U3z = −x3pγ

α
α(z) +

x2
3

2
pρα

α(z).
(1.18)

On the physical shell Ωε , we define the energy Eε
3D[v] by the equation

Eε
3D[v] =

∫
Ωε

Aijk�eij(v)ek�(v) dV, (1.19)

and we write a = O(εp) if we have cεp ≤ a ≤ Cεp for c and C non zero constants
independent on ε . With these notations, we have the result:

Theorem 1.4 Suppose that f ε satisfies the hypothesis (1.15). Let uε be the solution of
the three-dimensional equations (1.3) and zε be the solution of the Koiter equations (1.9)
with the right-hand side gε = 1

2ε

∫ ε

−ε
f εdx3 . Suppose that the solution of the membrane

problem ζ0 given in (1.13) is not zero, then we have the estimates:

Eε
3D[uε] = O(ε) and Eε

3D[uε − Uzε] ≤ CεEε
3D[uε], (1.20)

where C is independent of ε .

This estimates can be compared to the one initially given by KOITER in [20]. The leading
error term is governed by the 3D boundary layers. It improves the result in [22] for elliptic
shells.

For ease of use, the standard change of unknown wε = µ−1(x3)u
ε is made (see

[25]), where µ(x3) is defined by

u = µ(x3)w =

{
uα = wα − x3b

β
αwβ and

u3 = w3.
(1.21)

Theorem 1.2 is equivalent for uε and for the shifted displacement wε .
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1.D FORMAL SERIES SOLUTION

The proof of Theorem 1.2 is based on the results in [15] for the formal series solution of
the 3D problem. We recall here this general framework.

The first step in [15] discards the lateral boundary conditions, and studies the inner
3D equations written in terms of the shifted displacement w :{

L(xα, x3; Dα, ∂3)w
ε = −f ε in Ωε

T(xα, x3; Dα, ∂3)w
ε = 0 on S−+ε

(1.22)

where ∂3 is the partial derivative with respect to x3 . The scaling X3 = ε−1x3 allows to
state the problem (1.22) on the manifold Ω = S× (−1, 1) with operators L(ε) and T(ε)
having the following power series expansions:

L(ε) = ε−2
∞∑

k=0

εkLk and T(ε) = ε−1
∞∑

k=0

εkTk, (1.23)

with which are associated the formal series L[ε] and T[ε] with the same coefficients (see
Theorem 3.3 of [15]).

Recall that if E and F are two function spaces, if a[t] =
∑

k≥0 t
kak is a formal

series in t with coefficients ak ∈ L(E,F ) and b[t] =
∑

k≥0 t
kbk is a formal series with

coefficients bk ∈ E , then the formal series c[t] = a[t]b[t] is defined by the equation
c[t] =

∑
k≥0 t

kck where for all n , cn =
∑n

k=0 a
kbn−k . This is the classical Cauchy

product for formal series.

Considering the formal series f [ε] =
∑

k≥0 ε
kf k induced by (1.15), the 3D for-

mal series problem writes: Find a formal series w[ε] =
∑

k≥0 ε
kwk with 1-form field

coefficients, such that {
L[ε]w[ε] = −f [ε] in Ω,
T[ε]w[ε] = 0 on Γ−+,

(1.24)

where Γ−+ are the upper and lower faces of Ω .

Theorems 4.1 and 4.3 of [15] reduce this problem to a 2D formal series problem
on S0 . There exist formal series operators V[ε] , Q[ε] , A[ε] and G[ε] such that if
z[ε] =

∑
k≥0 ε

kzk is a formal series with coefficients in Σ(S0) satisfying the equation

A[ε]z[ε] = G[ε]f [ε] in S0, (1.25)

then w[ε] defined by the equation

w[ε] = V[ε]z[ε] + Q[ε]f [ε] in Ω (1.26)

is solution of (1.24). The formal series A[ε] writes

A[ε] = M + ε2A2 + · · · ,
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where M is the membrane operator. The exact expression of A2 is given in Theorem
4.4 of [15], and Proposition 4.5 gives an estimate of the difference between A2 and the
bending operator B of the Koiter model. Moreover these operators coincide on the space
of inextensional displacements (the 2D displacements z such that γαβ(z) = 0 ).

In the following, we will use the fact that the formal series V[ε] , A[ε] , Q[ε] and
G[ε] satisfy the functional equations{

L[ε]V[ε]z = −I ◦ A[ε]z,
T[ε]V[ε]z = 0,

and

{
L[ε]Q[ε]f = I ◦ G[ε]f − f ,
T[ε]Q[ε]f = 0,

(1.27)

for all z ∈ Σ(S0) and f ∈ C ∞(I,Σ(S0)) . Here I is the canonical embedding I :
Σ(S0) �→ C ∞(I,Σ(S0)) .

The second step in [15] (Theorem 5.3) deals with boundary layer formal series. In
general, if z[ε] is a solution of (1.25), the reconstructed displacement (1.26) cannot sat-
isfy the condition w[ε] = 0 on the lateral boundary. Similarly to plates (see [26, 10, 8]),
the change of variable R = r/ε allows to state the formal series problem: Find ϕ[ε]
with coefficients ϕk(R, s,X3) exponentially decreasing with respect to R , such that(

L [ε],T [ε]
)
ϕ[ε] = 0 and w[ε]

∣∣
Γ0

+ ϕ[ε]
∣∣
R=0

= 0, (1.28)

where the formal series L [ε] and T [ε] are induced by Taylor expansions in R = 0
and X3 = 0 of the operators L and T in coordinates (R, s,X3) , and where the formal
series w[ε] is given by (1.26). Note that R = 0 coincides with the lateral boundary Γ0 .

Theorem 5.3 in [15] shows that the existence of a formal series ϕ[ε] solution of
(1.28) relies upon compatibility conditions on z[ε] on the boundary ∂S0 . There exist
formal series operators d[ε] and h[ε] whose coefficients define four trace operators on
the boundary ∂S0 , such that if z[ε] satisfies the equation

d[ε]z[ε] = h[ε]f [ε] on ∂S0, (1.29)

then we can construct a formal series ϕ[ε] solution of the problem (1.28). Moreover, the
first term of the formal series d[ε] writes

d0z = (zr, zs, z3, ∂rz3)
∣∣
∂S0

. (1.30)

This operator is the natural Dirichlet operator associated with the Koiter model K(ε) for
ε > 0 . As before, the formal series ϕ[ε] is constructed using formal series operator sat-
isfying functional equations of the type (1.27) in 3D boundary layer spaces (see equations
(5.14) and (5.16) in [15]).

Definition 1.5 The equations{
A[ε]z[ε] = G[ε]f [ε] in S0,
d[ε]z[ε] = h[ε]f [ε] on ∂S0,

(1.31)

define the reduced problem associated with the 3D formal series problem.
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1.E OUTLINE OF THE PAPER

The proof of Theorem 1.1 is given in sections 2-5. Section 2 studies the inner equa-
tions based on an inverse of the membrane operator, while Section 3 deals with the two-
dimensional boundary layer terms. In Section 4 we define and solve a formal series
problem in powers of ε1/2 and show sharp estimates in Section 5.

The proof of Theorem 1.2 is given in sections 6-8. We note that the Koiter problem
(1.9) and the reduced problem (1.31) have the same first terms. In Section 6, starting
from the reduced problem (1.31) posed on the mid-surface, we define a 2D formal series
problem in powers of ε1/2 including 2D boundary layers, similar to the one obtained in
Section 4 for the Koiter model. The solution of this problem allows to construct the terms
of the 3D expansion in Section 7. The final error estimates are given in Section 8.

The proof of Theorem 1.4 is given in Appendix B while Appendix A is devoted to a
technical result needed in section 6.

2 KOITER MODEL INNER EQUATIONS

We consider the solution z ∈ Σ(S0) of the problem{
K(ε)z = g in S0,

z
∣∣
∂S0

= c∗ and ∂rz3
∣∣
∂S0

= cn,
(2.1)

where g ∈ Σ(S0) , c∗ = (cr, cs, c3) ∈ C ∞(∂S0)
3 and cn ∈ C ∞(S0) . This is the

problem (1.9) with non homogeneous boundary conditions. In the following we set c =
(c∗, c3) ∈ C ∞(∂S0)

4 . The existence of z is a consequence of the inequality

‖γ(z)‖
L2(S0)

+ ‖ρ(z)‖
L2(S0)

≥ C‖z‖
H1×H2(S0)

(2.2)

for all z ∈ H1
0 × H2

0(S0) , see [2].

The operators M and K(ε) split into surfacic and transverse parts, which have the
following block degrees:

deg M =

(
2 1
1 0

)
and deg K(ε) =

(
2 3
3 4

)
.

According to [1], we say that M is of multidegree (2, 0) and K(ε) of multidegree
(2, 4) . The following result gives the ellipticity property of M in the case where S0

is elliptic. This result can be found in [16] and [29].

Theorem 2.1 Suppose that S0 is elliptic. The membrane operator M = (Mα,M3) act-
ing on z = (zα, z3) ∈ Σ(S0) is strongly elliptic of multidegree (2, 0) in the sense of
Agmon, Douglis and Nirenberg. The Dirichlet operator z → (

zr, zs

)∣∣
∂S0

satisfies the
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complementing boundary condition. Moreover, the kernel of M with these boundary
conditions is reduced to {0} , and we have for z ∈ Σ(S0) :

‖z‖
Hp+1×Hp(S0)

≤ C
(
‖Mz‖

Hp−1×Hp(S0)
+ ‖(zr, zs)‖Hp+1/2(∂S0)2

)
, (2.3)

where p > −1
2

is a fixed regularity index and C a constant depending on S0 and p .

As corollary we will mainly use the following result:

Theorem 2.2 Suppose that S0 is elliptic. Let g ∈ Σ(S0) and let cr and cs two func-
tions of C ∞(∂S0) . Then there exists a unique ζ ∈ Σ(S0) such that{

Mζ = g in S0,

ζr
∣∣
∂S0

= cr and ζs

∣∣
∂S0

= cs.

Suppose that the right-hand side g = gε in (2.1) expands in powers series of ε (see
(1.10)). We first seek the solution zε of (1.9) under the form z =

∑
k≥0 ε

kzk . This
yields the formal series problem

K[ε]z[ε] = g[ε] (2.4)

where K[ε] is the finite formal series M + ε2B and g[ε] is induced by the expansion of
gε . This problem is equivalent to the collection of equations:

∀ k ≥ 0 , Mzk = −Bzk−2 + gk, (2.5)

where we set zk = 0 for k ≤ 0 . The previous Theorem shows by induction the existence
of solutions of these equations. However we cannot satisfy in general the whole boundary
conditions d0zε = c by a power series representation of the solution.

3 TWO-DIMENSIONAL BOUNDARY LAYERS

As the mean surface S0 is elliptic, we have for all coordinate system and all (ξα) =
(ξ1, ξ2) ∈ R

2

bαβξαξβ ≥ c(ξ2
1 + ξ2

2) with c > 0.

Using the fact that r is the geodesic distance to the boundary of S0 , it is easy to show
that we have arr(r, s) = 1 and ars(r, s) = 0 for all (r, s) . As s is the arc-length
on ∂S0 , we also have ass(0, s) = 1 for all s . We thus compute that the Christoffel
symbols satisfy Γr

rr = Γs
rr = Γr

rs = 0 for all (r, s) . Similarly we have Γs
rs(r, s) =

1
2
ass(r, s)∂rass(r, s) , Γr

ss(r, s) = −1
2
∂rass(r, s) and Γs

ss(r, s) = 1
2
∂sass(r, s) . In partic-

ular we have Γs
ss(0, s) = 0 .
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In order to construct the boundary layers, we have to match the operators M and B .
The transverse component B3 of the bending operator B is an operator of order 4 in z3

while M3 is an operator of order 0 in z3 . Following [30], we hence set (see also [28]):

T = ε−1/2r and thus ∂r = ε−1/2∂T . (3.1)

Setting K(ε)(r, s; ∂r, ∂s) the operator K(ε) in coordinates (r, s) , we define the operator
K(ε) as

K(ε)(T, s; ∂T , ∂s) := K(ε)(ε1/2T, s; ε−1/2∂T , ∂s). (3.2)

The operator K(ε) acts on the manifold

S̆ := [ 0,+∞ [×∂S0. (3.3)

Using the Taylor expansion in T = 0 of the coefficients of the operator K(ε) , we can
associate with this operator a formal series in ε1/2 , written K[ε1/2] . As M is of order
2 , we have

K[ε1/2] =
∑
k≥−2

εk/2Kk/2, (3.4)

where Kk/2 : Σ(S̆) → Σ(S̆) are operators in ∂T and ∂s , polynomials in T .

