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Abstract

In this work, we derive the order conditions for fourth order time splitting schemes
in the case of the 1D Vlasov-Poisson system. Computations to obtain such conditions
are motivated by the specific Poisson structure of the Vlasov-Poisson system : this
structure is similar to Runge-Kutta-Nystrom systems. The obtained conditions are
proved to be the same as RKN conditions derived for ODE up to the fourth order.
Numerical results are performed and show the benefit of using high order splitting
schemes in that context.

1 Introduction

Frequently, the Vlasov equation is solved numerically with particles methods. Even if
they can reproduce realistic physical phenomena, they are well known to be noisy and
slowly convergent when more particles are considered in the simulation. To remedy
this, the so-called Eulerian method (which uses a grid of the phase space) has known
an important expansion these last decades. Indeed, due to the increase of the machines
performance, the simulation of charged particles by using Vlasov equation can be per-
formed in realistic configurations. However, these simulations are still computationally
very expensive in high dimensions and a lot has to be done at a more theoritical level
to make simulations faster. For example, the use of high order methods is classical
when one speaks about space or velocity discretization. However, for the simulation of
Vlasov-Poisson systems, the use of high order methods in time is not well developed;
generally, only the classical Strang splitting is used and analyzed; see however pioneer-
ing works of [15, 10] following [16] or the recent work of [13] in the linear case. We
mention also the work [9], which tells us that that the increase of order of discretization
in space should be followed with an increase of order in time.
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On the other side, a literature exists around the construction of high order methods
for ODE (see [3, 2, 8, 14]). The main goal of this work is to construct high order
splitting schemes for the nonlinear Vlasov-Poisson PDE system by the light of these
recent references.

We consider here the 1D Vlasov-Poisson system satisfied by the distribution func-
tion f(t,z,v) which depends on the time ¢ > 0, the spatial direction = € [0, L] and
the velocity v € R. We assume that the smooth initial data fo(z,v) := f(0,z,v) is
compactly supported in v, L-periodic in z, and satisfies the relation

;/R/OL fo(e, v)dadv = 1. (1.1)

The Vlasov-Poisson equation is then written
atf+vaxf+E[f]avf =0, (1'2)

where the electric field is given from the solution f through the formula

Blf](x) = ;" [ [ sty - 1] -/ " K(e) ( [ v wau - 1) dy,  (13)

where
K(:v,y)z%, if0<y <, K(:L",y):%—l, ifer<y<lL,

that is 9, ! is the inverse of the derivative operator acting on L-periodic functions with
zero average.

The equation (1.2) is endowed with a Poisson structure that we describe precisely
in Section 2. The corresponding Hamiltonian energy is given by the functional

= i " 1)2 x,v)drav i " x 2 i
T =57 [ [ ot 57 [ (BA@)% »
= T(f] + U[]

which is preserved along the solution of (1.2). The presence of Casimirs in the Poisson
structure ensures the following preservation laws for all times ¢ > 0 and all £ € N:

Lt k 1 L i
L/o /Rﬂt,x,v) dadv = L/o /Rfo(x,v) dzdv. (1.5)

Note that for k = 1 this ensures - with the help of (1.1) - the well-posedness of (1.3)
for all times.

The splitting methods we consider in this work are based on the decomposition
H =T + U of the Hamiltonian (1.4). As we will see below the Hamiltonian equations
associated with T" and U are simply the equations

Oif +vduf =0 and 8,f + E[f]0uf =0 (1.6)



respectively. Both these equations can be solved explicitely using the characteristics
formula. For a given initial condition fy, the solution of the first one is given by
f(t,z,v) = fo(x — tv,v) and the second by the relation f(¢,z,v) = fo(z,v — tE[fo])
after noticing that E[fp] is a constant of motion in the evolution of the Hamiltonian
system associated with U.

Hence we are naturally led to study the following class of methods: For a given
s € N*, coefficients a,, p = 0,...,2s, and a time step At > 0, we define the splitting
scheme with 2s + 1 stages by the relations g1 (z,v) = fo(z — apAtv,v), and

g2i(x,v) = goj_1(x,v — agj_1E[gej—1](x)Al), )
1.
g2j+1(w,v) = goj(x — agjv At,v),

for j =1,...,2s. The quantity gss+1(z,v) should be an approximation of f(At,x,v).

As composition of exact flows of Hamiltonians 7" and U, such schemes are (infinite
dimensional) Poisson integrators in the sense of [8, Chapter VII]. In particular they
preserve the Casimirs for all times. Note that in this work, we do not address the
delicate question of space approximation and focus on time discretization effects (see
[1, 4, 11]).

