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Summary Given a Hamiltonian dynamics, we address the question
of computing the space-average (referred as the ensemble average in
the field of molecular simulation) of an observable through the limit
of its time-average. For a completely integrable system, it is known
that ergodicity can be characterized by a diophantine condition on its
frequencies and that the two averages then coincide. In this paper, we
show that we can improve the rate of convergence upon using a filter
function in the time-averages. We then show that this convergence
persists when a numerical symplectic scheme is applied to the system,
up to the order of the integrator.
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1 Introduction

Consider a Hamiltonian dynamics in Rd × Rd{
ṗ(t) = −∇qH(p(t), q(t)), p(0) = p0,
q̇(t) = ∇pH(p(t), q(t)), q(0) = q0.

(1)

Let M(p0, q0) be the manifold {(p, q) ∈ R2d |H(p, q) = H(p0, q0)}.
The solution of (1) is a dynamical system on M(p0, q0) with the
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invariant measure

dρ(p, q) =
dσ(p, q)

‖∇H(p, q)‖
2

,

where dσ(p, q) is the measure induced on M(p0, q0) by the Euclidean
measure of R2d, and ‖ · ‖

2
the Euclidean norm in R2d.

It is a common problem to estimate the space average of an ob-
servable A over the manifold M(p0, q0)∫

M(p0,q0)
A(p, q)dρ(q, p)∫

M(p0,q0)
dρ(q, p)

, (2)

through the limit of the time average

lim
T→∞

1
T

∫ T

0
A(p(t), q(t))dt, (3)

where (p(t), q(t)) is the solution of (1). Our wish is here to give a
sound ground to (and in some cases improve [4]) the numerical sim-
ulations of (3) commonly used in the field of molecular dynamics.

The conditions under which the two quantities (2) and (3) coin-
cide are not known in general and it is out of the scope of this paper
to investigate them. In contrast, in the case of an integrable system, a
well-known result of Arnold [2] states that, under a non-resonant con-
dition on the frequency vector associated with the initial condition,
the space average of a continuous function on the manifold

S(p0, q0) = {(p, q) ∈ Rd × Rd ;
I1(p, q) = I1(p0, q0), . . . , Id(p, q) = Id(p0, q0)}, (4)

where I1, . . . , Id are the d invariants of the problem (1), coincide with
the long-time average of this function. Moreover, if the frequencies
satisfy a diophantine condition, the convergence is of order T−1. Inte-
grable and near-integrable systems under some diophantine condition
will thus constitute a natural framework for the present work.

In the following, we consider a completely integrable Hamiltonian
system (1) in the sense of the Arnold-Liouville theorem [2,5]: There
exist d invariants I1 = H, I2, . . . , Id in involution (i.e. their Poisson
Bracket {Ii, Ij} = 0) such that their gradient are everywhere inde-
pendent, and the trajectories of the system remain bounded. Under
these conditions, there exist action-angles variables (a, θ) in a neigh-
borhood U of S(p0, q0). We have (p, q) = ψ(a, θ), where ψ is a sym-
plectic transformation

ψ : D × Td � (a, θ) �→ (p, q) ∈ U,
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with Td = (R/2πZ)d the standard d-dimensional flat torus, and D a
neighborhood in Rd of the point a0 such that (a0, θ0) = ψ−1(p0, q0).
By definition of action-angle variables, the Hamiltonian H(p, q) of
(1) writes H(p, q) = K(a) in the coordinates (a, θ), and thus the
dynamics reads {

ȧ(t) = 0,
θ̇(t) = ω(a(t)),

(5)

where ω = ∂K/∂a is the frequency vector associated with the prob-
lem. The solution of this system for initial data (a0, θ0) simply writes
a(t) = a0 and θ(t) = ω(a0)t+ θ0.

For fixed (a0, θ0) = ψ(p0, q0), the image of S(p0, q0) by ψ−1 is
the torus {a0} × Td. On this torus, the measure dθ is invariant by
the flow of (5). Considering the pull-back of this measure by the
transformation ψ, we thus get a measure dµ(p, q) on S(p0, q0) which
is invariant by the flow of (1). For any function A(p, q) defined on
S(p0, q0) we define the space average:

〈A〉 :=

∫
S(p0,q0)

A(p, q)dµ(p, q)∫
S(p0,q0)

dµ(p, q)
=

1
(2π)d

∫
Td

A ◦ ψ(a0, θ)dθ (6)

For a fixed time T , the time average is defined as

〈A〉(T ) :=
1
T

∫ T

0
A(p(t), q(t))dt. (7)

In a first step, we will investigate the extent to which the conver-
gence of the time average (7) toward the space average (6) can be
accelerated through the use of weighted integrals of the form

〈A〉ϕ(T ) :=

∫ T
0 ϕ

(
t
T

)
A(p(t), q(t))dt∫ T

0 ϕ
(

t
T

)
dt

, (8)

where ϕ is a smooth function with compact support in [0, 1] (later
on, we will refer to ϕ as the filter function). In a second step, we
will consider the time-discretization of (8), i.e. the discretization of
both the integral through Riemann sums and the trajectory with
symplectic integrators. In particular, we will derive estimates of the
convergence with respect to T and the size h of the time-grid, which
are in perfect agreement with the numerical experiments conducted
in [4].
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2 The complete analysis of the d-dimensional harmonic
oscillator

In this section, we illustrate the main ideas of the paper in the rather
simple situation of the d-dimensional harmonic oscillator, where most
of the analysis can be conducted in an explicit way. Hereafter, H(p, q)
is thus the Hamiltonian function from Rd × Rd to R defined as

H(p, q) =
1
2

d∑
k=1

(ω2
kq

2
k + p2

k), (9)

and the corresponding dynamics is governed by the equations{
ṗk = −ω2

kqk
q̇k = pk

, k = 1, . . . , d.