Here, as the formal series (3.4) involves powers of ε1/2 , it is natural to consider the
general formal series problem

K[ε1/2] Z[ε1/2] = G[ε1/2], (3.5)

where Z[ε1/2] =
∑

k≥0 ε
k/2Zk/2 and G[ε1/2] =

∑
k≥0 ε

k/2Gk/2 are formal series with

coefficients in Σ(S̆) .

The first non-zero term in the formal series K[ε1/2] is the operator K−1 :

K−1
T (Z) = −(λ̃ + 2µ) ∂2

TZT , K−1
s (Z) = −µ ∂2

TZs and K−1
3 (Z) = 0. (3.6)

In the operator K−1/2 , the component K−1/2
3 depends only on the operator M3 :

K−1/2
3 (Z) = −2(λ̃H + µbrr) ∂TZT − 2µbrs ∂TZs, (3.7)

where brr , brs and bss are the components of the second fundamental form brr(0, s) ,
brs(0, s) and bss(0, s) on the boundary and H = 1

2
(brr + bss) is the mean curvature

along ∂S0 .

The influence of the operator B3 after the homogenization only appears in the oper-
ator K0

3 . That is why we make a scaling in the problem (3.5) in order to obtain a formal
series problem with a first operator term having all non-zero components, and taking into
account the influence of the operator B3 . We set{

Z̆α[ε1/2] = Zα[ε1/2],

Z̆3[ε
1/2] = ε1/2Z3[ε

1/2],
and

{
Ğα[ε1/2] = εGα[ε1/2],

Ğ3[ε
1/2] = ε1/2G3[ε

1/2].
(3.8)

12



These relations read

∀k ≥ 0,

{
Z

k/2
α = Z̆

k/2
α ,

Z
k/2
3 = Z̆

(k+1)/2
3 ,

and

{
G

k/2
α = Ğ

(k+2)/2
α ,

G
k/2
3 = Ğ

(k+1)/2
3 .

(3.9)

If the formal series Z̆[ε1/2] starts with a power 0 of ε1/2 , this implies that the corre-
sponding formal series Z[ε1/2] starts with a power −1/2 of ε .

We define the formal series K̆[ε1/2] by the formal series equation

K̆[ε1/2] Z̆[ε1/2] =
(
εKσ[ε

1/2] Z[ε1/2] , ε1/2K3[ε
1/2] Z[ε1/2]

)
. (3.10)

The problem (3.5) is thus equivalent to the problem

K̆[ε1/2] Z̆[ε1/2] = Ğ[ε1/2]. (3.11)

The formal series
K̆[ε1/2] =

∑
k≥0

εk/2K̆k/2

has then for first term the operator K̆0 whose components write, for Z̆ ∈ Σ(S̆) :

K̆0
T (Z̆) = − (λ̃+ 2µ) ∂2

T Z̆T + 2(λ̃H + µbrr) ∂T Z̆3,

K̆0
s(Z̆) = − µ ∂2

T Z̆s + 2µbrs ∂T Z̆3,

K̆0
3(Z̆) = − 2(λ̃H + µbrr) ∂T Z̆T − 2µbrs ∂T Z̆s

+ 1
3
(λ̃+ 2µ) ∂4

T Z̆3 + 4
(
(λ̃+ 2µ)H2 − µK

)
Z̆3,

(3.12)

where K = brrbss − b2rs is the Gaussian curvature of S0 along ∂S0 .

Note that the variable s only appears in the coefficients of the operator K̆0 and thus
can be considered as a parameter. For fixed s , the operator K̆0 is a system of ordinary
differential equations in T on the interval [ 0,+∞ [ .

Proposition 3.1 Let s ∈ ∂S0 fixed, and let c3, cn ∈ R . There exists a unique function
ϕ̆ ∈ C ∞(R+)3 exponentially decreasing, solution of the system{

K̆0(ϕ̆) = 0 in [ 0,+∞ [

ϕ̆3

∣∣
T=0

= c3 and ∂T ϕ̆3

∣∣
T=0

= cn.
(3.13)

Moreover, for all η < η1 where η1 is given in (1.12), eηT ϕ̆ is bounded as T → ∞ .

Proof. Let us write the symbol of the operator K̆0 by replacing formally ∂T by iτ
where τ is a complex number. This symbol writes (λ̃+ 2µ)τ 2 0 2i(λ̃H + µbrr)τ

0 µτ 2 2iµbrsτ

−2i(λ̃H + µbrr)τ −2iµbrsτ
1
3
(λ̃+ 2µ)τ 4 + b

 , (3.14)
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where b = 4
(
(λ̃+ 2µ)H2 − µK

)
. The determinant of this matrix is

µτ 4

(
1

3
(λ̃+ 2µ)2τ 4 + 4µ(λ̃+ µ)b2ss

)
. (3.15)

This polynomial in τ has 0 as root of order 4 , and 4 complex roots

e
iπ
4 4
√
a, e−

iπ
4 4
√
a, e

3iπ
4 4
√
a and e−

3iπ
4 4
√
a, where a =

12µ(λ̃+ µ)

(λ̃+ 2µ)2
b2ss > 0.

Among these roots, only two have positive imaginary parts: e
iπ
4 4
√
a and e

3iπ
4 4
√
a . These

roots are
η1(1 + i), η1(1 − i), −η1(1 + i) and − η1(1 − i).

For fixed s , consider now the equation K̆0(ϕ̆) = 0 in R
+ . As (λ̃H + µbrr) 	= 0 , we

can transform this system in a triangular system written

2(λ̃H + µbrr) ∂T ϕ̆T + 2µbrs ∂T ϕ̆s

−1
3
(λ̃+ 2µ) ∂4

T ϕ̆3 − 4
(
(λ̃+ 2µ)H2 − µK

)
ϕ̆3 = 0,

µ ∂2
T ϕ̆s − 2µbrs ∂T ϕ̆3 = 0,(

1
3
(λ̃+ 2µ)2∂4

T + 4µ(λ̃+ µ)b2ss

)
∂T ϕ̆3 = 0.

(3.16)

We deduce from the last equation that ϕ̆3 writes

ϕ̆3 = A1 + A2e
−Tη1(1+i) + A3e

−Tη1(1−i) + A4e
Tη1(1+i) + A5e

Tη1(1+i),

where A1 , A2 , A3 , A4 and A5 are complex numbers. As we seek ϕ̆ exponentially
decreasing in T , we deduce that A1 = A4 = A5 = 0 . Using the boundary conditions in
(3.13) we deduce that

ϕ̆3(T ) = e−η1T

(
1

η1
cn sin(η1T ) + c3

(
cos(η1T ) + sin(η1T )

))
. (3.17)

The second equation in (3.16) then shows that

ϕ̆s(T ) = 2brs

∫ +∞

T

ϕ̆3(T ) dT (3.18)

is the unique solution ϕ̆s exponentially decreasing. Finally the equation

ϕ̆T (T ) = −µbrs(λ̃H + µbrr)
−1ϕ̆s(T )

+ (λ̃H + µbrr)
−1

∫ ∞

T

(
1
6
(λ̃+ 2µ) ∂4

T ϕ̆3(T ) + 2
(
(λ̃+ 2µ)H2 − µK

)
ϕ̆3(T )

)
dT

(3.19)

yields the unique solution exponentially decreasing of the first equation in (3.16).

In order to solve the system (3.13) with non-zero right-hand sides, we define the space

T(R+) := { f ∈ C ∞(R+) | ∀ i, k ∈ N, ∀η < η1, eηT∂i
T f ∈ L2(R+) }. (3.20)
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To this function space we associate the displacement space

T(R+) := { ϕ̆ = (ϕ̆T , ϕ̆s, ϕ̆3) ∈ T(R+)3 }. (3.21)

If Ğ ∈ T(R+) , we can construct on the interval [ 0,+∞ [ a solution exponentially
decreasing of the system {

K̆0(Z̆) = Ğ in [ 0,+∞ [,

Z̆3 = ∂T Z̆3 = 0 for T = 0,

using explicit integral representation: see the formulae page 48 in [1]. This particular
solution is then exponentially decreasing with an exponent smaller than η1 . Hence we
have the following result:

Theorem 3.2 Let s ∈ ∂S0 fixed. Let Ğ ∈ T(R+) , and let c3, cn ∈ R . There exists a
unique Z̆ ∈ T(R+) solution of the system{

K̆0(Z̆) = Ğ in R
+,

Z̆3

∣∣
T=0

= c3 and ∂T Z̆3

∣∣
T=0

= cn.
(3.22)

Moreover, if the right-hand side Ğ ∈ C ∞(∂S0,T(R+)
)

and if c3(s) and cn(s) are C ∞

functions on ∂S0 , then the solution Z̆ of (3.22) defines an element of C ∞(∂S0,T(R+)
)

.

4 CONSTRUCTION OF THE KOITER MODEL EXPANSION

4.A FORMAL SERIES PROBLEM

The operator K(ε) induces in a natural way a formal series in ε1/2 by setting

K[ε1/2] := M + ε2B =
∑
k≥0

εk/2Kk/2,

with K0 = M , K2 = B and Kk/2 = 0 for k = 1, 2, 3 and k ≥ 5 . Hence if
ζ[ε1/2] =

∑
k≥0 ε

k/2ζk/2 and g[ε1/2] =
∑

k≥0 ε
k/2gk/2 are formal series with coeffi-

cients in Σ(S0) , the equation

K[ε1/2] ζ[ε1/2] = g[ε1/2] (4.1)

makes sense.

Let g[ε1/2] and G[ε1/2] be formal series with coefficients in the spaces Σ(S0) and
C ∞(∂S0,T(R+)

)
respectively. The equations (4.1) and (3.5) yield the equations to be

satisfied by ζ[ε1/2] and Z[ε1/2] in the interior of the domains. The goal is now to match
these formal series along the boundary.
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On the boundary ∂S0 , which correspond to the set T = 0 in S̆ , we can define the
following formal series, with coefficients in C ∞(∂S0) :

ζ[ε1/2]
∣∣
∂S0

:=
∑
k≥0

εk/2ζk/2
∣∣
∂S0

and Z[ε1/2]
∣∣
∂S0

:=
∑
k≥0

εk/2Zk/2
∣∣
T=0

.

Moreover, we can define the reentrant normal derivative of the formal series ζ[ε1/2]
in the vicinity of ∂S by the formula

∂rζ[ε1/2] :=
∑
k≥0

εk/2∂rζ
k/2.

But the relation T = ε−1/2r allows to define the action of ∂r on the formal series Z[ε1/2]
by the formula

∂rZ[ε1/2] := ε−1/2∂T Z[ε1/2] =
∑
k≥−1

εk/2∂T Z(k+1)/2(T, s).

If we set ζ−1/2
3 = 0 , we thus can consider the sum

∂rζ3[ε
1/2]
∣∣
∂S0

+ ∂rZ3[ε
1/2]
∣∣
T=0

=
∑
k≥−1

εk/2
(
∂rζ

k/2
3

∣∣
∂S0

+ ∂TZ
(k+1)/2
3

∣∣
T=0

)
. (4.2)

Suppose given formal series in ε1/2

c∗[ε1/2] =
∑
k≥0

εk/2ck/2
∗ and cn[ε1/2] =

∑
k≥0

εk/2ck/2
n , (4.3)

where for all k , c
k/2
∗ = (c

k/2
r , c

k/2
s , c

k/2
3 ) ∈ C ∞(∂S0)

3 , and c
k/2
n ∈ C ∞(∂S0) . We write

c[ε1/2] =
∑

k≥0 ε
k/2ck/2 with ck/2 = (c

k/2
∗ , c

k/2
n ) .

The formal series problem states as follows: Find
(
ζ[ε1/2],Z[ε1/2]

)
solution of the

equations 
K[ε1/2] ζ[ε1/2] = g[ε1/2],

K[ε1/2] Z[ε1/2] = G[ε1/2],
ζ[ε1/2]

∣∣
∂S0

+ Z[ε1/2]
∣∣
T=0

= c∗[ε1/2],

∂rζ3[ε
1/2]
∣∣
∂S0

+ ∂rZ3[ε
1/2]
∣∣
T=0

= cn[ε1/2].