As long as the finite dimensional case is concerned, many works exist concerning
the analysis of order conditions for splitting methods (see in particular [3, 8, 2] and the
references therein). In this setting, let us recall that for ordinary differential systems
of the form

y(t) = faly(®) + f(y(1), y(0) =yo € R, (1.8)

with fa, fg : R" — R", then denoting by £4 and Lp the Lie operators associated
with these vector fields, a splitting method of order d is a composition of the form

2s+1
H exp(ciAtL ) exp(diAtLy) = exp(AtLayp) + O((A)THY),
i=1

with appropriate coefficients ¢;, d;. Here, exp(tL44p) is meant as the exact flow of the
ODE system (1.8) associated with the vector field f4 + f5.
In the particular case where f4 and fp satisfy the relation

[[[£a, LB], LB], LB] =0, (1.9)

where [-, -] denotes the Lie bracket of two operators, then the algebraic order condi-
tions on the coefficients ¢; and d; can be simplified to a large extent, and we speak
about Runge Kutta Nystrom (RKN) methods (see [2] for a review). A particular case
of importance concerns second order systems of the form §j(t) = —VP(y(t)) for which
the condition (1.9) can be easily recast in terms of (finite dimensional) Poisson bracket
between the kinetic and potential energies.

Concerning now the Vlasov-Poisson case, we will see in Section 2 that the func-
tionals 7" and U in the decomposition (1.4) satisfy the following formal RKN type
relation

{{1.U};, U}, U}y =0, (1.10)
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where {-,-}; is the Poisson bracket associated with the infinite dimensional Poisson
structure. In fact the Vlasov-Poisson system even satisfies the stronger property

{1, U}y, U}y =20U.

This means that we can hope to have even simpler algebraic order conditions as those
of RKN type for the specific Vlasov-Poisson system. However, as we will see below,
this has no impact on the conditions up to the order 4 included.

To tackle the difficulties inherent to the infinite dimensional nature of the equation,
we choose to work at the level of the characteristics representation of (1.2): Let us recall
that if (X (¢;h,z,v),V (¢;h,x,v)) denotes the solution of the characteristics at time ¢
whose values at time h were (x,v), we have

t
X (t;h,z,v) :x+/ V(o;h,z,v)do, (1.11)
h
t
V(t;h,z,v) :v+/ E(o,X(o;h,x,v))do, (1.12)
h

with the electric field

L
E(t,z) = /0 K(z,y) (/R fo(X(0;t,y,w), V(0;t,y,w))dw — 1> dy, (1.13)

where fy is the initial condition. The solution of the Vlasov-Poisson equation is given
by
f(t7 z, U) = fO(X(Oa ta z, U)v V(Ov ta z, U))

Now associated with the splitting scheme (1.7) we define the forward numerical char-
acteristics through the relation

925+1(Xs (A0, z,0), V(AL 0,2, v)) = f(At, X (AL 0, 2,v), V(AL 0,2,v)).  (1.14)

The strategy we use is then to derive the conditions satisfied by the coefficients a;, j =
0,...,2s, so that the forward numerical characteristics are fourth order approximations
of the (continuous) characteristics, that is

X (A0, z,v) = X (AL 0, z,v) + O(ALD), Vi(At;0,z,0) = V(AL 0,z,0) + O(ALD).

We assume here enough regularity on the initial data fp so that the computation
of the time derivatives can be done. Using this characteristics representation, we can
directly derive the algebraic order conditions without manipulating the delicate infinite
dimensional Lie operators associated with T" and U and acting on Banach spaces. By
elementary computations, we are thus able to prove that the order conditions are the
same than RKN methods, for the order < 4. This strategy could also be applied to
develop and analyse other schemes following [12],[13].

Concerning the literature, a fourth order splitting scheme (the so called triple jump
scheme) has already been used for Vlasov simulations in [15, 10], following [16]. In
[15], even higher order schemes (Yoshida type schemes [16] which are of arbitrarily
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even order) have been tested, and the conservation of the total energy has been shown
(numerically) to be of order O(At?), with d the order of the scheme. See also the
recent work [12] where another similar scheme has been developed. A fourth order
scheme has also been introduced recently and analyzed in [13] for the linearized Vlasov
equation. To our knowledge a systematic analysis of fourth order splitting schemes of
the form (1.7) has never been tackled for the Vlasov-Poisson system.

In Section 2, we introduce the Poisson structure and prove the RKN characterization,
which is formally valid for schemes of arbitrary order. Section 3 is intended to the
statement of the results for the elementary computations in the case of the order < 4.
Numerical results are shown in Section 4. For this, instead of using only Yoshida type
schemes, we use some optimized coefficients developed in [3]. We observe that the
energy conservation is improved even better. Finally, in Section 5, proofs of the results
of Section 3 are given.

2 Poisson structure

In this section, we study the Poisson structure of the Vlasov-Poisson equation. This
enables to make the link between the Hamiltonian structure at the ordinary differential
equation level. Indeed, using the Poisson structure formalism, the Vlasov-Poisson
equation can be written in terms of a Hamiltonian functional associated to the Poisson
bracket {-,-};. In all the sequel, we will assume that the functions considered are
smooth enough so that all the calculations make sense.