The exact trajectory lies on the d-dimensional manifold S(p0, q0) de-
fined by (4) where the Ik(p, q) = 1

2

(
ω2

kq
2
k + p2

k

)
are the conserved

energies of the d oscillators. Hence, denoting r0k =
√

2Ik(p0, q0),
k = 1, . . . , d and z = (ω1q1 + ip1, . . . , ωdqd + ipd) the aggregated
vector of rescaled positions and momenta, the exact solution is of the
form

z(t) =
(
r01e

i(ω1t+φ1), . . . , r0de
i(ωdt+φd)

)
, (10)

where φ = (φ1, . . . , φd) depends on the initial conditions (p0, q0). As
a consequence, the space average (6) we wish to approximate may be
written here as:

〈A〉 =
1

(2π)d

∫
Td

(A ◦Θ)(r0, θ)dθ,

where Θ(r0, θ) = ( r0
1

ω1
cos(θ1), r01 sin(θ1), . . . ,

r0
d

ωd
cos(θd), r0d sin(θd)). As

for the time-average (7), it reads:

〈A〉(T ) =
1
T

∫ T

0
(A ◦Θ)(r0, ωt+ φ)dt.

In order to estimate the rate of convergence of (7) toward (6), we
expand A ◦ Θ in Fourier series (the conditions under which this ex-
pansion is valid will be detailed in the following sections):

(A ◦Θ)(r0, θ) =
∑
α∈Zd

Â ◦Θ(r0, α)eiα·θ ,
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where α · θ = α1 θ1 + . . . + αd θd and with:

Â ◦Θ(r0, α) =
1

(2π)d

∫
Td

(A ◦Θ)(r0, θ)e−iα·θdθ.

In particular, Â ◦Θ(r0, 0) = 〈A〉. Hence, we have:

|〈A〉 − 〈A〉(T )| ≤ 1
T

∑
α∈Zd, α�=0

2|Â ◦Θ(r0, α)|
|α · ω| . (11)

This infinite sum can then be bounded if we assume, on one hand,
that the vector of frequencies ω = (ω1, . . . , ωd) satisfies Siegel’s dio-
phantine condition

∃ γ, ν > 0, ∀α ∈ Zd, |α · ω| > γ|α|−ν , (12)

and on the other hand, that the Fourier coefficients decay sufficiently
rapidly. This relatively poor rate of convergence (1/T ) may now be
considerably improved by considering iterated averages of the form:

〈A〉k(T ) :=
1
T k

∫ T

0
. . .

∫ T

0
(A ◦Θ)(r0, (t1 + . . .+ tk)ω + φ)dt1 . . . dtk.

(13)
Using Fourier expansions as in (11), we indeed obtain in a very similar
way the following error estimate for (13):

|〈A〉 − 〈A〉k(T )| ≤ 1
T k

∑
α∈Zd, α�=0

2|Â ◦Θ(r0, α)|
|α · ω|k , (14)

and under slightly more stringent bounds on the |Â ◦Θ(r0, α)|, (14)
leads to a rate of convergence of 1/T k. Inspired by these computa-
tions, and noticing that (13) is a special case of (8) (more precisely
〈A〉k(T/k) = 〈A〉ϕ(T ) with ϕ ≡ χ∗k

[0,1/k], the kth-convolution of the
characteristic function of [0, 1/k]), we will consider in the sequel more
general filter-functions and demonstrate that the rate of convergence
can be further improved.

Now, a natural question that arises is whether the techniques ex-
posed above are amenable to numerical computations, when both
the trajectory z(t) and the integrals (7) or (13) are approximated
using numerical schemes. In the case of the harmonic oscillator, it
turns out that the numerical trajectory zh(tn) (i.e. the approxima-
tion at time tn = nh of z(tn)), as soon as the underlying scheme is
a symplectic (or symmetric) Runge-Kutta method [3], may be inter-
preted as the exact solution of a harmonic oscillator with modified
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frequencies ωh
k = ωkΘ(hωk). In particular, the numerical trajectory

lies on the same manifold S(q0, p0) as the exact one. For the velocity-
Verlet scheme, the numerical trajectory would lie on an invariant
torus O(h2)-close to S(q0, p0). This situation is more typical of what
happens for general integrable Hamiltonian systems. In our situation,
we have:

zh(tn) =
(
r01e

i(ω1Θ(hω1)tn+φ1), . . . , r0de
i(ωdΘ(hωd)tn+φd)

)
,

where Θ is a smooth function defined by

Θ(y) =
1
y

arctan
(

R(iy) −R(−iy)
i(R(iy) +R(−iy))

)
,

R(z) being the stability function of the method (in fact, Θ is real-
analytic as soon as R has no pole on the imaginary axis and satisfies
Θ(y) = 1 + O(yr) where r denotes the order of convergence of the
Runge-Kutta method). As a consequence, the Riemann sum associ-
ated with (13) (note that (15) with k = 1 corresponds to (7)) reads,
for T = nh, n ∈ N,

〈A〉Rie
k (T ) :=

1
nk

n−1∑
j1=0

. . .

n−1∑
jk=0

(A ◦Θ)(r0, (j1 + . . .+ jk)hω Θ(ωh) + φ),

(15)
where ωΘ(ωh) = (ω1Θ(ω1h), . . . , ωdΘ(ωdh)), so that using once again
Fourier expansions, we get straightforwardly:

|〈A〉 − 〈A〉Rie
k (T )| ≤ 1

nk

∑
α∈Zd, α�=0

|Â ◦Θ(r0, α)|
∣∣∣∣∣einhα·(ωΘ(ωh)) − 1
eihα·(ωΘ(ωh)) − 1

∣∣∣∣∣
k

.