(4.4)

Using the previous equations and the relations (3.9), the system (4.4) is equivalent to
the following problem: Find formal series ζ[ε1/2] =

∑
k≥0 ε

k/2ζk/2 and Z̆[ε1/2] =∑
k≥0 ε

k/2Z̆k/2 solutions of the following equations, for all k ≥ 0 ,

M(ζk/2) = −B(ζ(k−4)/2) + gk/2 in S0,

K̆0(Z̆k/2) = −∑k
�=1 K̆�/2(Z̆(k−�)/2) + Ğk/2 in S̆,

ζ
k/2
r

∣∣
∂S0

+ Z̆
k/2
T

∣∣
T=0

= c
k/2
r ,

ζ
k/2
s

∣∣
∂S0

+ Z̆
k/2
s

∣∣
T=0

= c
k/2
s ,

ζ
k/2
3

∣∣
∂S0

+ Z̆
(k+1)/2
3

∣∣
T=0

= c
k/2
3 ,

∂rζ
k/2
3

∣∣
∂S0

+ ∂T Z̆
(k+2)/2
3

∣∣
T=0

= c
k/2
n .

(4.5)
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In the following, we always set the terms with negative indices to zero. We will see now
how the properties of the operators M and K̆0 yield a solution of the system (4.5).

4.B EXISTENCE THEOREM

The goal of this section is to prove the following result:

Theorem 4.1 Suppose that S0 is elliptic. Let g[ε1/2] =
∑

k≥0 ε
k/2gk/2 a formal series

with coefficients in Σ(S0) , G[ε1/2] =
∑

k≥0 ε
k/2Gk/2 a formal series with coefficients

in C ∞(∂S0,T(R+)
)

, and c[ε1/2] =
∑

k≥0 ε
k/2ck/2 a formal series with coefficients in

C ∞(∂S0)
4 . Then there exists a unique couple

(
ζ[ε1/2],Z[ε1/2]

)
of formal series with

coefficients in Σ(S0) and C ∞(∂S0,T(R+)
)

respectively, solution of the system (4.4).

Proof. We show the result by induction. The relations (3.9) show that the first terms of
the formal series Ğ[ε1/2] write

Ğ0 = 0 and Ğ1/2 = (0, G0
3).

We divide the equations (4.5) into two parts:

∀k ≥ 0,


K̆0(Z̆k/2) = −∑k

�=1 K̆�/2(Z̆(k−�)/2) + Ğk/2 in S̆,

Z̆
k/2
3

∣∣
T=0

= c
(k−1)/2
3 − ζ

(k−1)/2
3

∣∣
∂S0

,

∂T Z̆
k/2
3

∣∣
T=0

= c
(k−2)/2
n − ∂rζ

(k−2)/2
3

∣∣
∂S0

,

(4.6)

for the boundary layer terms, and

∀k ≥ 0,


M(ζk/2) = −B(ζ(k−4)/2) + gk/2 in S0,

ζ
k/2
r

∣∣
∂S0

= c
k/2
r − Z̆

k/2
T

∣∣
T=0

,

ζ
k/2
s

∣∣
∂S0

= c
k/2
s − Z̆

k/2
s

∣∣
T=0

,

(4.7)

for the terms in Σ(S0) . Note that these two groups of equations are linked by terms on
the boundary ∂S0 .

For k = 0 , these equations write
K̆0(Z̆0) = 0 in S̆,

Z̆0
3

∣∣
T=0

= 0,

∂T Z̆
0
3

∣∣
T=0

= 0

and


M(ζ0) = g0 in S0,

ζ0
r

∣∣
∂S0

= c0r − Z̆0
T

∣∣
T=0

,

ζ0
s

∣∣
∂S0

= c0s − Z̆0
s

∣∣
T=0

.

(4.8)

Using Theorem 3.2, the first group of equations implies that Z̆0 = 0 . Theorem 2.2 shows
that there exists ζ0 ∈ Σ(S0) solution of the second group.
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For k = 1 , the equations (4.6) and (4.7) write, using Z̆0 = 0
K̆0(Z̆1/2) = Ğ1/2 in S̆,

Z̆
1/2
3

∣∣
T=0

= c03 − ζ0
3

∣∣
∂S
,

∂T Z̆
1/2
3

∣∣
T=0

= 0,

and


M(ζ1/2) = g1/2 in S0,

ζ
1/2
r

∣∣
∂S0

= c
1/2
r − Z̆

1/2
T

∣∣
T=0

,

ζ
1/2
s

∣∣
∂S0

= c
1/2
s − Z̆

1/2
s

∣∣
T=0

.
(4.9)

Theorem 3.2 shows the existence of Z̆1/2 ∈ C ∞(∂S0,T(R+)
)

satisfying the first group
of equations (the term ζ0 being determined), and Theorem 2.2 shows the existence of
ζ1/2 ∈ Σ(S0) satisfying the second group of equations.

Let us suppose that ζ�/2 ∈ Σ(S) and Z̆�/2 ∈ C ∞(∂S0,T(R+)
)

are determined for
� = 0, . . . , k−1 where k is an integer, such that the equations (4.6) and (4.7) are satisfied
up to the order k . Thanks to the structure of the operators K̆�/2 for � ≥ 0 and using the
definition of the space T(R+) , we see that the right-hand side of the inner equation of
(4.6) is an element of C ∞(∂S0,T(R+)

)
. Theorem 3.2 then shows the existence of Z̆k/2

in the space C ∞(∂S0,T(R+)
)

.

Theorem 2.2 then shows the existence of a solution ζk/2 ∈ Σ(S0) of the equations (4.7)
This shows the induction hypothesis at the rank k and concludes the proof.

In the previous proof, the fact that Z̆0 = 0 implies using (3.9) that Z−1/2
3 = 0 and

Z0
α = 0 . The first boundary layer term is hence Z0 = (0, Z0

3) . Thus we have

ζ[ε1/2] = ζ0 +
∑
k≥1

εk/2ζk/2 and Z[ε1/2] = (0, Z0
3) +

∑
k≥1

εk/2Zk/2. (4.10)

4.C INFLUENCE OF THE RIGHT-HAND SIDES

We study now 6 generic cases mentioned in Table 1 for the formal series right-hand sides
in the problem (4.4). For certain cases we can show that some first terms vanish and the
structure of the formal series

(
ζ[ε1/2],Z[ε1/2]

)
is not the same as (4.10).

Using the linearity of the problem, we only consider right-hand sides formal series of
the form g[ε1/2] = g0 , G[ε1/2] = G0 and c[ε1/2] = c0 = (c0r, c

0
s, c

0
3, c

0
n) and we study

successively the cases where only one component does not vanish in these formal series.

Note that in all cases, the proof of Theorem 4.1 shows that Z̆0 is zero. We summarize
the results by the following table. The first three columns give the expression of the right-
hand sides formal series, and the last two give the expression of the first terms in the
expansions of ζ[ε1/2] and Z[ε1/2] of the solution.

18



g[ε1/2] G[ε1/2] c[ε1/2] Z[ε1/2] ζ[ε1/2]

g0 0 0 (0, Z0
3 ) + · · · ζ0 + · · ·

0 (G0
α, 0) 0 (0, ε1/2Z

1/2
3 ) + · · · ε ζ1 + · · ·

0 (0, G0
3) 0 (0, Z0

3 ) + · · · ε1/2ζ1/2 + · · ·

0 0 (c0
α, 0, 0) (0, Z0

3 ) + · · · ζ0 + · · ·

0 0 (0, c0
3, 0) (0, Z0

3 ) + · · · ε1/2ζ1/2 + · · ·

0 0 (0, 0, c0
n) (0, ε1/2Z

1/2
3 ) + · · · ε ζ1 + · · ·

Table 1. Structure of the solution with respect to the right-hand sides.

For example in the case where g0 = 0 , G0 = (G0
α, 0) and c0 = 0 , we have

Ğ0 = Ğ1/2 = 0 . Studying successively the equations (4.8) and (4.9), we easily see that
ζ0 = 0 , Z̆1/2 = 0 and ζ1/2 = 0 . In general we have Z̆1 	= 0 because this latter term
satisfies

K̆0(Z̆1) = Ğ1 = (G0
α, 0) in S̆ and Z̆1

3

∣∣
∂S

= ∂T Z̆
1
3

∣∣
∂S

= 0.

This implies that in general ζ1 	= 0 . Thus the expansion is of the form

ζ[ε1/2] = ε ζ1 +
∑
k≥3

εk/2ζk/2 and Z[ε1/2] = (0, ε1/2Z0
3 ) +

∑
k≥2

εk/2Zk/2.

The other cases are studied similarly (see [14] for details).

5 ESTIMATES FOR THE KOITER MODEL ASYMPTOTICS

We consider the solution zε of the equations (1.9) in the case where g = gε satisfies
(1.10). Using the results of the previous section, there exist two formal series ζ[ε1/2] and
Z[ε1/2] satisfying the equations (4.4) with formal series right-hand sides c[ε1/2] = 0 ,
G[ε1/2] = 0 and g[ε1/2] the formal series induced by the expansion (1.10).

Note that for k ≥ 0 , the sum ζk/2 + Zk/2 does not make sense, because the terms
ζk/2 and Zk/2 are not of the same nature and lives on different manifolds. However the
sum ζk/2 + χ(r)Zk/2 makes sense and defines an element of Σ(S0) . In this section we
prove that the expansion ∑

k≥0

εk/2
(
ζk/2 + χ(r)Zk/2

)
(5.1)
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is an asymptotic expansion of the solution z ε of the problem. Notice that we could also
make the more general assumption

gε �
∑
k≥0

εk/2
(
gk/2 + χ(r)Gk/2

)
,

and similarly the data on the boundary may expand in powers of ε1/2 .

For N ∈ N we define the 2D displacement

zN(ε) :=
N∑

k=0

εk/2
(
ζk/2 + χ(r)Zk/2

) ∈ Σ(S0). (5.2)

We thus have zN(ε) = θN (ε) + χ(r)ΛN (ε) with

θN(ε) :=

N∑
k=0

εk/2ζk/2 and ΛN(ε) :=

N∑
k=0

εk/2Zk/2.

Using the estimate (2.2) we see that we have

〈K(ε)η,η〉
L2(S0)3

≥ Cε2‖η‖2

H1×H2(S0)
(5.3)

for all η ∈ Σ(S0) satisfying the boundary conditions η
∣∣
∂S0

= 0 and ∂rη3

∣∣
∂S0

= 0 .
In the following C denotes always a constant independent of ε . Using this estimate we
show the following result:

Proposition 5.1 For all N ∈ N , we have the estimate

‖zε − zN(ε)‖
H1×H2(S0)

≤ C εN/2−9/4. (5.4)

Proof. Using the proof of Theorem 4.1, we see that the term zN(ε) satisfies

zN(ε)
∣∣
∂S0

= 0 et ∂rz
N
3 (ε)

∣∣
∂S0

= εN/2∂rζ
N/2
3

∣∣
∂S0

.

We thus define the following element of Σ(S0) :

tN :=

(
0

−(∂rζ
N/2
3

∣∣
∂S0

)
rχ(r)

)
.

It is clear that the term zN(ε) := zN(ε) + εN/2tN satisfies the homogeneous Dirichlet
boundary conditions zN(ε)

∣∣
∂S0

= 0 and ∂rz
N
3 (ε)

∣∣
∂S0

= 0 . We thus can apply estimate

(5.3) to the term zε − zN(ε) and we have to estimate the term K(ε)
(
zε − zN(ε)

)
.

The formal series ζ[ε1/2] satisfies the equation K[ε1/2] ζ[ε1/2] = g[ε1/2] . Thus for N ∈
N we have

K(ε)θN(ε) − gε = O(ε(N+1)/2),
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where O(ε(N+1)/2) denotes an element of Σ(S0) bounded in any functional norm on S0

by CNε
(N+1)/2 where CN is independent of ε . We deduce that we have

K(ε)
(
θN(ε) + εN/2tN

)− gε = O(εN/2). (5.5)

Moreover, for y ∈ Σ(S0) satisfying the homogeneous boundary conditions, we have the
relation∣∣∣〈K(ε)

(
χΛN (ε)

)
,y〉

L2(S0)3
− 〈K(ε)

(
ΛN(ε)

)
, χy〉

L2(S0)3

∣∣∣ ≤ C e−β/
√

ε‖y‖
H1×H2(S0)

,

(5.6)
where η1 > β > 0 . This relation is due to the fact that the support of ∂rχ(r) lies in an
open set (ρ1, ρ2) × ∂S0 of S0 with 0 < ρ1 < ρ2 . As this domain is at a distance of
∂S0 independent of ε and as the terms Z

(
r√
ε
, s
)

are uniformly exponentially decreasing
with respect to T = r√

ε
, we get the exponential term in (5.6).