2.1 Generalities on the Vlasov-Poisson system

Let us recall that the phase space (x,v) € [0,L] x R is equipped with the standard
Hamiltonian structure associated with the (finite dimensional) Poisson bracket { f, g} =
O fOyg — 0y fOrg where f and g are two smooth functions of (z,v). With this notation,
we can rewrite the Vlasov-Poisson equation as

f=A{nlfl fr =0,
where the dot means the time derivative, and where
02
M, 0) = 5+ olf(),
with
otfi0) =02 | [ faonao 1] = -0, Blf1(0)

Considering the two functionals T'[f] and U|[f] defined in (1.4) we can calculate ex-
plicitely their Frechet derivatives which are given by

oT v2 oU

W[f] = 5 and W[f] = o[fl(z).



Owing to the relation H =T + U, the Vlasov-Poisson equation can be written

f—{‘ff}{m,f}zo. (2.1)

The previous equation is a Hamiltonian equation for the Poisson structure associated
with the following Poisson bracket: For two functionals H[f] and G[f], we set

(H,G}f = / /5;}[ (;?,f}dxdv:—{G,H}f, (2.2)

where the Fréchet functionals are evaluated in f. Note the the skew-symmetry is
obtained using the relation

{fg.h} = fg,h} + g{f, h},

for three functions of (x,v) and the fact that the integral in (z,v) of a Poisson bracket
of two functions always vanishes. Let ¢ : R — R be a smooth function, and consider

the functional
/ / ))dzdwv. (2.3)

Its Fréchet derivative is % = ¢/(f) and using the definition (2.2), we can observe
that for all Hamiltonian functional H, we have

(H,0} =+ / / £, fidado =0,

owing to the fact that {¢'(f), f} = 0 for all functions ¢ and f. Hence the functionals
(2.3) are invariant under any dynamics of the form (2.1) and they are the Casimirs
invariants of the Poisson structure (compare (1.5)).

Finally, we note that owing to the expression of the Fréchet derivatives of T and
U, the evolution equation (2.1) associated with these functionals corresponds to the
equations (1.6). In particular, their flow can be calculated explicitely and they preserve
the Casimir invariants.

2.2 Relations between 7' and U

The aim of this subsection is to prove the following result:
Proposition 2.1 The functionals T[f] and U[f] satisfy the relation
{1, U}y, Uty =2U

with the Poisson bracket defined in (2.2). In particular, the RKN identity (1.10) holds.



Proof. First, we calculate the following

{T,U}f=2/OL/ b7 G Thdado = 7 / /{cb FHdady

:_/ /¢ ,f}dxdv

{T,U}; =+ / /qﬁ x)v0y f(z,v)dzdv.

Let us calculate the Fréchet derivative of this functional. To this aim, we evaluate this
functional at f + 6 f with %fOL Jg 0f = 0. First, we have

oLf +6f)(x) = olf)(x) — 05 /R 5f(z, w)dw + O f2).

Hence, we have

Hence we can write

{T,U} 157 ={T,U}s + — / /(;5 x)v00 f (x,v)dxdv

_L/ /R 0;;A&f(m,w)dw)v@xf(x,v)dxdv+O(5f2)-
0

We see that the third term can be written using an integration by part in x

L 5 (2, v)dv ) vd k(D f (2, v))dedo.
L Jo ]R( R )

The variations can only be done in the x variable. We deduce that

5{T(§fU}f[f] = —0d:0[f)(x) - /R v (0, f (2,v))dv
= vE[f](z) + Z[f](x).

Now we calculate using the previous relations that

{T,U}, U} = / [ @11@) + Bl @) 6lf)(0), S0} dado
- / / 2) + vE[f)(2))0:61/)(2)0, f (z, v)ddv.

Now we see that the term involving the function Z[f](x) vanishes, as the integral of
Opf(x,v) in v € R is equal to 0. We can thus write

Hr, v}, U}y = —/ /E 200, f (z,v)dzdv
- /E /fm

/Rf(a:,v)dv =14+ 0, E[f](z),

But we have



hence

L
{T.UY, U} = / E[f](z)*dz + 3—L 0, (ELf)(2)) da
= L [ BnwPa = v,
0
using the expression of E and U. This implies the statement. Note that this relation

automatically implies (1.10). |

3 Statement of the results

Let us consider the characteristics of the Vlasov-Poisson system given by (1.11) and
(1.12). The Taylor expansion of the backward characteristics around h = 0 is written

d .
. _ i At dr1 i 1
X(O,At,x,v)_Z;Xbi!JrO(At ), V(0; At,z,v) Zv; — T oA,
with

X! = 0% (0;0,,0), V" = 4V(0;0,,v), i =0,....d.