(16)
Bounding the above infinite sum now requires to bound the term
|einx − 1|/|eix − 1| for x of the form x = hα · (ωΘ(ωh)). To this aim,
we use the following two inequalities

∃C0, x0 > 0, ∀n ∈ N, ∀ |x| ≤ x0,

∣∣∣∣einx − 1
eix − 1

∣∣∣∣ ≤ C0
1
|x| , (17)

∀n ∈ N, ∀x ∈ R,

∣∣∣∣einx − 1
eix − 1

∣∣∣∣ ≤ n, (18)

according to whether |x| is small (17) or not (18). The bound we are
looking for is now based on the following lemma:
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Lemma 1 Assume that the vector of frequencies ω satisfies the dio-
phantine condition (12) and the Runge-Kutta method is of order r.
Then, there exist strictly positive constants c and h0 such that

∀h ≤ h0 ∀α ∈ Zd, |α · (ωΘ(ωh))| ≤ γ

2
|α|−ν =⇒ |α| ≥ c h−

r
ν+1 .

Proof. Assume that there exists α ∈ Zd such that

|α · (ωΘ(ωh))| ≤ γ

2
|α|−ν .

Then, from Θ(hωk) = 1 + O(|hωk|r), we obtain for h sufficiently
small:

γ

2
|α|−ν ≥ |ω · α| − C|α| |hω|r,

≥ γ|α|−ν − C|α| |hω|r,
where C is the strictly positive constant contained in the term O
(note that if Θ ≡ 1, although the constant C is zero, there is no α
violating condition (12) and the lemma remains valid). Hence,

|α| ≥
(

γ

2C|ω|r h
−r

) 1
ν+1

.

But for |α| ≤ ch−r/(ν+1) we have |hα · ωΘ(ωh)| ≤ c̃h1−r/(ν+1) for a
constant c̃ independent of h. Hence if ν > r−1, then for small enough
h we have |hα · ωΘ(ωh)| ≤ x0 defined in (17). Now we can split the
sum in (16) into∑

1≤|α|≤ch
− r

ν+1

|Â ◦Θ(r0, α)| Ck
0

nkhk|α · (ωΘ(ωh))|k

+
∑

|α|≥ch
− r

ν+1

|Â ◦Θ(r0, α)|. (19)

Using the estimate of Lemma 1 for the first term and assuming that
the Fourier coefficients decay sufficiently rapidly, it then follows that

|〈A〉 − 〈A〉Rie
k (T )| = O

(
1
T k

+ hr

)
. (20)

This seems to be the best possible estimate attainable, since the
term in 1/T k is the intrinsic error component of the iterated-average,
whereas the term hr inevitably comes into play when using a numer-
ical scheme of order r. It is worth noticing that there is no secular
component in the numerical error hr owing to the symplecticity
of the time-integrator.
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Our aim in next sections is now to prove estimates that generalize
(20) in the following two directions:
1. for filtered-averages with general filter functions;
2. for integrable Hamiltonian system with bounded trajectories.

3 Approximation of the average: The continuous case

The function ϕ considered in Formula (8) is somewhat arbitrary. The
most commonly used function in practice is ϕ ≡ 1, which corresponds
to the usual time-average as defined in (7), for which convergence
when T tends to infinity is rather slow (with rate 1/T ). For the
harmonic oscillator, we have seen that the use of iterated-averages
(which can be seen as a special case of filtered-averages) allows for a
significant acceleration of the convergence. Theorem 1 below shows
that with increasingly smooth functions ϕ satisfying appropriate zero
boundary conditions, it is possible to improve the rate of convergence
to 1/T k for any integer k > 1, not only for the harmonic oscillator,
but for a general integrable Hamiltonian system. It is then natural to
investigate what happens in the limit when k tends to infinity. To this
aim, we shall consider, as an example of infinitely differentiable func-
tions ϕ with compact support [0, 1] that satisfy ϕ(k)(0) = ϕ(k)(1) = 0
for any k ∈ N, the function ξ defined below:

ξ : [0, 1] −→ [0,+∞[

x �−→ exp
(
− 1
x(1 − x)

)
. (21)

In the sequel, we shall assume that the estimates

‖ξ(k)‖
L1 :=

∫ 1

0
|ξ(k)(x)|dx ≤ µβkkδk, (22)

‖ξ(k)‖
L∞ := sup

x∈[0,1]
|ξ(k)(x)| ≤ µβkkδk, (23)

hold for some strictly positive constants µ, β and δ. The existence of
such constants will be shown in Lemma 3.

Theorem 1 Consider the completely integrable system (1), and as-
sume that the diophantine condition (12) is satisfied for ω(a0) defined
in (5) by the initial condition (q0, p0), with (q0, p0) = ψ(a0, θ0). Con-
sider a function A ∈ C0(Rd,Rd) (the observable). Recall that to this
function we associate the space-average 〈A〉, the time-average 〈A〉(T )
and the filtered time-average 〈A〉ϕ(T ) respectively defined in (6), (7)
and (8), where ϕ ∈ C0(0, 1) is a filter function (assumed to be posi-
tive). Then we have the following convergence estimates:
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1. If A is real analytic on Rd × Rd, then there exists a constant c
depending on A, d, ν and γ such that

|〈A〉(T ) − 〈A〉| ≤ c

T
.