Using the scaling (3.8) and the definition (3.2), we have in coordinates (T, s) for all y
satisfying the homogeneous boundary conditions,

〈K(ε)
(
ΛN(ε)

)
, χy〉

L2(S0)3
=

1√
ε
〈K̆(ε)

(
Λ̆N (ε)

)
, y̆〉

L2(S̆)3
, (5.7)

where we set
y̆(T, s) := χ(ε1/2T )

(
yT , ys, ε

1/2y3

)
(ε1/2T, s),

and where

Λ̆N(ε) =
N∑

k=0

εk/2Z̆k/2 + ε(N+1)/2(0, Z̆
(N+1)/2
3 ).

Note that the scalar product in (5.7) makes sense since y̆ has compact support.

It is clear that the Taylor expansion in T = 0 of the operator K̆(ε) corresponds to the for-
mal series K̆[ε1/2] . As the formal series Z[ε1/2] satisfies the equation K̆[ε1/2] Z̆[ε1/2] =
0 . We thus deduce that

〈K(ε)
(
ΛN (ε)

)
, χy〉

L2(S0)3
= O(εN/2)‖y̆‖

H1×H2(S̆)
.

By doing the change of coordinates, we easily see that

‖y̆‖
H1×H2(S̆)

≤ Cε−1/4‖y‖
H1×H2(S0)

.

Finally, we have

〈K(ε)
(
ΛN(ε)

)
, χy〉

L2(S0)3
= O(εN/2−1/4)‖y‖

H1×H2(S0)
. (5.8)

Grouping together the equations (5.5), (5.6) and (5.8), we obtain that for y ∈ Σ(S0) , we
have

〈K(ε)
(
zε − zN(ε)

)
,y〉

L2(S0)3
= O(εN/2−1/4)‖y‖

H1×H2(S0)
.

As
(
zε − zN(ε)

)∣∣
∂S0

= 0 and ∂r

(
zε − zN(ε)

)∣∣
∂S0

= 0 , we can apply this estimate to

21



y = zε − zN (ε) . Using (5.3) we obtain

‖zε − zN(ε)‖
H1×H2(S0)

≤ C εN/2−9/4.

But we have ‖zN (ε) − zN(ε)‖
H1×H2(S0)

= O(εN/2) , and hence the previous estimate
shows the proposition.

This proposition gives a rough estimate for the difference zε − zN(ε) . We deduce now
the following result:

Theorem 5.2 Let zε be the solution of (1.9) with a right-hand side satisfying (1.10), and
let zN(ε) defined by (5.2). For all N ∈ N , we have the estimates:

‖zε − zN(ε)‖
H1×H2(S0)

≤ C εN/2−1/4 and ‖zε − zN (ε)‖
H1×L2(S0)

≤ C εN/2+1/4.

(5.9)

This Theorem implies Theorem 1.1.

Proof. The estimate (5.4) shows that fo N ∈ N , we have

‖zε − zN+6(ε)‖
H1×H2(S0)

≤ CεN/2+3/4.

Thus we have

‖zε − zN (ε)‖
H1×H2(S0)

≤
N+6∑

k=N+1

εk/2
(‖ζk/2‖

H1×H2(S0)
+ ‖χZk/2‖

H1×H2(S0)

)
+ CεN/2+3/4. (5.10)

For k ≥ 0 , the terms ‖ζk/2‖
H1×H2(S0)

are bounded by constants independent of ε .
Moreover we see that for a fixed component i and for all k ≥ 0 , we have the estimates

‖χZk/2
i ‖

L2(S0)
≤ C ε1/4, ‖χZk/2

i ‖
H1(S0)

≤ C ε−1/4 and ‖χZk/2
i ‖

H2(S0)
≤ C ε−3/4.

(5.11)
Plugging these estimates into (5.10), we get

‖zε − zN (ε)‖
H1×H2(S0)

≤ CNε
N/2−1/4, (5.12)

where CN is a constant independent of ε . This shows the result.

Similarly we obtain inequalities of the form (5.10) for the norm H1 × L2(S0) and con-
clude using (5.11).

Using the previous Theorem, we can compare zε with the solution of the membrane
problem.

Proposition 5.3 Let g ∈ Σ(S0) independent of ε , and let ζ ∈ Σ(S0) and zε ∈ Σ(S0)
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be the solutions of the problems{
M(ζ) = g in S0,

ζα
∣∣
∂S0

= 0.
and

{
K(ε)zε = g in S0,

zε
i

∣∣
∂S0

= ∂nz
ε
3

∣∣
∂S0

= 0,

then we have the estimate

‖zε − ζ‖
H1×L2(S0)

≤ C ε1/4. (5.13)

Proof. The previous Theorem for N = 0 and the H1 × L2(S0) norm yields

‖zε − ζ0 − χZ0‖
H1×L2(S0)

≤ Cε1/4.

As ζ = ζ0 we thus find

‖zε − ζ‖
H1×L2(S0)

≤ ‖χZ0
3‖L2(S0)

+ Cε1/4,

and the equation (5.11) shows the result.

6 FORMAL SERIES SOLUTION OF THE REDUCED PROBLEM

We study now the problem (1.31). Note that this problem is close to the Koiter equa-
tions (1.9). In particular, the first term (A0, d0) in (1.31) is equal to the first term (K0, d0)
of the Koiter operator and is non invertible. As before, we introduce 2D boundary layers
to solve the problem.

6.A STATEMENT OF THE FORMAL SERIES EQUATIONS

In the following, we denote by f [ε1/2] the formal series induced by the expansion (1.15).
Notice that every formal series in powers of ε is also a formal series in powers of ε1/2 .
We denote for example by A[ε1/2] the formal series A[ε] viewed as a formal series in
ε1/2 , and we use similar notations for the formal series of the paragraph 1.D.

(i) INNER EQUATIONS. Let ζ[ε1/2] =
∑

k≥0 ε
k/2ζk/2 be a formal series with coeffi-

cients in Σ(S0) . We consider the equation (see (1.31))

A[ε1/2] ζ[ε1/2] = G[ε1/2] f [ε1/2] (6.1)

which means

∀n ≥ 0,
n∑

�=0

A�/2ζ(n−�)/2 =
n∑

�=0

G�/2f (n−�)/2,

where A�/2 = 0 when � is odd.
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In order to define the equations acting on 2D boundary layer terms, we make the
change of variable (r, s) �→ (T, s) with T = ε−1/2r in the formal series A[ε1/2] . In
coordinates (T, s) , the operators Ak change to operators depending on ε in the variable
(T, s) . We define A(k)(ε) the operator acting on S̆ by the equation

∀ k ≥ 0, A(k)(ε)(T, s; ∂T , ∂s) := Ak(ε1/2T, s; ε−1/2∂T , ∂s).

Note that these operators contains negative powers of ε1/2 , depending on the degree
of Ak . The Taylor expansions of the coefficients of these operators in T = 0 yield
formal series A(k)[ε1/2] with operator coefficients in variables (T, s) . We then have the
following result:

Lemma 6.1 The Taylor expansions in T = 0 of the coefficients of the operators A(k)(ε)
defines operators Ak,�/2 acting on S̆ , polynomials in T , such that

∀ k ≥ 0 A(k)[ε1/2] =
∑

�≥−(k+2)

ε�/2Ak,�/2. (6.2)

The equation
A[ε1/2] :=

∑
k≥0

εkA(k)[ε1/2] (6.3)

then defines a formal series

A[ε1/2] :=
∑
n≥−2

εn/2An/2 with An/2 =

n+2∑
k=0

Ak,(n−2k)/2. (6.4)

Proof. The equation (6.2) is a consequence of the estimate of the derivative orders of the
operators Ak (see equation (4.25) of [15]): The components of the operators Ak are at
most of degree k + 2 .

The fact that (6.3) indeed defines a formal series is then easily seen by identifying the
powers of ε1/2 in (6.3).

The formal series A[ε1/2] corresponds to the the formal series K[ε1/2] for the Koiter
model. We thus consider the problem: Find a formal series Z[ε1/2] with coefficients in
the space C ∞(∂S0,T(R+)

)
such that

A[ε1/2] Z[ε1/2] = 0. (6.5)

As for the Koiter model, we make a change of unknown in order to obtain a new formal
series problem with a formal series operator having all its first components non zero: We
define the formal series Ă[ε1/2] by the equation (see (3.10))

Ă[ε1/2] Z̆[ε1/2] =
(
εAσ[ε

1/2] Z[ε1/2] , ε1/2A3[ε
1/2] Z[ε1/2]

)
. (6.6)
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where Z̆[ε1/2] and Z[ε1/2] are linked by (3.8). The problem (6.5) is hence equivalent to
the problem

Ă[ε1/2] Z̆[ε1/2] = 0. (6.7)

Now we have:

Proposition 6.2 The operator Ă0 is the same as the operator K̆0 defined in (3.12). In
particular the operator Ă0 satisfies Theorem 3.2.

Proof. The first terms of the formal series A[ε] write

A[ε] = ε−1A−1 + ε−1/2A−1/2 + A0 + · · · ,
with, using the fact that A1 = 0 ,

A−1 = A0,−1, A−1/2 = A0,−1/2 and A0 = A0,0 + A2,−2. (6.8)

As A0 is the membrane operator, we have that A0,−1 = K−1 given in (3.6). Similarly,
the transverse component A0,−1/2

3 is the same as K−1/2
3 given by (3.7).

Moreover, from the expression of A2 (see Equation (4.32) of [15]) we have

A2,−2
3 (Z) =

1

3
(λ̃+ 2µ) ∂TTTTZ3. (6.9)

Using (6.6), we then compute directly the expression of Ă0
which is equal to K̆0

.

(ii) BOUNDARY CONDITIONS. If ζ[ε1/2] =
∑

k≥0 ε
k/2ζk/2 is a formal series with co-

efficients in the space Σ(S0) , we can consider the formal series (see (1.31))

d[ε1/2] ζ[ε1/2] =
∑
n≥0

εn/2
( n∑

�=0

d�/2ζ(n−�)/2
)
, (6.10)

with coefficients in the space C ∞(∂S0)
4 .

With the formal series d[ε1/2] is associated a formal series D[ε1/2] with operator
coefficients on S0 such that d[ε1/2]z =

(
D[ε1/2]z

)∣∣
∂S0

for all z ∈ Σ(S0) (see Propo-

sition 5.4 and Equation (6.1) of [15]). As before we define the operators D(k)(ε) on
S̆ := R

+ × ∂S0 by

∀ k ≥ 0 D(k)(ε)(T, s; ∂T , ∂s) := Dk(ε1/2T, s; ε−1/2∂T , ∂s).

As in Lemma 6.1, we have the expansion

∀k ≥ 0, D(k)[ε1/2] =
∑

�≥−(k+1)

ε�/2Dk,�/2. (6.11)

Hence we can define the formal series

D[ε1/2] =
∑
k≥0

εkD(k)[ε1/2] =
∑
k≥−1

εn/2Dn/2 with Dn/2 =

n+1∑
k=0

Dk,(n−2k)/2.
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The formal series d[ε1/2] =
∑

k≥−1 ε
k/2dk/2 with operators coefficients dk/2 : Σ(S̆) →

C ∞(∂S0)
4 , is then defined by

d[ε1/2] Z =
(
D[ε1/2] Z

)∣∣
T=0

,

for Z ∈ Σ(S̆) . In the following we write dk/2 =
(
d

k/2
T , d

k/2
s , d

k/2
3 , d

k/2
n

)
the components

of the operators dk/2 .