Similarly, the Taylor expansion of the forward characteristics around t = 0 is written
At
X(AL0,z,v) ZX[’] O(AL™), V(0; AL, z,v) ZV[Z—+O A,

with ‘ A . A
XJ[‘Z] = 8;X(0;07$7’U)7 Vf[Z] = azv(oa O,ZC,U), i = 07 o "d'

Note that, since the system is non autonomous, we may not have
Z(0,At,x,v) = Z(—At,0,z,v), for Z € {X,Y},

so that the forward coefficients Z][f] and the backward coeflicients Zlgi], with Z € {X,Y},

may not satisfy Z[i] = (—1)iZ][f].
We define the momenta

Ik(:n):/Rkao(:U,v)dv, k=0,...,d, (3.1)

and I, = %fOL I (y)dy

We then can express the time derivatives of the electric field and of the characteristics
in terms of the momenta (3.1). Note that some of these computations have recently
been done in [11], [6], [12] for deriving Cauchy-Kovalevsky schemes. The expressions
are given in the following three lemmas.



Lemma 3.1 The first three derivatives of the electric field are given by
0. E(0,2) = Ip(x) —
OE(0,2) = —I1(z) + I,
O2E(0,z) = 0,1a(x) — E(0, z)Io(x),
RE0,z) = —02I3(z) + 30,(E(0,2)I1(x)) + I1(z) — T Io(z).

Remark 3.2 The previous expressions have already been obtained and used in [12]; it
permits to have a third order estimate of the time dependent electric field and to get a
fourth order scheme without having to electric field only once per time step.

Lemma 3.3 The first coefficients for the forward characteristics are given by

XP =g, xP=vPl =14

Vf“’] , Vi = B(0,2),

VP = v(lo(x) — 1) — (@) + T,

Vil =020, I0(x) — B(0,2) + 0, I () — 200,11 (),

vf[ V= _02I4(2) + 3092 Iy(z) — 3020211 (2) + 030210 (),

+ (Io(z) = 1)(3(I1(x) — vIo(x)) + v(Io(x) — 1) — I1).

Remark 3.4 The formulas for the forward characteristics have been used for the order
3 to derive a forward semi-Lagrangian scheme (FSL-CK3) in [0, 11]. Here the formulas
are also given for the order 4, which permits to implement a FSL-CK/ scheme.

Lemma 3.5 The first coefficients for the backward characteristics are given by
X =z, x[V = —o, xP = E@0,2),
X, = —o(lo(z) = 1) + 2(~L(2) + Tv),
v — o vl = CB(0,2),
VA = olo(e) = 1) + (@) - T,
Vi = 020, 10(2) + E(0,2) — 0,T5(x) — v0: 1 (),
XM = 30,1, — 3E(0, )1y + 600, 11 + 3020, 1o + (3E(0,x) — 2v)(Iy — 1) — 6(I, — 1),
Vi = —3(Iy — 1) (=11 + T1) + v(Ip — 1)% + v302Iy + 02021,
— (=023 4+ 3E(0,2)0, I, + 3(Ig — 1)(I1 — 1) + (I — 1) + 21, (Iy — 1))
+ E(0,2)0,11 + 3vE(0, 2)0, Iy 4+ v(02Ly — (In — 1)1y — E(0,2)0,10).

Remark 3.6 From these expressions, we can obtain the CK3 and CKJ scheme for a
backward semi-Lagrangian method. We thus see in this context that such schemes are
not restricted to use a forward method. The computational cost is similar, the formula
are just slightly modified. We have given a formula for the fourth order derivative, but
it will not be useful for getting the order conditions.



We then consider a Taylor expansion of the forward numerical characteristics:

i At 2
X(AL,0,2,0) ZX” -+ O, V(AL 0,2,v) Z fi+o (Atd+,

(3.2)
with
XU = 01X,(0,0,2,v), VI = 8iVi(0;0,z,0), i=0,....d.
The splitting scheme will be of order > d, if the forward numerical characteristics
coincide with the forward (continuous) characteristics up to order d, that is

il il 1l W
X =x/ vi=vli=o0,. 4 (3.3)

We recall that a splitting scheme of 2s + 1 stages for the Vlasov equation is defined
through the coefficients ag, k = 1,...,2s+1 by (1.14). The objective is to compute the
relations that the coefficients should satisfy in order to obtain a fourth order scheme in
time. To do that we first compute the time derivatives of the numerical electric fields;
then the derivatives of the numerical characteristics ca be determined and identified
with the continuous one in Lemma 3.3.

Lemma 3.7 Forp =0,...,s — 1, the first derivatives of the numerical electric field
for the splitting scheme (1.14) are given by

9 E[g2p+1](0 Za% (Ii(z) — Tn),
97 Elgap1](0 (Z an) Opla(z) — 2 Z agk Z aze+1Eo(z)Io(z),
3
8; Elg2p+1](0 (Z a%) 07 13(x
+ 62@% 1 Z ao2m, <Z agza 0 JI Il + ZCLQE Il Ilf()(l’))> .

where gapy1 is the function defined in (1.7).