2. If ϕ is Ck+1(0, 1) with ϕ(j)(0) = ϕ(j)(1) = 0 for all j = 0, . . . , k−1,
and if A is real analytic on Rd × Rd, then there exist positive
constants c0 and R depending on A, ϕ, d, ν and γ, such that
(here ν ∈ N, though a similar formula holds for general ν using
the Γ function)

|〈A〉ϕ(T ) − 〈A〉| ≤ c0R
k+1(ν(k + 1) + 1)!

T k+1

×(|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖
L1)

‖ϕ‖
L1

.

3. If ξ defined in (21) is taken as the filter function and if A is real
analytic on Rd×Rd, then there exist strictly positive constants c1,
κ and ρ depending on A, d, ν and γ, such that

|〈A〉ξ(T ) − 〈A〉| ≤ c1e
−κT 1/ρ

.

Proof. Statement 1. is proved in Arnold [2]. It may also be obtained
as a special case of 2. with ϕ ≡ 1. Now, if A is real-analytic on Rd×Rd,
then so is A ◦ψ on the d-dimensional torus Td and we can expand it
as a Fourier series

(A ◦ ψ)(a0, α) =
∑

α∈Zd

Â ◦ ψ(a0, α)eiα · θ,

with exponentially decaying coefficients:

∀α ∈ Zd, |Â ◦ ψ(a0, α)| ≤ Ce−
|α|
C ,

where C is a strictly positive real constant. The integral over Td of
the first coefficient of the series (α = 0) is straightforwardly identified
as the space-average

Â ◦ ψ(a0, 0) =
1

(2π)d

∫
Td

(A ◦ ψ)(a0, θ)dθ.

Writing
∫ T
0 ϕ

(
t
T

)
dt = T‖ϕ‖

L1 := χ−1, the error can be computed as
follows:

〈A〉ϕ(T ) − 〈A〉 = χ
∑

α∈Zd, α�=0

Â ◦ ψ(a0, α)
∫ T

0
ϕ
( t
T

)
eiα·(θ0+tω(a0))dt(24)

= χ
∑

α∈Zd, α�=0

Â ◦ ψ(a0, α)ei(α·θ0)

∫ T

0
ϕ
( t
T

)
eit(α·ω(a0))dt.
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Now, the running term of the series can be integrated by parts∫ T

0
ϕ
( t
T

)
eit(α·ω(a0))dt =

[
ϕ
(

t
T

)
eit(α·ω(a0))

i(α · ω(a0))

]T

0

− 1
T i(α · ω(a0))

∫ T

0
ϕ′
( t
T

)
eit(α·ω(a0))dt.

Integrating repeatedly by parts, this last term writes

eiT (α·ω(a0))ϕ(1) − ϕ(0)
i(α · ω(a0))

− 1
T i(α · ω(a0))

∫ T

0
ϕ′
( t
T

)
eit(α·ω(a0))dt

= . . . =
(−1)k

(T i(α · ω(a0)))k

∫ T

0
ϕ(k)

( t
T

)
eit(α·ω(a0))dt,

and eventually,∫ T

0
ϕ
( t
T

)
eit(α·ω(a0))dt =

(−1)k

(T i(α · ω(a0)))k+1
T

[
ϕ(k)

( t
T

)
eit(α·ω(a0))

]T

0

− (−1)k

(T i(α · ω(a0)))
k+1

∫ T

0
ϕ(k+1)

( t
T

)
eit(α·ω(a0))dt.

Inserting this expression in equation (24) and taking the moduli of
both sides, we finally get the bound

|〈A〉ϕ(T ) − 〈A〉| ≤ (|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖
L1)

T k+1‖ϕ‖
L1

×
∑

α∈Zd, α�=0

|Â ◦ ψ(a0, α)|
|α · ω(a0)|k+1

It remains to justify the convergence of the series considered above
(and to bound its limit). This is a consequence of the diophantine
condition |α · ω(a0)| ≤ γ

|α|ν , which gives here∑
α∈Zd, α�=0

|Â ◦ ψ(a0, α)|
|α · ω(a0)|k+1

≤
∑

α∈Zd, α�=0

Ce−
|α|
C

( |α|
γ1/ν

)ν(k+1)

,

≤ Cην(k+1)
∑

α∈Zd, α�=0

e−
|α|
C

( |α|
ηγ1/ν

)ν(k+1)

.
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We now take η = 2C
γ1/ν so that 1/(γ1/νη) = 1/(2C) and we obtain:∑

α∈Zd, α�=0

|Â ◦ ψ(a0, α)|
|α · ω(a0))|k+1

≤ Cην(k+1)(ν(k + 1) + 1)!
∑
α∈Zd

e−
|α|
2C ,

≤ C(2C)ν(k+1)(8C)d

γk+1
(ν(k + 1) + 1)!,

where we have used xn ≤ ex(n + 1)!. Statement 3. is a consequence
of Statement 2. with a suitably chosen k: since ξ(k)(0) = ξ(k)(1) = 0
for any k ∈ N, we have indeed that for all k ≥ 0:

|〈A〉ξ(T ) − 〈A〉| ≤ c1

(r1
T

)k+1
(k + 1)δ(k+1)(ν(k + 1) + 1)!,

with c1 = c0µ and r1 = Rβ, µ and β being the constants of (22).
Now let ν̃ be the nearest integer to ν toward infinity. This gives:

|〈A〉ξ(T ) − 〈A〉| ≤ c1

(
r1ν̃

ν̃

T

)k+1

(k + 1)(δ+ν̃)(k+1),

≤ c1e
f(k+1),

where f(�) = �[log(r1ν̃ ν̃/T ) + (δ + ν̃) log(�)]. The minimum of f for

positive � is attained for � = 1
e

(
T

r1ν̃ν̃

)1/(ν̃+δ)
and is worth

fmin = −(δ + ν̃)
e

(
T

r1ν̃ ν̃

) 1
(δ+ν̃)

.