We have D0z = (zr, zs, z3, ∂rz3) . Using the orders of derivative of the operators
Dk , we see that the formal series d[ε1/2] writes

d[ε1/2] = ε−1/2d−1/2 + d0 + · · · ,

with

d−1/2Z = (0, 0, 0, ∂TZ3)
∣∣
T=0

and d0Z =
(
Zr, Zs, Z3, d

0
n(Z)

)∣∣
T=0

. (6.12)

The formal series boundary equation finally writes:

d[ε1/2] ζ[ε1/2] + d[ε1/2] Z[ε1/2] = h[ε1/2] f [ε1/2]. (6.13)

In order to obtain equations on Z̆[ε1/2] , we define the formal series D̆[ε1/2] and
d̆[ε1/2] by

D̆[ε1/2] Z̆[ε1/2] := D[ε1/2] Z[ε1/2], and d̆[ε1/2] Z̆ =
(
D̆[ε1/2] Z̆

)∣∣
T=0

. (6.14)

Using the equations (3.9), we compute that we have

d̆[ε1/2] =
∑
k≥−2

εk/2d̆k/2 = ε−1d̆−1 + ε−1/2d̆−1/2 + d̆0 + · · · ,

with d̆−1
n Z̆ = ∂T Z̆3

∣∣
T=0

, d̆−1
3 Z̆ = 0 and d̆

−1/2
3 Z̆ = Z̆3

∣∣
T=0

. Moreover we have

d̆−1
T Z̆ = d̆−1

s Z̆ = d̆
−1/2
T Z̆ = d̆−1/2

s Z̆ = 0, d̆0
T Z̆ = Z̆T

∣∣
T=0

and d̆0
sZ̆ = Z̆s

∣∣
T=0

.

Grouping together the equations (6.1), (6.5) and (6.13) we define the problem: Find
a formal series ζ[ε1/2] =

∑
k≥0 ε

k/2ζk/2 with coefficients in Σ(S0) and a formal series

Z[ε1/2] =
∑

k≥0 ε
k/2Zk/2 with coefficients in the space C ∞(∂S0,T(R+)

)
satisfying

the relations 
A[ε1/2] ζ[ε1/2] = G[ε1/2] f [ε1/2],

A[ε1/2] Z[ε1/2] = 0,
d[ε1/2] ζ[ε1/2] + d[ε1/2] Z[ε1/2] = h[ε1/2] f [ε1/2].

(6.15)

26



6.B SOLUTION OF THE FORMAL SERIES PROBLEM

We now prove that the system (6.15) admits a solution. The method is close to the proof
of Theorem 4.1.

Theorem 6.3 Suppose that S0 is elliptic, and let f [ε1/2] be a formal series with coef-
ficients in C ∞(I,Σ(S0)

)
. Then there exists a unique formal series ζ[ε1/2] with coef-

ficients in the space Σ(S0) and a unique formal series Z[ε1/2] with coefficients in the
space C ∞(∂S0,T(R+)

)
satisfying the equation (6.15).

Proof. We set g[ε1/2] := G[ε1/2]f [ε1/2] and c[ε1/2] := h[ε1/2]f [ε1/2] . The coefficients
gk/2 and ck/2 are thus in Σ(S0) and C ∞(∂S0)

4 respectively. Note that c0 = 0 because
h0 is the zero operator (see Theorem 5.3 and Equation (6.1) of [15]).

The last equation of (6.15) is equivalent to

d[ε1/2] ζ[ε1/2] + d̆[ε1/2] Z̆[ε1/2] = h[ε1/2] f [ε1/2].

This writes, for k ≥ −2 ,
k∑

�=0

d�/2(ζ(k−�)/2) + d̆−1(Z̆(k+2)/2) + d̆−1/2(Z̆(k+1)/2) +
k∑

�=0

d̆�/2(Z̆(k−�)/2) = ck/2.

Using the expressions of the first operators, we get:

ζk/2
r

∣∣
∂S0

+
k∑

�=1

d�/2
r (ζ(k−�)/2) + Z̆

k/2
T

∣∣
T=0

+
k∑

�=1

d̆
�/2
T (Z̆(k−�)/2) = c

k/2
T ,

and

ζk/2
s

∣∣
∂S0

+

k∑
�=1

d�/2
s (ζ(k−�)/2) + Z̆k/2

s

∣∣
T=0

+

k∑
�=1

d̆�/2
s (Z̆(k−�)/2) = ck/2

s ,

for the surfacic components. For the transverse components we get

ζ
k/2
3

∣∣
∂S0

+

k∑
�=1

d
�/2
3 (ζ(k−�)/2) + Z̆

(k+1)/2
3

∣∣
T=0

+

k∑
�=0

d̆
�/2
3 (Z̆(k−�)/2) = c

k/2
3 ,

and similarly,

∂rζ
k/2
3

∣∣
∂S0

+

k∑
�=1

d�/2
n (ζ(k−�)/2) + ∂T Z̆

(k+2)/2
3

∣∣
T=0

+

k∑
�=−1

d̆�/2
n (Z̆(k−�)/2) = ck/2

n .

Note that these last two equations express Z̆
(k+1)/2
3

∣∣
T=0

and ∂T Z̆
(k+2)/2
3

∣∣
T=0

with re-
spect to terms of lower order in k . Moreover, these two terms correspond to the boundary
conditions we can impose when solving for the operator Ă0 . Finally, the formal series
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ζ[ε1/2] and Z[ε1/2] solve the reduced formal series problem (6.15) if for k ≥ 0 we have:

Ă0(Z̆k/2) = −∑k
�=1 Ă�/2(Z̆(k−�)/2) in S̆,

Z̆
k/2
3

∣∣
T=0

= c
(k−1)/2
3 −∑k

�=1 d̆
(�−1)/2
3 (Z̆(k−�)/2) −∑k−1

�=0 d
�/2
3 (ζ(k−1−�)/2),

∂T Z̆
k/2
3

∣∣
T=0

= c
(k−2)/2
n −∑k

�=1 d̆
(�−2)/2
n (Z̆(k−�)/2) −∑k−2

�=0 d
�/2
n (ζ(k−2−�)/2),

(6.16)
and

M(ζk/2) = −∑k
�=1 A�/2(ζ(k−�)/2) + gk/2 in S0,

ζ
k/2
r

∣∣
∂S0

= c
k/2
r −∑k

�=1 d
�/2
r (ζ(k−�)/2) − Z̆

k/2
T

∣∣
T=0

−∑k
�=1 d̆

�/2
T (Z̆(k−�)/2),

ζ
k/2
s

∣∣
∂S0

= c
k/2
s −∑k

�=1 d
�/2
s (ζ(k−�)/2) − Z̆

k/2
s

∣∣
T=0

−∑k
�=1 d̆

�/2
s (Z̆(k−�)/2),

(6.17)

where we agree that c�/2 , ζ�/2 and Z�/2 are zero for � ≤ 0 .

The end of the proof is similar to the proof of Theorem 4.1, using the theorems 2.2 and
3.2 and the fact that A0 = K0 .

6.C COMPARISON WITH THE KOITER MODEL

Proposition 6.4 Let
(
ζ[ε1/2],Z[ε1/2]

)
be the solution of the problem (6.15) given by

Theorem 6.3 and
(
ζ ′[ε1/2],Z ′[ε1/2]

)
the solution of the system

K[ε1/2] ζ ′[ε1/2] = G0 f [ε1/2],
K[ε1/2] Z ′[ε1/2] = 0,

d0 ζ ′[ε1/2] + (d0
T , d

0
s, d

0
3, ε

−1/2d
−1/2
n )Z ′[ε1/2] = 0,

(6.18)

given by Theorem 4.1. Then we have

ζ[ε1/2] − ζ ′[ε1/2] = ε e1 +
∑
k≥3

εk/2ek/2,

and
Z[ε1/2] − Z ′[ε1/2] = (0, ε1/2E

1/2
3 ) +

∑
k≥2

εk/2Ek/2

where ek/2 ∈ Σ(S0) and Ek/2 ∈ C ∞(∂S0,T(R+)
)

.

Proof. We set

g[ε1/2] = G[ε1/2] f [ε1/2] and c[ε1/2] = h[ε1/2] f [ε1/2].

We easily see that we have c0 = 0 , c1/2 = 0 and g1/2 = 0 .
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Comparing the proofs of Theorems 4.1 and 6.3, we see that the two solutions have the
same first terms Z̆0 = 0 and ζ0 solution of the system

M(ζ0) = G0f0 =
1

2

∫ 1

−1

f0dx3 in S0, and ζr
∣∣
∂S0

= ζs
∣∣
∂S0

= 0.

For k = 1 , the equations (6.16) write:

Ă0(Z̆1/2) = 0 in S̆, Z̆
1/2
3

∣∣
T=0

= −ζ0
3

∣∣
∂S0

, and ∂T Z̆
1/2
3

∣∣
T=0

= 0,

and using K̆0 = Ă0 , we see that this system is identical to the first system of (4.9) with
the right-hand sides Ğ0 = 0 and c03 = 0 . We deduce that the term Z̆1/2 solution of the
previous system is the same for both solutions of (6.15) and (6.18).

The equations (6.17) then write

M(ζ1/2) = 0 in S0, ζ1/2
r

∣∣
∂S0

= −Z̆1/2
T

∣∣
T=0

, and ζ1/2
s

∣∣
∂S0

= −Z̆1/2
s

∣∣
T=0

,

and we verify that the equations (4.7) for k = 1 are the same. The term ζ1/2 solution of
this system is then common in both formal series ζ[ε1/2] and ζ ′[ε1/2] .

For k = 2 , the equations (6.16) write Ă0(Z̆1) = −Ă1/2(Z̆1/2) with

Z̆1
3

∣∣
T=0

= −d̆0
3(Z̆

1/2) − ζ
1/2
3

∣∣
∂S0

and ∂T Z̆
1
3

∣∣
T=0

= −d̆−1/2
n (Z̆1/2) − ∂rζ

0
3

∣∣
∂S0

,

and the equation (4.6) associated with the problem (6.18) writes

K̆0(Z̆ ′1) = −K̆1/2(Z̆ ′1/2), Z̆ ′1
3

∣∣
T=0

= −ζ ′1/2
3

∣∣
∂S0

and ∂T Z̆
′1
3

∣∣
T=0

= −∂rζ
′0
3

∣∣
∂S0

.

The proposition is a consequence of the following result, proved in Appendix A:

Lemma 6.5 The operators Ă1/2 and K̆1/2 are the same, the operator d̆0
3 is the zero

operator, and the operator d̆−1/2
n writes

d̆−1/2
n (Z̆) = c2∂TT Z̆3

∣∣
T=0

. (6.19)

where c2 > 0 is a constant depending only on the Lamé coefficients λ and µ .

The operator (6.19) being not equal to the zero operator, the terms Z̆1 and Z̆ ′1 do differ
in general. This implies that the terms ζ 1 and ζ ′1 also differ. This proves the proposition.

7 THREE-DIMENSIONAL FORMAL SERIES SOLUTION

We recall the definition of the three-dimensional boundary layer spaces ([11, 8, 15]):
After the change of coordinate R = ε−1r in a neighborhood of Γ0 , the coordinate system
(R,X3, s) is defined on the manifold Σ+ × ∂S0 where Σ+ := R

+ × I � (R,X3) is a
semi-strip. Let H(Σ+) be the space of C ∞ functions ϕ on the semi-strip Σ+ except in
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the non regular points (R = 0, X3 = −+1) , and such that ϕ is exponentially decreasing
with R in the following sense:

∀ i, j, k ∈ N, eδR Rk ∂i
R∂

j
X3
ϕ ∈ L2(Σ+),

where δ > 0 is a real strictly less than the smallest Papkovich-Fadle exponent (see [17]).
In the neighborhood of the two corners of the semi-strip, we impose the following: if ρ
denote the distance in Σ+ to a point (R = 0, X3 = −+1) , we suppose that each ϕ in
H(Σ+) satisfies

∀ i, j ∈ N, i+ j 	= 0, ρi+j−1 ∂i
R∂

j
X3
ϕ ∈ L2(Σ+).

We then define the corresponding displacement space

H(Σ+) :=
{
ϕ = (ϕR, ϕs, ϕ3) ∈ H(Σ+)3

}
.

In this section, we construct three formal series:

A formal series v[ε1/2] =
∑

k≥0 ε
k/2vk/2 with coefficients

vk/2(x1, x2, X3) ∈ C ∞(I,Σ(S0)
)
,

a formal series W [ε1/2] :=
∑

k≥0 ε
k/2W k/2 with coefficients

W k/2(T, s,X3) ∈ C ∞(I × ∂S0,T(R+)
)
,

and a formal series Φ[ε1/2] =
∑

k≥0 ε
k/2Φk/2 with coefficients

Φk/2(R, s,X3) ∈ C ∞(∂S0,H(Σ+)
)
,

solutions a the 3D formal series equations in the corresponding coordinates, and satisfying
the boundary condition:

v[ε1/2]
∣∣
Γ0

+ W [ε1/2]
∣∣
T=0

+ Φ[ε1/2]
∣∣
R=0

= 0.