Remark 3.8 The quantity 0;E[gop+1](0,2) does not lead generally to a third order
approximation of the intermediate electric field E(Z] 0 a2j+1At, ). Only after a whole
time step, we get the good approximation of the characteristics. This contrast to [12],
where is used a third order approximation of the intermediate electric field, which can
be obtained from Lemma 3.1.

Lemma 3.9 The derivatives of the forward numerical characteristics (3.2) for the
splitting scheme of arbitrary number of stages 2s+ 1 are given by the following expres-
$10MS:

X[O] =z, V[O} =, X Zazg’l} and V[] ZGQZ 1E 0 :E
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for the zero and first orders,

X[2 —22(1242&2}) 1E 0 CC

VE =23 0 Zazr@(lo(x) )4 Th - L),
=1 —0

for the second order,

X —62@42% 1Zazr (I1 — Ii(z) + v(Io(z) — 1)),
p=

V[3 —3ZCL% 1 X

2
(Za2k> 8 IQ )+v28$10( )—21)8 Il — QZGQPZGQT 1E 0, l‘ ,

for the third order, and

2
=12 Z as Z asg—1 (Z a2k> (0:Iz(z) + 020, Io(x) — 200,11 (2))
q=
¢ q—1 P
—24 Z agy Z a2q—1 Z agyp Z az—1E(0, ),
=0 q=1 p=0 r=1

s (-1 3
Vf[jls] = 42@24_1 <Z azk) (—8213( )+ 302 I2( ) - 31)203[1(;1:) + U30§I()(x))

-1 —1
+ 24Za25 1 Zaar 1 Z agm Y azq(lo(x) — 1)(L1(x) — vip(x))
m=r q=0

+ 242612@ 1 Z@r 1 Z a2mza2q Io(z) = 1)((Lo(z) — 1)v — I4).

for the fourth order.

To compute the coefficients a;, j = 0, ...,2s+1, we have to identify the time derivatives
of continuous and numerical forward characteristics. From Lemmas 3.3 and 3.9, we
see that the forward numerical and continuous characteristic expansions are expressed
with the same terms (depending on momenta I,k = 0,...,3 of f and on E(0,z)).
This permits to derive the order conditions.
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As in [2], we introduce the coefficients p; which enable to make the link with the
PRK and RKN methods

p0:O> Pj+1 = aj — Py, jIO,...,28,

together with

2s 2s
Bi=Y pj By =) (-1)'p},
Jj=1 j=1
2s ' s 2j—1
Bia = Z(—l)]pﬁ, By = Z(pgj +p§j—1) Z Dk
J=1 3=1 k=1
s j-1 2k—1 2k—1
By = Z(p%j —ng 1 (ZP% Z De + Zpgk 1 Z pe)
J=1 k=1

Thanks to all the previous identities, we obtain the order conditions for the fourth
order in a reduced form.

Theorem 3.10 The conditions on pj,j = 1,...,2s + 1 which ensures that the time
splitting of arbitrary stages 2s + 1 is fourth order (i.e. (3.3)), can be rewritten as

p2s+1 =0, By =1, (3.4)
By =0, (3.5)
Bs, = B3, =0, (3.6)
Byo = —4Byy, = 4By, (3.7)

as soon as we assume that the following functions inside the brackets are independent:
[vIo(x) — 1, I1(z) — I1], [OxI2(x) + 020, Io(x) — 200,11 (x), E(0,x)] and

[—02I3(x) + 302 Ly (z)v — 302021 (x) + v302 1o (),
(Io(w) = (Li(2) = vlo(@)), (To(x) = 1)((Io(a) — D)o — T1)]
The proof of this result is postponed to 5.

Remark 3.11 More precisely, (3.4) corresponds for the first order, (3.4)-(3.5) to the
second order and (3.4)-(3.5)-(3.6) to the third order. We thus get the same conditions
as the PRK methods presented in Blanes et al. [2] for order < 3 and as RKN for
the order 4 (for order < 3, the coefficients for the PRK methods coincide with the
coefficients of the RKN methods).