Remark 1 In the proof of Theorem 1, one gets c0 = C(8C)d, R =
(2C)ν/γ, c1 = µc0, κ = −(δ + ν̃)e−1ν̃−

ν̃
ν̃+δ and ρ = (δ + ν̃), where

ν̃ = ν+1. The values of these constants rely heavily on the sharpness
of estimates (22) and it is likely that they might be improved. Nev-
ertheless, the convergence behavior would be essentially the same for
large dimensions: even if ξ was analytic, one would get ρ = 1+ν̃. More
noticeably, since almost all frequencies ω(a0) satisfy the diophantine
condition for some γ as soon as ν > d−1, we may think of ν̃ as being
d and thus δ as being approximately 1 + d. The rate of convergence
thus directly depends on the dimension of the phase-space.

4 Semi-discrete averages

We now wish to investigate whether the estimates of Theorem 1 per-
sist when one replaces the integrals by Riemann sums. It turns out,
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quite remarkably, that its proof can be almost readily adapted, if one
assumes the additional non-resonance condition [5], i.e. if, given a
step-size h, there exist positive constants γ∗ and ν∗ such that for all
α ∈ Zd, the following estimate holds:∣∣∣∣∣1 − eiα · hω(a0)

h

∣∣∣∣∣ ≥ γ∗|α|−ν∗
. (25)

Though this condition might appear very restrictive at first glance,
the probability of picking an h ∈ [0, h0] violating (25) goes to zero
with h0, whenever the diophantine condition is satisfied, γ∗ ≤ γ and
ν∗ > ν + d + 1. For a precise statement of this result, we refer to
Lemma 6.3. in Chapter X of [5] (see also [10]).

Theorem 2 Assume that the conditions of Theorem 1 and condition
(25) are satisfied and let T = nh > 0 for a given integer n ≥ 2. Let
us further define the Riemann sums corresponding to the continuous
time-average

〈A〉Rie(T ) :=
1
n

n−1∑
j=0

A(q(jh), p(jh)),

and the filtered time-average

〈A〉Rie
ϕ (T ) :=

∑n−1
j=0 ϕ( j

n)A(q(jh), p(jh))∑n−1
j=0 ϕ( j

n )
,

where ϕ ∈ C0(0, 1) is the filter function. Then we have the following
convergence estimates:

1. If A is real analytic on Rd × Rd, then there exists a constant c∗
depending on A, d, ν∗ and γ∗ such that∣∣〈A〉Rie(T ) − 〈A〉∣∣ ≤ c∗

T
.

2. If ϕ is Ck+1(0, 1) with ϕ(j)(0) = ϕ(j)(1) = 0 for all j = 0, . . . , k−1,
and if A is real analytic on Rd×Rd, then there exist strictly positive
constants c∗0 and R∗ depending on A, ϕ, d, ν∗ and γ∗, such that

∣∣〈A〉Rie
ϕ (T ) − 〈A〉∣∣ ≤ c∗0(R

∗)k+1kk(ν∗(k + 1) + 1)!
T k+1

(|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖
L∞)

‖ϕ‖
L1

.
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3. If ξ is taken as the filter function and if A is real analytic on
Rd × Rd, then there exist strictly positive constants c∗1, κ

∗ and ρ∗
depending on A, d, ν∗ and γ∗, such that∣∣〈A〉Rie

ξ (T ) − 〈A〉∣∣ ≤ c∗1e
−κ∗T 1/ρ∗

.

Remark 2 In the proof of Theorem 2, one gets c∗0 = 2εe2C(8C)d,

R∗ = (2C)ν
∗
/γ∗, c∗1 = µc∗0, κ∗ = −(δ + 1 + ν̃∗)e−1(ν̃∗)−

ν̃∗
ν̃∗+δ+1 and

ρ∗ = (δ + 1 + ν̃∗), where ν̃∗ = ν∗ + 1 and where

ε = ‖ϕ‖
L1 sup

n≥2

n−1∑
j=0

(1/n)ϕ(j/n)

−1

.

It is worth noticing that these constants do not depend on the step-
size h.

Proof. Statement 1. is a special case of Statement 2. with ϕ ≡
1, so that we focus on the error estimate for the filtered average.
Expanding (A ◦ ψ) in Fourier series as in Theorem 1 and denoting
Sn =

∑n−1
j=0 (1/n)ϕ(j/n), we have:

〈A〉Rie
ϕ (T ) − 〈A〉 =

1
nSn

∑
α∈Zd, α�=0

Â ◦ ψ(a0, α)ei(α · θ0)

×
n−1∑
j=0

ϕ
( j
n

)
eiα · jhω(a0). (26)

We use the following result, whose proof is given in Appendix:

Lemma 2 For a given filter-function ϕ in Ck+1(0, 1) with ϕ(j)(0) =
ϕ(j)(1) = 0 for all j = 0, . . . , k − 1, and a given integer n ≥ k + 2,
let ϕj be the real numbers defined by ϕj = ϕ(j/n) for j = 0, . . . , n. If
b �= 1 is a complex number of modulus 1, then we have the estimate∣∣∣∣∣∣
∑

0≤j≤n−1

ϕjb
j

∣∣∣∣∣∣ ≤ 2e2kk

nk|1 − b|k+1

(
|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖

L∞

)
Using this lemma with b = eiα·hω(a0), we obtain:∣∣〈A〉Rie

ϕ (T ) − 〈A〉∣∣ ≤ 2e2kk

nk+1Sn

(
|ϕ(k)(0)| + |ϕ(k)(1)| + ‖ϕ(k+1)‖

L∞

)
×

∑
α∈Zd, α�=0

Ce−|α|/C

|1 − eiα ·hω(a0)|k+1
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We now use condition (25) and obtain:∑
α∈Zd, α�=0

Ce−|α|/C

|1 − eiα · hω(a0)|k+1
≤ C

hk+1

∑
α∈Zd, α�=0

e−|α|/C |α|ν∗(k+1)

(γ∗)k+1
,

≤ C(2C)ν
∗(k+1)(8C)d

hk+1(γ∗)k+1
(ν∗(k + 1) + 1)!.