These three formal series are constructed using the formal series reduction of [15],
and the formal series obtained by Theorem 6.3. To this aim, we define the action of the
operator formal series V[ε1/2] and Ψ[ε1/2] (see Theorem 5.3 of [15]) on the 2D boundary
layer formal series, taking values in C ∞(I × ∂S0,T(R+)

)
. From now on, ζ[ε1/2] and

Z[ε1/2] are the formal series given by Theorem 6.3.

7.A CONSTRUCTION OF THE FORMAL SERIES

(i) CONSTRUCTION OF v[ε1/2] . We define the formal series

v[ε1/2] = V[ε1/2] ζ[ε1/2] + Q[ε1/2] f [ε1/2],

with coefficients in the space C ∞(I,Σ(S0)
)

. As ζ[ε1/2] is solution of the equation

A[ε1/2] ζ[ε1/2] = G[ε1/2] f [ε1/2],

we easily see using (1.27) that we have

L[ε1/2] v[ε1/2] = −f [ε1/2] and T[ε1/2] v[ε1/2] = 0.
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(ii) CONSTRUCTION OF W [ε1/2] . In order to define the formal series W [ε1/2] , we
make the change of variable in the operator formal series V[ε1/2] . Recall that the op-
erators Vk/2 vanish if k is odd. If we denote by Vk(r, s,X3; ∂r, ∂s) the operator Vk ,
polynomial in X3 , in the coordinate system (r, s,X3) , then we set for all k ≥ 0 ,

V (k)(ε)Z = Vk(ε1/2T, s,X3; ε
−1/2∂T , ∂s)(Z),

where Z is a 1-form field on the manifold S̆ . As in Lemma 6.1 the corresponding formal
series V (k)[ε1/2] obtained by Taylor expansion in T = 0 of the coefficients write

V (k)[ε1/2] =
∑
�≥−k

ε�/2Vk,�/2, (7.1)

where the operators Vk,�/2 are polynomial in T and X3 and act on Σ(S̆) (see [15]).
We define the formal series V[ε1/2] by the equation

V [ε1/2] :=
∑
k≥0

εkV (k)[ε1/2] =
∑
n≥0

εn/2Vn/2, with Vn/2 =

n∑
k=0

Vk,(n−2k)/2. (7.2)

Using the definition of the space T(R+) ,, we see that the formal series V [ε1/2] has
operator coefficients

Vn/2 : C ∞(∂S0,T(R+)
)→ C ∞(I × ∂S0,T(R+)

)
polynomial in T and X3 . We have V0Z = Z . We now define the formal series

W [ε1/2] := V [ε1/2] Z[ε1/2],

with coefficients in the space C ∞(I × ∂S0,T(R+)
)

.

(iii) CONSTRUCTION OF Φ[ε1/2] . Recall that Theorem 5.3 in [15] yields the existence
of a formal series Ψ[ε] mapping Σ(S0) to the space of three-dimensional boundary
layers C ∞(∂S0,H(Σ+)

)
.

We first note that we can consider the formal series Ψ[ε1/2]ζ[ε1/2] with boundary
layer coefficients. We now define the action of the formal series Ψ[ε1/2] on the formal
series Z[ε1/2] .

The formal series Ψ[ε1/2] contains only terms in even powers of ε1/2 and we have
(see Proposition 5.4 in [15])

∀ k ≥ 0, Ψkz =
∑
j∈Fk

(P k
j z)

∣∣
∂S0

ϕk,j

where Fk is a finite subset of N . The coefficients ϕk,j(R, s, x3) are in the space
C ∞(∂S0,H(Σ+)

)
and the operators P k

j take values in C ∞(S0) and are of order at

most k in ∂r . As in the lemma 6.1, we define for all Z ∈ Σ(S̆) ,

P(k)
j (ε)Z = P k

j (ε1/2T, s; ε−1/2∂T , ∂s)(Z),
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and the associated formal series P (k)
j [ε1/2] after expansion of the coefficients around

T = 0 . As P k
j is of order k in ∂r we can define the formal series ψ[ε1/2] with operator

coefficients
ψk/2 : C ∞(∂S0,T(R+)

)→ C ∞(∂S0,H(Σ+)
)
,

by the equation (recall that the Fk are finite sets)

ψ[ε1/2]Z =
∑
k≥0

εk
∑
j∈Fk

(P(k)
j [ε1/2]Z

)∣∣
T=0

ϕk,j

=
∑
n≥0

εn/2
n∑

k=0

∑
j∈Fk

(Pk,(�−2k)/2
j Z

)∣∣
T=0

ϕk,(�−2k)/2.

We then define the formal series Φ[ε1/2] with coefficients in C ∞(∂S0,H(Σ+)
)

by

Φ[ε1/2] := Ψ[ε1/2] ζ[ε1/2] + Θ[ε1/2] f [ε1/2] + ψ[ε1/2] Z[ε1/2].

where Θ[ε] is the formal series given by Theorem 5.3 of [15].

7.B THREE DIMENSIONAL FORMAL SERIES EQUATION

In the coordinate system (T, s,X3) , we define the operator
(
L(ε),T (ε)

)
by:{

L(ε)(T, s,X3; ∂T , ∂s, ∂X3) := L(ε1/2T, s, εX3; ε
−1/2∂T , ∂s, ε

−1∂X3) and

T (ε)(T, s,X3; ∂T , ∂s, ∂X3) := T(ε1/2T, s, εX3; ε
−1/2∂T , ∂s, ε

−1∂X3).
(7.3)

where
(
L,T

)
is the 3D elasticity operator on Ωε . We then define the two corresponding

formal series
(
L[ε1/2],T [ε1/2]

)
in powers of ε1/2 by expanding the coefficients of this

operator in T = 0 and X3 = 0 . It is clear that we have operators of order 2 , polynomial
in T and X3

Lk/2 : C ∞(I × ∂S0,T(R+)
)→ C ∞(I × ∂S0,T(R+)

)
,

and
T k/2 : C ∞(I × ∂S0,T(R+)

)→ C ∞(∂S0,T(R+)
)
,

such that

L[ε1/2] = ε−2
∑
k≥0

εk/2Lk/2 and T [ε1/2] = ε−2
∑
k≥0

εk/2T k/2.

In the same way, the change of variable (r, s, x3) �→ (R, s, ,X3) where R = ε−1r
in the operator (L,T) yields formal series

(
L [ε],T [ε]

)
(see the equation (5.5) in [15]).

We thus have the 3 couples of formal series:
(
L[ε1/2],T[ε1/2]

)
,
(
L[ε1/2],T [ε1/2]

)
and

(
L [ε1/2],T [ε1/2]

)
corresponding to the expansion in powers of ε1/2 of the operator(

L,T
)

in the three coordinate systems associated with the three kind of terms.
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Theorem 7.1 The formal series v[ε1/2] , W [ε1/2] and Φ[ε1/2] constructed in the pre-
vious subsection from the solution

(
ζ[ε1/2],Z[ε1/2]

)
of the problem (6.15), are solutions

of the following equations: the formal series v[ε1/2] satisfies(
L[ε1/2],T[ε1/2]

)
v[ε1/2] = −(f [ε1/2], 0

)
(7.4)

the formal series W [ε1/2] satisfies(
L[ε1/2],T [ε1/2]

)
W [ε1/2] = 0, (7.5)

and the formal series Φ[ε1/2] satisfies(
L [ε1/2],T [ε1/2]

)
Φ[ε1/2] = 0. (7.6)

Moreover, we have the relation

v[ε1/2]
∣∣
Γ0

+ W [ε1/2]
∣∣
T=0

+ Φ[ε1/2]
∣∣
R=0

= 0. (7.7)

Proof. The equation (7.4) is clearly satisfied.

The formal series Z[ε1/2] satisfies the equation (6.5). But by definition, the formal series
A[ε] and V[ε] satisfy the first group of equations in (1.27). By doing the change of
variable (r, s, x3) �→ (T, s,X3) and by expanding the coefficients in T = 0 and X3 =
0 , we see that for all 1-form field Z on the manifold S̆ , we have

L[ε1/2] V [ε1/2]Z = −I ◦ A[ε1/2]Z and T [ε1/2] V [ε1/2]Z = 0,

and this clearly shows the equation (7.5) using the relation W [ε1/2] = V [ε1/2] Z[ε1/2] .

Recall that the formal series Ψ[ε] and Θ[ε] satisfy the equations (see the equations (5.14)
and (5.16) of [15]), { (

L [ε],T [ε]
)
Ψ[ε] = 0,(

Ψ[ε] − d[ε]
)∣∣

R=0
+ V[ε]

∣∣
Γ0

= 0,
(7.8)

and { (
L [ε],T [ε]

)
Θ[ε] = 0,(

Θ[ε] + h[ε]
)∣∣

R=0
+ Q[ε]

∣∣
Γ0

= 0,
(7.9)

where the formal series d[ε] is a formal series with operator coefficients taking values in
the four dimensional space of rigid displacements on the semi-strip (see Theorem 5.3 of
[15]). This formal series is related to d[ε] by the relations di[ε] = di[ε] for i = 1, 2, 3
and dn[ε] = ε−1d4[ε]−brrd1[ε]−bsrd2[ε] (see the equation (6.1) of [15]). A similar relation
holds for h[ε] and h[ε] .

By doing the change of variable (r, s) �→ (T, s) in the equation (7.8), and using the
definition of the operator formal series ψ[ε1/2] , we find that:{ (

L [ε1/2],T [ε1/2]
)
ψ[ε1/2] = 0,(

ψ[ε1/2] − c[ε1/2]
)∣∣

R=0
+ V [ε1/2]

∣∣
Γ0

= 0,
(7.10)
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where the formal series c[ε1/2] is obtained by doing the change of variable (r, s) �→
(T, s) in the coefficients of the formal series d[ε] .

The formal series c[ε1/2] is thus related to the formal series d[ε1/2] in the same way as
the formal series d[ε1/2] is related to the formal series d[ε1/2] . In particular the equations

d[ε1/2] ζ[ε1/2] + d[ε1/2] Z[ε1/2] = h[ε1/2] f [ε1/2],

and
d[ε1/2] ζ[ε1/2] + c[ε1/2] Z[ε1/2] = h[ε1/2] f [ε1/2], (7.11)

are equivalent. This last equation is thus satisfied for the formal series ζ[ε1/2] and Z[ε1/2]
solutions of Theorem 6.3.

Applying the equation (7.8) to the formal series ζ[ε1/2] , the equation (7.9) to the formal
series f [ε1/2] and the equation (7.10) to the formal series Z[ε1/2] , and summing the
expressions so obtained, we find(

L [ε1/2],T [ε1/2]
)
Φ[ε1/2] = 0,

and this shows (7.6). Similarly we obtain

Φ[ε1/2]
∣∣
R=0

+ v[ε1/2]
∣∣
Γ0

+ W [ε1/2]
∣∣
Γ0

− d[ε1/2] ζ[ε1/2] + h[ε1/2] f [ε1/2] − c[ε1/2] Z[ε1/2] = 0,

using the definition of v[ε1/2] and W [ε1/2] . The equation (7.11) then shows (7.7). This
ends the proof of the Theorem.

7.C COMPARISON WITH THE KOITER MODEL

We compare now the first terms of the formal series v[ε1/2] , W [ε1/2] and Φ[ε1/2] with
the first terms in the expansion of the Koiter model.

Proposition 7.2 Let v[ε1/2] , W [ε1/2] and Φ[ε1/2] be the formal series defined in the
previous subsection. The first terms of these series write

v[ε1/2] = ζ0 + ε1/2ζ1/2 + O(ε), (7.12)

W [ε1/2] =


WT [ε1/2] = ε1/2(Z

1/2
T −X3∂TZ

0
3) +O(ε),

Ws[ε
1/2] = ε1/2Z

1/2
s +O(ε),

W3[ε
1/2] = Z0

3 + ε1/2Z
1/2
3 +O(ε),

(7.13)

and
Φ[ε1/2] = εΦ1 + O(ε3/2). (7.14)

Let ζ ′[ε1/2] and Z ′[ε1/2] be the solution of the formal series problem (6.18). We have

ζ0 = ζ ′0, ζ1/2 = ζ ′1/2, Z0 = Z ′0, Z
1/2
T = Z ′

T
1/2 and Z1/2

s = Z ′
s
1/2,

but Z1/2
3 	= Z ′

3
1/2 in general.
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This Proposition is a consequence of Proposition 6.4 and the expression of the oper-
ators Vk in variables (T, s,X3) . See [14] for further details.