4 Numerical results

We consider the non linear Landau damping test case for which the initial condition
writes

folz,v) = \/12? exp(—v%/2)(1 4+ a cos(kz)),
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with
N, = N, = 1024, At =0.125, vjpax =6, £k =0.5, a = 0.5,

and take Lagrange interpolation of order 17 in the spatial direction (z € [0,27/k])
and in the velocity direction (v € [—Umax, Umax]), see e.g. [5, 1, 4, 7]. The coefficients
that we use can be found in the literature (see e.g. [3],[2]); the first digits are given
here for convenience. We will here also consider splitting schemes that begin with a
v-advection: gi(x,v) = fo(x,v — by E[go](x) At), and

92]'(13,’0) = QQj_l(fE— bgj_ll)At,’U),
(4.1)
g2j+1(x,v) = goj(x, v — by Elgajl(x) At),
for j = 1,...,2s. Note that such a scheme can be recasted in a scheme of the form

(17), by taking ag = a2s4+2 = 0, aj = b1, j=1,...,254+ 1.

e Strang (s=1):

[ag, az] = [0.5,0.5], a1 = 1.

e Strang v-x (s=1):

[bo, bo] = [0.5,0.5], by = 1.

e Triple jump (s=3):

lao, a2, a4, ag] = [0.676,—0.176,—0.176,0.676],

[al, as, a5] = [1.351, —1.70, 1.35].

e Order 4 (s=6):

[bo, b2, . .., b12] = [0.0830, 0.396, —0.0391, 0.120, —0.0391, 0.396, 0.0830],
(b1, b3, ..., b1] = [0.245,0.605, —0.350, —0.350, 0.605, 0.245].

e Order 6 (s=11):

[bo, b2, . .., bao] = [0.0415,0.198, —0.04,0.0753, —0.0115, 0.237,
0.237,-0.0115,0.0753, —0.04,0.198, 0.0415],

(b1, b3, ..., boy] = [0.123,0.291, —0.127, —0.246, 0.357, 0.205,
0.357,—0.246, —0.127,0.291, 0.123].

For these different splittings, we plot on Figures 1 and 2 the time history of the electric
energy E(t) = OZTF/k E(t,r)%dx, the total energy £(t) defined as

-
g(t):/R/j S (b 0)dady + Eu(8)

and the LP,p = 1,2 norms of f. Let us recall that the total energy and LP norms
are conserved quantities of the model. The diagnostic of the electric energy does not
present significative difference, but the behaviour is in good agreement with results of
the literature [5]. The same is true for the LP, p = 1,2 norms of f since no real impact of
high order splittings can be seen on the evolution of these quantities (which essentially
depends on the spatial and velocity discretization). However, we clearly see in Figure
1 the advantage of using high order schemes in time for the energy conservation; this
was already pointed out in [15], but the optimized coefficients of Blanes and Moan [3]
give even better results. We have also tried the coefficients of order 10 given in [14]
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which do not improve the order 6 results in our testcase. On these figures, we plot the
Strang splitting with a time step divided by 20 ("strang v — x dt/20”): the time of
the simulation is then the same between ”strang v — x dt/20” scheme (brown curve)
and "order 6s = 11”7 scheme (light blue curve). For a given time simulation, we then
emphasize the fact that the high order splitting with optimized coefficients gives the

best results in our case.
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Figure 1: Time history of the electric energy (left) and of the total energy (right), for the
different time splitting algorithms.
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Figure 2: Time history of the L! norm of f (left) and of the L? norm of f (right), for the
different time splitting algorithms.

5 Proof of the results

This section is devoted to the proof of Lemma 3.9. We then also give the equations
that have to be satisfied by identifying with the Taylor expansion of the continuous
characteristics derived in Lemma 3.3.



5.1 The strategy
5.1.1 Expansion of a unified form of the splitting

The following result will be used for the expansions of backward and forward numerical
characteristics.

Proposition 5.1 For all j > 0, assume that Goji1(t,x) are given functions with
Taylor expansion

ik
Gajs1(t,x) = Z Eggj—&—l(x)
k>0

around t = 0, where gaj1(z) are given functions of . For (x,v) € [0,L] x R, and
sufficiently small t, we define the functions Z;(t,x,v) and Wj(t,z,v) by the relations

Zo(t,z,v) = x, Wy(t,z,v) = v, (5.1)
Zjt1(t,x,v) = Z;j(t,x,v) + ctWj(t,z,v), j>0 (5.2)
Wisi(t,z,v) = Wj(t, @,v) + coj41tGoj1(t, Zjya(t,@,v)),  j 20 (5.3)

for 7 > 0. Denoting by zf(x,v) = 0FZ;(0,2,v) and wé?(gv,v) = 0FW;(0,z,v), then the
following relations hold true:

z?(x;v) =uz, w?(:c,v) =v, >0

and forr=1,...,4 and 7 >0
J J
zig(x,v) =71 Z c2gw7lf_1(:c, v) and wi(z,v)=r Z cor—1&; (x,v), (5.4)
£=0 (=1

with
Et=¢% &2 =g' +2'0,4°, £ = g* +22'0,9" + (21)?02° + 220, 9"
Y= g 4+ 3210,9 + 3(21)?02¢g" + 32%0,g" + (21)202¢° + 321 2202¢" + 2%0,.4°.