This proves Statement 2. Statement 3. can then be obtained as in
Theorem 1.

5 Fully discrete averages

We now consider a symplectic discretization of the exact trajectory
of (1). Two types of results exist, according to whether we use results
on invariant tori of symplectic integrators [6,5] or ultraviolet cut-
off theory [1,5]. Given that the strong non-resonance condition (25)
already appears for semi-discrete averages, we will only detail results
using KAM tori in the spirit of [5,10].

In action-angles variables, the Hamiltonian H(p, q) = K(a) de-
pends only on a. Without loss of generality, we may assume that
a0 = 0, so that we can write

K(a) = c+ ω · a+
1
2
aTM(a)a,

where ω = ω(0). We assume that M is non degenerate in the sense
that

∃α > 0, ‖M(0)v‖ ≥ α‖v‖ for v ∈ Rd, (27)

so that Kolmogorov-Arnold-Moser theory can be applied (see [6,7,1,
8]).

We consider a symplectic integrator Φh of order r applied to the
problem (1) with a stepsize h. The numerical solution is written
(pn, qn) ∈ Rd for n ≥ 0. For a function A defined in a neighbor-
hood of S(p0, q0) and for T = nh, we define the filtered numerical
time-average

〈A〉Rie
ϕ,h(T ) :=

∑n−1
j=0 ϕ( j

n )A(qj , pj)∑n−1
j=0 ϕ( j

n)
. (28)

Under these conditions, we can apply Theorems 6.1 and 6.2 of [5] (see
also [9,10]): For small enough h, there exists a symplectic analytic
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transformation ψh : (b, ϕ) �→ (a, θ), O(hr)-close to the identity, such
that ψ−1

h ◦ Φh ◦ ψh : (b, ϕ) �→ (̂b, ϕ̂) is given by

b̂ = b− h
∂Sh

∂ϕ̂
(b, ϕ̂) and ϕ̂ = ϕ+ h

∂Sh

∂b
(b, ϕ̂)

with
Sh(b, ϕ̂) = ch + ω · b+

1
2
bTMh(b, ϕ̂)b,

where ch ∈ R and Mh is analytic and bounded with respect to h. In
coordinates (b, ϕ), we thus have

ψ−1
h ◦ Φh ◦ ψh : (b, ϕ) �→ (b, ϕ + hω) + O(h‖b‖) (29)

Based on this transformation, we have the following result:

Theorem 3 Consider a symplectic integrator Φh of order r and of
stepsize h applied to (1) under the conditions of Theorem 1. Assume
that (27) holds, and suppose that ω and h satisfy the conditions (12)
and (25). Then we have the following estimates:

1. If ϕ is Ck+1 with ϕ(j)(0) = ϕ(j)(1) = 0 for all j = 0, . . . , k − 1
and if A is real analytic on Rd, then there exist constants C and
h0 depending on A, γ∗, ν∗, d, k, ϕ, and there exist (p̃0, q̃0) in an
hr-neighborhood of (p0, q0) such that if the numerical trajectory
starts with (p̃0, q̃0), then we have

∀h ≤ h0 ∀T = nh ≥ 0, |〈A〉Rie
ϕ,h(T ) − 〈A〉| ≤ C

(
1

T k+1
+ hr

)
(30)

2. If ξ is taken as the filter function, if A is real analytic, then there
exist constants C, h0, κ and ρ depending on A, γ∗, ν∗, d, k, and
there exist (p̃0, q̃0) in an hr-neighborhood of (p0, q0) such that if
the numerical trajectory starts with (p̃0, q̃0), then we have

∀h ≤ h0 ∀T = nh ≥ 0, |〈A〉Rie
ξ,h (T ) − 〈A〉| ≤ C

(
e−κT 1/ρ

+ hr
)

(31)

Proof. Using (29), we have for all n

ψ−1
h ◦ Φn

h ◦ ψh : (b, ϕ) �→ (b, ϕ+ nhω) + O(nh‖b‖)

Consider the points (bn, ϕn) = ψ−1
h ◦ ψ−1(pn, qn), and suppose that

the point (p0, q0) is such that b0 = 0. Then using the previous formula,
we have

∀n ≥ 0, bn = b0 = 0 and ϕn = ϕ0 + nhω.
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Now we have with Sn =
∑n−1

j=0 (1/n)ϕ(j/n),

〈A〉Rie
ϕ,h(T ) :=

1
nSn

n−1∑
j=0

ϕ(
j

n
)A ◦ ψ ◦ ψh(bj , ϕj),

and using the Fourier expansion of A ◦ ψ ◦ ψh,

〈A〉Rie
ϕ,h(T ) :=

1
nSn

∑
α∈Zd

̂A ◦ ψ ◦ ψh(0, α)eiα·ϕ0

n−1∑
j=0

ϕ(
j

n
)eiα·jhω.