8 ESTIMATES FOR THE THREE-DIMENSIONAL ASYMPTOTICS

We consider the shifted displacement wε solution of the equations (1.22). We denote
by w(ε) the corresponding displacement in Ω , solution of the equations (see (1.23)):

(L(ε),T(ε))w(ε) = (−f (ε), 0) in Ω × Γ−+ and w(ε) = 0 on Γ0. (8.1)

8.A ANSATZ OF 3D EXPANSION

With the formal series defined in the previous section, we set for all N ∈ N ,

w[N ](ε)(x1, x2, X3) :=

N∑
k=0

εk/2
(
vk/2(x1, x2, X3) + χ(r)W k/2(ε−1/2r, s,X3) + χ(r)Φk/2(ε−1r, s,X3)

)
. (8.2)

This defines an element of H1(Ω)3 . We write it

w[N ](ε) = v[N ](ε) + χ(r)W [N ](ε) + χ(r)Φ[N ](ε), (8.3)

with evident notations. Using (7.7) we see that

∀N ∈ N w[N ](ε)
∣∣
Γ0

= 0, or w[N ](ε) ∈ V (Ω),

where V (Ω) =
{
u ∈ H1(Ω)3 |u∣∣

Γ0
= 0
}

is the variational space associated with the 3D
problem. We set ãε

3D the bilinear form defined by the formula

ãε
3D(w,v) :=

∫
Ωε

Aijk�ẽk�(w)ẽij(v) dV, (8.4)

where ẽij(v) = eij

(
µ−1(x3)v

)
with µ(x3) the shifter defined in (1.21). This bilinear

form corresponds to the energy (1.19) for shifted displacements. We denote by ã3D(ε)
the corresponding bilinear form on V (Ω) .

We have the following Korn estimate (see section 4 of [7]):

∀v ∈ V (Ω), ‖v‖
H1(Ω)3

≤ ε−1C‖eij(xα, εX3; Dα, ε
−1∂X3)(v)‖

L2(Ω)
, (8.5)

where C is independent on ε . Moreover, the operator µ(ε) acts on V (Ω) and is in-
vertible with bounded inverse in ε : We have

∀v ∈ H1(Ω), c‖v‖
H1(Ω)3

≤ ‖µ(ε)v‖
H1(Ω)3

≤ C‖v‖
H1(Ω)3

, (8.6)

where c and C are constants independent on ε . Using (8.5) and (8.6) we find

∀v ∈ V (Ω), ‖v‖2

H1(Ω)3
≤ ε−2C0ã3D(ε)(v,v), (8.7)

where C0 is independent on ε .
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8.B VALIDATION

Similarly to the section 4 and Proposition 5.1, we first give the rough estimate:

Lemma 8.1 With the notations of the previous section, we have

‖w(ε) − w[N ](ε)‖
H1(Ω)3

≤ CεN/2−4. (8.8)

We do not give the proof of this lemma, as it is very close to the proof of Proposition
5.1 and very technical (see [10, 14] for similar calculations). We use the formal series
equations satisfied by the formal series and the Korn inequality to conclude.

Let v[ε1/2] , W [ε1/2] and Φ[ε1/2] be the formal series defined in the previous sub-
sections. We easily see that

∀ k ≥ 0, ‖vk/2‖
H1(Ω)

≤ C .

Similarly, using the exponential decay of the boundary layer terms, we have

‖χW k/2‖
L2(Ω)

≤ C ε1/4,

‖χW k/2‖
H1(Ω)

≤ C ε−1/4,
and

‖χΦk/2‖
L2(Ω)

≤ C ε1/2,

‖χΦk/2‖
H1(Ω)

≤ C ε−1/2,
(8.9)

where the constants C are independent on ε . Using the previous lemma, we get the
following result:

Theorem 8.2 Let w(ε) be the shifted displacement solution of the three-dimensional
equations, and let w[N ](ε) be the 1-form field defined in (8.3). Then we have:

∀N ≥ 0, ‖w(ε) − w[N ](ε)‖
H1(Ω)3

≤ CεN/2. (8.10)

Proof. Let N ≥ 0 . Using the estimate (8.8), we get

‖w(ε) − w[N+10](ε)‖
H1(Ω)3

≤ CεN/2+1,

whence

‖w(ε) − w[N ](ε)‖
H1(Ω)3

≤
N+10∑

k=N+1

εk/2
(‖vk/2‖

H1(Ω)3
+ ‖χW k/2‖

H1(Ω)3
+ ‖χΦk/2‖

H1(Ω)3

)
+ CεN/2+1.

The previous estimates of the terms in ε yields the result.

Recall that the 3D displacement u(ε) and the shifted displacement w(ε) are related
by

uσ(ε) = wσ(ε) − εX3b
α
σ(x1, x2)wα(ε) and u3(ε) = w3(ε). (8.11)
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We deduce that we have a similar asymptotic expansions for the 3D displacement. More-
over, as the shifter differs from the identity by a term of order ε of order of derivation
zero, we deduce that the terms of order 0 and 1 in ε1/2 are equals for w(ε) and u(ε) .
Thus the proposition 7.2 is the same for these displacements.

Note eventually that using Lemma 8.1 written in Ωε , and using estimates of the terms
of the expansion in physical variables, we obtain the multiscale expansion for the shifted
displacement in Ωε . This shows Theorem 1.2.

Finally, using Theorem 8.2 and Proposition and 7.2, we easily show Proposition 1.3.

APPENDIX A: PROOF OF LEMMA 6.5

1. We first compare the operators Ă1/2 and K̆1/2 . We have the following estimate
(see Proposition 4.2 of [15]):

deg A3 ≤
(

4 5
5 4

)
. (8.12)

Moreover, the operators Ak are of order at most k + 2 for k ≥ 4 .

Using the definition (6.6) of the formal series Ă[ε1/2] , we have, similarly to (6.3):

Ă[ε1/2] =
∑
k≥0

εkĂ(k)[ε1/2], (8.13)

with

Ă(k)[ε1/2] Z̆[ε1/2] =
(
εA(k)

σ [ε1/2] Z[ε1/2] , ε1/2A(k)
3 [ε1/2] Z[ε1/2]

)
, (8.14)

where the formal series Z[ε1/2] and Z̆[ε1/2] are related by (3.8). Using (8.14) and (6.2),
we see that we have

∀ k ≥ 0, Ă(k)[ε1/2] =
(∑

�≥−(k+1) ε
�/2Ăk,�/2

σ ,
∑

�≥−(k+2) ε
�/2Ăk,�/2

3

)
.

Using (8.13) we see that

Ăσ[ε1/2] =
∑
k≥0

∑
�≥0

ε(2k+�−k−1)/2Ăk,(�−k−1)/2
σ =

∑
n≥−1

εn/2

n+1∑
k=0

Ăk,(n−2k)/2
σ ,

where we used the fact that Ăk,�/2
σ = 0 for � ≤ −(k + 1) . Similarly, for the transverse

component we see that

Ă3[ε
1/2] =

∑
n≥−2

εn/2
n+2∑
k=0

Ăk,(n−2k)/2
3 .
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In particular, we have that

Ă1/2
σ = Ă0,1/2

σ + Ă1,−1/2
σ + Ă2,−3/2

σ and Ă1/2
3 = Ă0,1/2

3 + Ă1,−1/2
3 + Ă2,−3/2

3 + Ă3,−5/2
3 .
(8.15)

Similarly, for the computation of the operator K̆1/2 , we have

K̆1/2
σ = M̆1/2

σ + B̆−3/2
σ and K̆1/2

3 = M̆1/2
3 + B̆−3/2

3 , (8.16)

where the operators M̆k/2 and B̆k/2 are defined as before from the operators M and
B . The equations (8.15) shows that for k ≥ 4 , the operators Ak play no role in the
computation of the operator Ă1/2 .

As A3
3 is only of order 4 in z3 (see (8.12)), we have Ă3,−5/2

3 = 0 . The operator
A1 being the zero operator, we have Ă1,−1/2

σ = Ă1,−1/2
3 = 0 . As A0 is the membrane

operator, it is clear that Ă0,1/2
σ = M̆1/2

σ and Ă0,1/2
3 = M̆1/2

3 .

Now using the expression of the operators A2 (see Theorem 4.4 of [15]) and B2 , we
compute directly that Ă2,−3/2

σ = B̆−3/2
σ = 0 and

Ă2,−3/2
3 Z̆ = B̆−3/2

3 Z̆ =
2

3
λ̃Γr

ss(0, s) ∂TTT Z̆3.

This eventually shows that K̆1/2 = Ă1/2 .

2. We now compute the operator d̆0
3 or equivalently the operator D̆0

3 (see (6.14)).
We have that

D̆[ε1/2] =
∑
k≥0

εkD̆(k)[ε1/2],

where the formal series D̆(k)[ε1/2] are associated with the formal series D(k)[ε1/2] by
the formula D̆(k)[ε1/2]Z̆[ε1/2] = D(k)[ε1/2]Z[ε1/2] .

As the operators Dk
3 are of order at most k in r , we have as in Lemma 6.1:

D̆3[ε
1/2] =

∑
n≥−1

εn/2D̆n/2
3 with D̆n/2

3 =
n+1∑
k=0

D̆k,(n−2k)/2
3 .

We thus deduce that
D̆0

3 = D̆0,0
3 + D̆1,−1/2

3 .

As D1
3 is the zero operator, we deduce that D̆1,−1/2

3 = 0 . Moreover as D0
3z = z3 , we

have that D̆0,0
3 = 0 . This shows that d̆0

3z = z3 .

3. We compute now the operator D̆−1/2
n . As the operators Dk

n are of degree of
derivative at most k + 1 in r , we have with evident notations:

D̆n[ε
1/2] =

∑
�≥−2

ε�/2D̆�/2
3 with D̆�/2

n =

�+2∑
k=0

D̆k,(�−2k)/2
3 .
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We deduce that
D̆−1/2

n = D̆0,−1/2
n + D̆1,−3/2

n .

But it is clear that D̆0,−1/2
n = 0 , using D0

nz = ∂rz3 . To compute the operator D̆1,−3/2
n ,

we only need to know the terms with 2 derivatives in r acting on z3 in the expression of
the operator d2

n (see Theorem 5.3 in [15]).

We will show later the following equation, for z ∈ Σ(S0) :

d2
nz =

(
c2∂rrz3 + Pz

)∣∣
∂S0

, (8.17)

where c2 is a non zero constant depending only on λ and µ , and P is an operator
taking values in C ∞(S0) such that in coordinates (r, s) , we have

Pz = P rzr + P szs + P 3z3,

where P r and P s are operators of order 2 acting on zr and zs respectively, and where

P 3z3 = p3
1(r, s)∂rsz3 + p3

2(r, s)∂ssz3 +Q3z3,

with Q3 and operator of order 1 in z3 and p3
1 , p3

2 functions of the variables (r, s) .

The equation (8.17) shows that

D̆(1)
n [ε1/2](Z̆) = ε−3/2c2∂TT Z̆3 +

∑
�≥−2

ε�/2D̆1,�/2
n (Z̆).

We deduce that
D̆1,−3/2

n (Z̆) = c2∂TT Z̆3.

and this yields the result.

Proof of (8.17). Using the proof of Theorem 5.3 of [15], the operators Ψ2 and d2 are
such that if z ∈ Σ(S0) , ϕ := Ψ2z − d2z is the unique solution of the problem

L 0ϕ = −L 1Ψ1z in ∂S0 × Σ+,
T 0ϕ = −T 1Ψ1z on ∂S0 × γ+ × γ−,

ϕ
∣∣
R=0

+ V2z
∣∣
Γ0

= 0,

with Ψ2z ∈ C ∞(∂S0,H(Σ+)
)

(see the beginning of Section 6) and d2z in the space
spanned by the 4 rigid displacement in coordinates (R, s,X3) (see the equation (5.8) of
[15]). Here, γ−+ denote the two upper and lower lines {X3 = −+1} of Σ+ . The operator
V2 writes (see [15]):

V2
σ(z) =

X2
3

2
pDσγ

α
α(z) and V2

3(z) =
X2

3

2
p
(
ρα

α(z) − pbααγ
β
β (z) − 2bβαγ

α
β (z)

)
.