The proof of this Proposition is straightforward using Taylor expansions. Such
relations permit to compute the sequences by induction. For r = 1, we obtain

J J
Zjl-+1 = ZCQW, w]l = cor19Y, 5=0,... (5.5)
=0 =1
For r = 2, we obtain
J J k
Zj2+1 - 2202]6“)]](; = 2202162025719?7 (56)
k=0 k=0 (=1
and
J J J J k—1
Wi =3 19k +3) ok 12:0:9) =3 cor-19i T3 car-1 Y carvdug).
k=0 k=0 k=0 k=0 =0
(5.7)
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5.1.2 Derivatives of the electric field

For the computation of the derivatives of the electric field, we introduce

L
Ely, 2, W](t,z) = /O K(z.y) /R G(Z(t,y,0), W (t,y,v))dudy,

where ¢(z,v), Z(t,z,v) and W (t,z,v) are given functions. The Taylor expansion
of E[¢,Z, W] can be computed using the following result, whose proof is again a
identification of Taylor expansions around t = 0:

Proposition 5.2 Let Z¥(y,v) = 0FZ(0,y,v) and W¥(y,v) = 0FW(0,y,v). Then the
following relations hold true for k=0,...,3

L
O B, Z,W)(0,2) = / K(x,y) /R & (y,v)dudy, (5.8)
with
¢° =1, ¢t = 210, + WO
$? = 220,00 + (2H)202%4) + 2Z2'W0,0,0) + W20 + (W20
and

> = 230,90 + 3212202 + 3Z2°W 0,0, + (21303 + 3(Z1)°* W H20,4
+32'W20,0,0 + 321 (W1)20,02 + W3dp1h + 3W'W202¢ + (WH)303y.

5.1.3 Backward characteristics for the electric field

Let p € {0,...,s—1}, and let go,11 be the functions defined in (1.7). We consider the
following quantities

L
E2P+1(t7 .f) = E[92p+1](t7 x) :/0 K('xuy>/l;f(on;zl))-l-l(t:yvv)?V;pb(tvy7v)>dydvv

(5.9)
for which we have to compute the successive derivatives in time, for ¢ = 0. Here
X}I; 1(t,y,v) and Vpb(t, y,v) are backward numerical characteristics obtained from the
splitting scheme until the stage 2p + 1. More precisely, we take the following special-

ization in (5.1)-(5.3)
Co = —azp, €1 = —Aa2p—-1, -..,C2p = —QQ

and the functions
Gy = Ep-1, ...,Gop1 = Fi,

so that

X;;H(t, z,v) = Zpt1(t, z,v), Vpb(t,x,v) = Wp(t, z,v). (5.10)
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We can then compute the successive derivatives
815 +1(0 Z ’U) 8:‘/;(05 xz, U)v a:E2p+1(07x)a r= 07 s )37

by using Propositions 5.1 and 5.2. In the following we fix the notations z,., =
Of Zp+1(0,2,v) and wy, = 0;W,(0, x,v) defined in (5.10) and in Proposition 5.1. More-
over, for p=0,...,s — 1, we define the functions (;Sgp 41 by the formula

L
O Eapir(0.0) = [ Klw) [ 0y a0)dudy
compare (5.8).

5.1.4 Forward characteristics

Once we have computed such derivatives, we can consider the forward numerical char-
acteristics.

We take ¢; = aj, j =0,...,2s, Gaj41 = E2j41, j=0,...,s—11in (5.1)-(5.3) and the
forward numerical characteristics are given by

X!Jrl(tv €, U) = ZSJrl(q:a U)v V:gf(t, €T, U) = WS(CIJ, ’U).
We are then able to give expressions of
OZXSfH(O,x,U) = 0{ Zs+1(0,x,v), OZY/Sf(O,x,v) = 0y W4(0, z,v),

forr =0,...,4, by applying Proposition 5.1 and the expression of the derivatives of the
electric field obtained with the backward characteristics. Again, we fix the notations
2i11 = 0{ Zs41(0,7,v) and wy = 9 Ws(0,z,v) defined above.

5.2 Time derivatives of the electric field

Note that using (5.9), we have Es,11(0,2) = E(0,z) for all p=0,...,s — 1. We also
set Eyp(z) :== E(0,x).