As ψh is an analytic function O(hr)-close to the identity, we have

̂A ◦ ψ ◦ ψh(0, 0) = 〈A〉 + O(hr),

and the Fourier coefficients ̂A ◦ ψ ◦ ψh(0, α) decay exponentially with
respect to α, uniformly with respect to h. Thus the same proof as in
Theorem 2 shows the result.

Remark 3 For the iterated averages, as defined in Section 2:

〈A〉Rie
k,h(T ) :=

1
nk

n−1∑
j1=0

· · ·
n−1∑
jk=0

A(qJ , pJ), k ≥ 0, (32)

where J = j1 + · · · jk, we would get, using the result of Section X.4
in [5], and by similar computations as in (16) and (19),

|〈A〉Rie
k,h(T ) − 〈A〉| ≤ C

(
1
T k

+ hr

)
(33)

over exponentially long time-interval.

6 Remarks on the implementation and numerical
experiments

Though optimal with respect to the rate of convergence, the filter
function ξ does not seem to allow for the derivation of an error esti-
mate: Given that the values of the constant C in (31) is out of reach,
the value of n for which

Rϕ
n :=

∑n
j=0 ϕ(j/n)Aj

n‖ϕ‖
L1

becomes sufficiently close (up to user’s tolerance) to its limit as n goes
to infinity can not be determined in advance. An update formula for
Rϕ

n from n to n+1 thus appears of much use and this should guide the
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choice of ϕ. In order to get such a formula, we study the dependence
in T of

a(T ) =
∫ T

0
ϕ
( t
T

)
A(p(t), q(t))dt.

Differentiating with respect to T leads to

da(T )
dT

= ϕ(1)A(p(T ), q(T )) − 1
T

∫ T

0

t

T
ϕ′
( t
T

)
A(p(t), q(t))dt.(34)

To be of practical use, it is thus necessary that xϕ′(x) is of the form
αϕ(x) (where α is an arbitrary constant) so that (34) becomes an
ordinary differential equation for a(T ). The only admissible solutions
are thus monomials in x. We thus consider the following polynomial
filter functions

ϕp(x) = xp(1 − x)p, p ∈ N. (35)

Denoting for p and n in N the elementary Riemann sums

Sp
n =

n∑
j=0

( j
n

)p
Aj ,

it is easy to get the desired update formula

Sp
0 = 0 and Sp

n = An + (1 − 1/n)pSp
n−1, n ≥ 1.

Now, since

ϕp(x) =
p∑

k=0

(−1)k
(
p
k

)
xp+k and ‖ϕp‖L1 =

(p!)2

(2p+ 1)!

the approximation we seek for can be obtained as the linear combi-
nation

R
ϕp
n =

(2p + 1)!
n(p!)2

p∑
k=0

(−1)k
(
p
k

)
Sp+k

n .

We now consider the application of our method to the 3-dimensional
Kepler problem with Hamiltonian

H(p, q) = p2
1 + p2

2 + p2
3 −

1√
q21 + q22 + q23

.

Besides the Hamiltonian, this system has three other invariants, the
so-called angular momenta

L1 = q2p3 − q3p2, L2 = q1p3 − q3p1 and L3 = q2p1 − q1p2,
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Fig. 1. Error in the averages for p = 1, 3, 5 for the 3D-Kepler problem

and we shall denote L =
√
L2

1 + L2
2 + L2

3. Our goal is here to estimate
the average over the manifold

S = {(p, q) ∈ R6; L1(p, q) = L1(p0, q0), L2(p, q) = L2(p0, q0),
L3(p, q) = L3(p0, q0), H(p, q) = H(p0, q0)}

of the quantity r =
√
q21 + q22 + q23, for it is known to have the follow-

ing analytical expression

〈r〉 =
3 + 2H(p0, q0)L(p0, q0)2

4 |H(p0, q0)| .

For p0 = (0, 1.1, 0.5)T and q0 = (0.9, 0, 0)T this leads to 〈r〉 =
1.376630029154519.

To this aim, we consider the Verlet method as basic step and use
the 8th-order 15-stages composition of [11]. On Figure 1 are repre-
sented the errors |〈r〉ϕp(T ) − 〈r〉| in logarithmic scale for two differ-
ent step-sizes. On the left of the figure, the three curves all reach a
plateau corresponding to the incompressible h-error term. Refining
the step-size removes this plateau (or at least shifts it to the left, see
the right graphics). In both cases, the predicted rate of convergence
in 1/T p+1 is clearly observed (it corresponds to a slope of p + 1 for
ϕp).

Appendix: some technical results

In this appendix section, we collect a few technical results used in the
paper.
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Lemma 3 Let ξ be the function defined on [0, 1] by ξ(x) = e
− 1

x(1−x) .
There exist strictly positive constants µ ≤ 1, β ≤ (2

√
3 + 6)/e2 and

δ ≤ 3 such that the following estimates hold for all k ∈ N∗:

‖ξ(k)‖
L1 :=

∫ 1

0
|ξ(k)(x)|dx ≤ µβkkδk,

‖ξ(k)‖
L∞ = sup

x∈[0,1]
|ξ(k)(x)| ≤ µβkkδk.

Proof. Looking for an expression of ξ(k)(x) of the form

ξ(k)(x) =
Pk(x)

[Π(x)]2k
e
− 1

x(1−x) ,

where Π(x) = x(1 − x) and where Pk is a polynomial, we easily find
the recurrence relation:

P0 ≡ 1 and Pk+1 = Π ′ (1 − 2kΠ)Pk + P ′
k Π

2, k ≥ 0, (36)

We now look for bounds on balls Br of radius r > 0 and center
z = 1/2 + 0 i ∈ C. The bounds for Π and Π ′ read

sup
z∈Br

|Π(z)| ≤ (r2 + 1/4), sup
z∈Br

|Π ′(z)| ≤ r,

and the Cauchy integral representation of P ′
k leads to

∀ ε > 0, sup
z∈Br

|P ′
k(z)| ≤

r + ε

ε
sup

z∈Br+ε

|Pk(z)|.