As in the proof of Theorem 5.3 of [15] we split the solution ϕ of the previous system
into the solution of

L 0φ = −L 1Ψ1z in ∂S0 × Σ+,
T 0φ = −T 1Ψ1z on ∂S0 × γ+ × γ−,

φ
∣∣
R=0

= 0,
(8.18)

39



and the solution of the system
L 0φ = 0 in ∂S0 × Σ+,
T 0φ = 0 in ∂S0 × γ+ × γ−,

φ
∣∣
R=0

+ V2z
∣∣
Γ0

= 0.
(8.19)

Using the expression of the operator Ψ1 (see the equation (5.13) of [15]), we see that the
right-hand side of (8.18) is a linear combination of elements of C ∞(∂S0,K(Σ+)

)
whose

coefficients are traces on ∂S0 of operators acting on Σ(S0) with degrees of derivative at
most equal to 2 in zσ and 1 in z3 . Thus the corresponding parts of the operators Ψ2

and d2 are only involved in the definition of the operator P of the equation (8.17).

Similarly the solution of (8.19) splits into the sum of the solutions of systems with only
one single non vanishing component in the right-hand side, polynomial in X3 . The ex-
pression of V2 show that in the coordinate system (r, s) , only V 2

3 z contains derivatives
of order 2 in z3 . The components V 2

r z and V 2
s z only enter into the expression of P .

In the coordinate system (r, s) , we have

V 2
3 z =

X2
3

2
p∂rrz3 + Op(z)

where Op(z) denotes an operator of order 2 with derivative of order 1 in r on z3 .
We seek the solution of the system of the form (8.19) with a polynomial right-hand side,
and we use the splitting of the operator (L 0,T 0) into the operators (L 0

s ,T
0

s ) and
(L 0

R,L
0
3 ,T

0
R ,T

0
3 ) (see the equation (5.6) of [15]). We show (see section 6.1 of [12])

that there exist (ϕ2
R, ϕ

2
3) ∈ H(Σ+)2 and two constants c and c′ such that
(L 0

R,L
0
3 )(ϕ2

R, ϕ
2
3) = 0 in Σ+,

(T 0
R ,T

0
3 )(ϕ2

R, ϕ
2
3) = 0 on γ+ × γ−,

ϕ1
R

∣∣
R=0

+ cX3 = 0,
ϕ1

3

∣∣
R=0

− c′ = X2
3 .

(8.20)

The coefficients c and c′ are the coefficients of the rigid displacements Z4 et Z3 (see
[12] and the equation (5.8) of [15]). For parity reasons in X3 , the coefficients of Z1 is
zero, and the displacement Z2 is not involved. We can show that the coefficient c′ is
non zero (see lemma 6.1 in [12]).

We construct the solution φ of (8.19) depending on the term p∂rrz3 in the operator
V2 by multiplying the solution of (8.20) with − 1

2
p∂rrz3 . We thus deduce that d4

nz =
−1

2
c′p∂rrz3 + Pz , where P satisfies the correct order conditions. We get the result by

setting c2 = −1
2
c′p 	= 0 .

APPENDIX B: PROOF OF THEOREM 1.4

1. We first compute the energy norm of uε . We define the energy for the shifted
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displacement:

Ẽε
3D[w] =

∫
Ωε

Aijk�ẽij(w)ẽk�(w)dV,

where ẽij(w) is defined as ẽij(w) = eij(µ
−1(x3)w) is the strain tensor associated with

the shifted displacement. We have Ẽε
3D[wε] = Eε

3D[uε] . The expansion of the operator
ẽij on Ωε is given in Proposition 3.2 of [15].

Using the positivity of the rigidity tensor, we have that

c‖ẽij(w
ε)‖2

L2(Ωε)
≤ Ẽε

3D[wε] ≤ C‖ẽij(w
ε)‖2

L2(Ωε)
, (8.21)

for constants c and C independent on ε .

Recall (see Theorem 4.4 of [15]), that the operators V1 and V2 of the formal series
V[ε] write

V1z =

{
−X3θσ(z)

−X3pγ
α
α(z)

and V2z =

{
X2

3

2
Dσγ

α
α(z)

X2
3

2
p
(
ρα

α(z) − pbααγ
β
β (z) − 2bβαγ

α
β (z)

)
(8.22)

where p = λ(λ+ 2µ)−1 . The following lemma precise the first part of Proposition 7.2.

Lemma 8.3 With the notations of Proposition 7.2, we have

v1 = ζ1 + V1ζ0 =

{
ζ1
σ −X3(Dσζ

0
3 + bασζ

0
α),

ζ1
3 −X3pγ

α
α(ζ0),

(8.23)

and in the coordinate system (T, s,X3) ,

W 1 =

 Z1
T −X3∂TZ

1/2
3

Z1
s −X3∂sZ

0
3

Z1
3 −X3p∂TZ

1/2
T +X3pb

α
α(0, s)Z0

3 +
X2

3

2
p∂TTZ

0
3

 . (8.24)

Proof of Lemma 8.3. The equation (8.23) is clear using the definition of v[ε1/2] and
the expression of V1 .

Now using the formal series (7.2), we have

W 1 = V0Z1 + V1/2Z1/2 + V1Z0, (8.25)

with

V0 = V0,0, V1/2 = V0,1/2 + V1,−1/2 and V1 = V0,1 + V1,0 + V2,−1.

But using the definition of the operators V k,n , we easily see that V0 = V0,0 is the
identity operator. Similarly, using the expression of V1 and V2 we see that

V1,−1/2Z =


−X3∂TZ3,

0,

−X3p∂TZT ,

V2,−1Z =


X2

3

2
p∂TTZT ,

0,
X2

3

2
p∂TTZ3,
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and

V1,0Z =


−X3(b

r
r(0, s)ZT + bsr(0, s)Zs),

−X3(∂sZ3 + brs(0, s)ZT + bss(0, s)Zs),

−X3p(∂sZs + Γα
αr(0, s)ZT + Γα

αs(0, s)Zs − bαα(0, s)Z3),

and this shows the result.

We now give estimates corresponding to (8.9) on the physical shell.

Lemma 8.4 Suppose that ζ ∈ Σ(S0) and Z ∈ C ∞(∂S0,T(R+) are generic, indepen-
dent of ε , non zero 2D displacement and 2D boundary layer term respectively. Then we
have

‖ζ‖
L2(Ωε)

= O(ε1/2), ‖Z‖
L2(Ωε)

= O(ε3/4),

‖∂αζ‖
L2(Ωε)

= O(ε1/2), and ‖∂αZ‖
L2(Ωε)

= O(ε1/4).

Let v ∈ C∞(I,Σ(S0)
)

, W ∈ C ∞(I × ∂S0,T(R+)
)

and Φ ∈ C ∞(∂S0,H(Σ+)
)

be
generic non zero terms independent of ε corresponding to the three types of terms present
in the expansion of wε . Then we have

‖v‖
L2(Ωε)

= O(ε1/2), ‖∂αv‖
L2(Ωε)

= O(ε1/2), and ‖∂3v‖L2(Ωε)
= O(ε−1/2),

‖W ‖
L2(Ωε)

= O(ε3/4), ‖∂αW ‖
L2(Ωε)

= O(ε1/4), and ‖∂3W ‖
L2(Ωε)

= O(ε−1/4),

and
‖Φ‖

L2(Ωε)
= O(ε), and ‖∂iΦ‖

L2(Ωε)
= O(1).

Using these two lemmas, Proposition 7.2 and Proposition 3.2 of [15] giving the ex-
pansions of the operators ẽij , it is not hard to prove that

‖ẽαβ(v0 + ε1/2v1/2 + εv1)‖
L2(Ωε)

= O(ε1/2),

where we use the fact that ζ0 	= 0 . Moreover, for all k ≥ 3 ,

‖ẽαβ(εk/2vk/2)‖
L2(Ωε)

≤ O(ε(k+1)/2).

Similarly, writing the expansion of ẽij in coordinates (T, s,X3) yields

‖ẽαβ(W 0 + ε1/2W 1/2 + εW 1)‖
L2(Ωε)

≤ O(ε3/4),

and for all k ≥ 3 ,
‖ẽαβ(εk/2W k/2)‖

L2(Ωε)
≤ O(ε(2k+1)/4).

Moreover, we have for all k ≥ 2

‖ẽαβ(εk/2Φk/2)‖
L2(Ωε)

≤ O(εk/2).
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Using the Kirchhoff-Love structure of the first terms of the formal series V[ε] , we
see (see [14] for further details) that under the condition ζ 0 	= 0 ,

‖ẽα3(v
0 + ε1/2v1/2 + εv1 + ε3/2v3/2)‖

L2(Ωε)
= O(ε3/2),

while for all k ≥ 4 ,
‖ẽα3(ε

k/2vk/2)‖
L2(Ωε)

≤ O(ε(k−1)/2).

Similarly, we compute that

‖ẽα3(W
0 + ε1/2W 1/2 + εW 1)‖

L2(Ωε)
≤ O(ε5/4),

and for all k ≥ 3
‖ẽα3(ε

k/2W k/2)‖
L2(Ωε)

≤ O(ε(2k−1)/4).

For the 3D boundary layer terms, we get for all k ≥ 2 ,

‖ẽα3(ε
k/2Φk/2)‖

L2(Ωε)
≤ O(εk/2).

Finally, for the transverse strain, we obtain the estimates

‖ẽ33(v0 + ε1/2v1/2 + εv1)‖
L2(Ωε)

= O(ε1/2)

and for all k ≥ 3 , ‖ẽ33(ε
k/2vk/2)‖

L2(Ωε)
≤ O(ε(k−1)/2) . Similarly, we have

‖ẽ33(W 0 + ε1/2W 1/2 + εW 1)‖
L2(Ωε)

≤ O(ε3/4)

and for k ≥ 2 ,

‖ẽ33(εk/2W k/2)‖
L2(Ωε)

≤ O(ε(2k−1)/4) and ‖ẽ33(εk/2Φk/2)‖
L2(Ωε)

≤ O(εk/2).

Grouping together the previous estimates and using Theorem 8.2 for a sufficiently
large N , we see that

‖ẽαβ(wε)‖
L2(Ωε)

= O(ε1/2),

where the main contribution comes from the first term ζ0 	= 0 . Similarly,

‖ẽα3(w
ε)‖

L2(Ωε)
≤ O(ε),

where the main contribution comes from the first 3D boundary layer term Φ1 (this term
may vanish even if ζ0 	= 0 , as it depends only on traces of ζ0 : see the equation (5.13) of
[15]). Eventually,

‖ẽ33(wε)‖
L2(Ωε)

= O(ε1/2),

where the main contribution comes from ζ0 . These estimates show the result.
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2. We prove now the second estimate in (1.20). Let Wz be the operator correspond-
ing to Uz through the shifter, that is Wz = µ−1(x3)Uz . We now prove that

Ẽ3D[wε − Wzε] ≤ CεẼ3D[wε]

and this shows the result.

Recall that with zε we associate two formal series ζ ′[ε1/2] and Z ′[ε] given by The-
orem 4.1. Using Proposition 7.2, it is easy to prove that we have an asymptotic expansion

wε − Wzε �
∑
k≥0

εk/2
(
ek/2 + χ(Ek/2 + Φk/2)

)
,

where we have
e0 = e1/2 = 0 and e1 = ζ1,

where ζ1 = ζ1 − ζ ′1 , and similarly

E0 = 0, E1/2 =

 0
0

Z
1/2

3

 and E1 =

 Z1
T − x3∂TZ

1/2
3

Z1
s

Z1
3


where Z

k/2
3 = Z

k/2
3 − Z ′

3
k/2 for k = 1 and 2 . As before, we compute that

‖ẽαβ(e0 + ε1/2e1/2 + εe1)‖
L2(Ωε)

≤ O(ε3/2)

and
‖ẽαβ(E0 + ε1/2E1/2 + εE1)‖

L2(Ωε)
≤ O(ε5/4).

Moreover we have

‖ẽα3(e
0 + ε1/2e1/2 + εe1)‖

L2(Ωε)
≤ O(ε5/2)

and
‖ẽα3(E

0 + ε1/2E1/2 + εE1)‖
L2(Ωε)

) ≤ O(ε7/4).

Eventually, we have

ẽ33(e
0 + ε1/2e1/2 + εe1) = 0 and ẽ33(E

0 + ε1/2E1/2 + εE1) = 0.

We conclude as before using Theorem 8.2 that

Ẽε
3D[wε − Wzε] ≤ O(ε2) = O(εẼε

3D[wε]),

where the mean contribution comes from the first 3D boundary layer term Φ1 . This
shows the Theorem.
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