Inserting these bounds in (36) we get:

sup
z∈Br

|Pk+1(z)| ≤ r[k(2r2 − 1/2) + 1] sup
z∈Br

|Pk(z)|

+(r2 + 1/4)2
r + ε

ε
sup

z∈Br+ε

|Pk(z)|,

≤
(
r[k(2r2 − 1/2) + 1] +

r + ε

ε
(r2 + 1/4)2

)
sup

z∈Br+ε

|Pk(z)|.

Denoting C(r, k, ε) := r[k(2r2 − 1/2)+ 1]+ r+ε
ε (r2 + 1/4)2, we finally

get

sup
z∈Br

|Pk+1(z)| ≤ C(r, k, ε) sup
z∈Br+ε

|Pk(z)|,

≤ C(r, k, ε)C(r + ε, k − 1, ε) sup
z∈Br+2ε

|Pk−1(z)|,

≤
(

k∏
i=0

C(r + iε, k − i, ε)

)
sup

z∈Br+(k+1)ε

|P0(z)|.
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A bound can then be obtained as follows: let ε0 = −1+
√

3
2 , ε = ε0

k and
r = 1/2. Then it is easy to check that for all 0 ≤ i ≤ k, we have

C(
1
2

+ i
ε0
k
, k − i,

ε0
k

) ≤
√

3
2

[k − i+ 1] +
1√

3 − 1
k + i+ 1,

≤
√

3 + 3
2

(k + 1),

and hence,(
k∏

i=0

C(r + iε, k − i, ε)

)
≤ [

√
3 + 3
2

(k + 1)]k+1.

Taking into account that P0 ≡ 1, we obtain

∀ k ∈ N∗, sup
z∈B1/2

|Pk(z)| ≤ [
√

3 + 3
2

k]k.

It remains to bound 1
[Π(x)]2k e

− 1
x(1−x) . Denoting Y = 1

x(1−x) , we have:

sup
x∈[0,1]

1
[Π(x)]2k

e
− 1

x(1−x) = sup
Y ≥4

e−Y Y 2k

≤ e−2k(2k)!

≤
(

4
e2

)k

k2k.

Proof of lemma 2. Let us denote by ∇ the operator of backward
divided differences defined by:

∀ j ∈ {0, . . . , n}, ∇0ϕj = ϕj ,

∀ j ∈ {m+ 1, . . . , n}, ∇m+1ϕj = ∇mϕj −∇mϕj−1.

The sum in the statement can then be written as
n−1∑
j=0

ϕjb
j =

n−1∑
j=1

bj
j∑

i=1

∇ϕi +
n−1∑
j=0

ϕ0b
j ,

=
1 − bn

1 − b
ϕ0 +

n−1∑
i=1

∇ϕi
bi − bn

1 − b
,

=
ϕ0 − bnϕn−1

1 − b
+

1
1 − b

n−1∑
j=1

(∇ϕj)bj = . . . ,

=
k∑

m=0

bm∇mϕm − bn∇mϕn−1

(1 − b)m+1
+

1
(1 − b)k+1

n−1∑
j=k+1

(∇k+1ϕj)bj .
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Denoting h = 1/n, it is well-known that, for all n − 1 ≤ j ≥ k + 1,
there exists ζj,k+1 ∈ [(j − k − 1)h, jh] ⊂ [0, 1] such that we have:

∇k+1ϕj = ϕ(k+1)(ζj,k+1)hk+1

Hence, we can bound the second term in (37) as follows:∣∣∣∣∣∣
n−1∑

j=k+1

(∇k+1ϕj)bj

∣∣∣∣∣∣ ≤ ‖ϕ(k+1)‖
L∞ hk+1(n− k − 2).

In order to estimate the first sum, we notice that, for 0 ≤ m ≤ k ≤
n− 2,

∇mϕm = ϕ(m)(ζm,m)hm

for some ζm,m ∈ [0,mh] and a Taylor-Lagrange expansion of ϕ(m)(ζm,m)
at order k + 1 −m gives

∇mϕm =
ζk
m,mh

k

(k −m)!
ϕ(k)(0) +

ζk+1
m,mh

k+1

(k + 1 −m)!
ϕ(k+1)(ηm)

for some ηm ∈ [0,mh] ⊂ [0, 1]. Hence, we have:∣∣∣∣∣
k∑

m=0

bm

(1 − b)m
∇mϕm

∣∣∣∣∣ ≤ |ϕ(k)(0)| kkhk

|1 − b|k+1

k∑
m=0

|1 − b|m
(m)!

+‖ϕ(k+1)‖
L∞

kkhk+1

|1 − b|
k∑

m=0

|1 − b|m
(m+ 1)!

,

≤ e2kkhk

|1 − b|k+1

(
|ϕ(k)(0)| + h‖ϕ(k+1)‖

L∞

)
.

Similarly we have:

∇mϕn−1 = ϕ(m)(ζn−1,m)hm

for some ζn−1,m ∈ [1 − (m+ 1)h, 1 − h] ⊂ [0, 1], so that∣∣∣∣∣
k∑

m=0

bn

(1 − b)m
∇mϕn−1

∣∣∣∣∣ ≤ 2e2kkhk

|1 − b|k+1

(
|ϕ(k)(1)| + h‖ϕ(k+1)‖L∞

)
.

Gathering the contributions of all terms then gives the result.
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