5.2.1 Computation of the first derivative of Fy,

Using Proposition 5.1, we have for all p=0,...,s — 1,

=

atv (0,z,v) Zagg 1Eo(x), O er1(0 x,v) = p+1 Zagw

from which we can compute q%p 1= ; 110z fo + wé@v fo, in order to finally get

Gp+1 = 0tE2p11(0, ) / K(z,y /¢2p+1 y,v)dv = — Za% (I(z) = I).
=0
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5.2.2 Computation of the second derivative of Fy,;

Similarly, we have for p=0,...,s—1

p—1 p—1
07 Xpi1(0,2,0) = 25,y = zzazkzazeHE(U ),

k=0 =k
and
k—1
82Vb(0 T v)—w —22@% 12@% (I, — I) +22a2k 12@%1}8 E(0, ).
k=1 =0 k=1 =k

We can then compute

Gpr1 = 2ps10fo + (2p11)° 02 fo + 22y wp 020y fo + WDy fo + (w)) 05 fo

and get
P 2 p k-1
/¢>%p+1dv = (Z a2k> 02— 2 am Y an10:(Eolo),
k=0 k=0 =0

where we use the identity Y 7_, Z?;& A2kG2041 = P pey G2k—1 Dy G2¢. We deduce
that
p k-1
QZH 07 Bap11(0 (Z azk) Oply —2 Z asg, Z age+1E0lp.
k=0 (=0
5.2.3 Computation of the third derivative of Ej, ;

We have for p=0,...,s — 1,

3y b _ .3
815 Xerl(Oaxv/U) - Zp+1
2

p—1 m p—1 m p
=6 agmi1 [ D ag; | (I1(z)=T1) =6 asmi1 P ag Y aswdsEo(x),
m=0 j=0 m=0 7=0 f=m+1

and

2
8tVb(0:c U —U} —BZGQT 1<Za2m> 8[2 )
+6Za2r 1 Z aom Z aze+1(Eolo)(x) — 6Za2r 1 Z QQmZGQZUa I(x
m=0 m=r
2
—326127«—1 (Z a2m> v202Ey(x —626127« 1 ZGQmZa%—HEO )0 Eo(x).
r=1 m=r

We then get
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/qﬁngdU = Alanill + Agangazll + Agazll + A4718x10 + A51102E0,

with

p p
T (z) —62@2@@%1,
7=0 k 0 =
Ay = 1226%2(121@ 126126 62a2m+12a2j Z aze
=0  t=m+1
+6’Z azr—1 Z az2m Zazz,
r=1 m=r =0
p p r—1
Az = 62a2r—1za2mzaze,
B 2
m
Ay = —62612]2@% 1Zazé+6za2m+1 ZGZj , and
7=0 =0
2
p - p—1
As = GZGQjZazk—1Za2£—GZ&2m+1 Z@j
=0 k=1 =0 m=0 —0

P P 2
+6 Z agr—1 (Z a2m> .
r=1 m=r

Some relations can be exhibited between the coefficients A;,7 = 1,...5. Indeed, we
have A4 = —Ag, A5 = AQ/Q, and A1 = A2/2 = A5 but also

p p p
Ay =12 Z az; Z agg—1 Z agy.
=0 k=1 =k

We then obtain a simplified expression

D 3
/¢%p+1dv = — (Z agg> 8§13 + Alaz(Eofl) + A;;&,;(Il — 7110),

with

—GZ@T 1Za2mza2@, and A3—62a2r 1Za2mzaze-
m=r m=r

Finally, we can write the third derivative of Egp1

92+1 a E2p+1 <Z CLQ() 8213 + Alax(Eoll) + Ag(Il — 71[0).
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5.3 Computation of the forward characteristics

We have at first
Xg+1(0,x,v) = zSH =z, V;f(O,a;,v) = wg =,

and

Oy sH(Oxv =zl = Zagw VI (0,z,v) = w! —Zagg 1E(0, z).

(=1
For the second derivatives, we get using Proposition 5.1
s ¢
07T (0, 2,0) =22, =2 Z ase Z azp-1E(0, ),
£=0 p=1

and

32 (0 x U)—w —22(1% 1 atEgg 1—1—253 EQ@ 1)
/=1

s -1
= 22&2471 ZCLQT(Tl — I + ’U(IO — 1))
(=1 r=0

For the third derivative, we get

p—1
;X s+1<0$1))—28+1—62a2eza2p IZG’QT (I — I, + v(Iy — 1)).
(=0 p=1 r=0

and

-1 2
8t Vf(O x U) = w = 3Za2g 1 <Z a2k> 8 Lo + ’UanIQ — 27)81;[1)
/=1 k=0

S /-1 p
—6 Z agg—1 Z agyp Z agr—1Ep.
=1 p=0 r=1
For the fourth derivative, we get
s y4 q—1 2
8;1X§+1(0, x,v) = zglﬂ =12 Z aoyp Z a2g—1 (Z a2k> (0z12 + 20,1y — 200,11)
/=0 = k=0

s J4 q—1 p
—24 Z agy Z a2q—1 g agyp Z agr—1 Fy.
{=0 q=1 p=0 r=1
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Let us detail the computation for the last derivative. We first have from Proposition
5.1

s
azlvsj—ri-l(O»xvv) = w;l—&-l = 42(125—1521’
(=1

with gF = 0F E9_1(0,z),k = 0,...,3. Introducing the following quantities

Alp—fizaw 1Za2mzaze, A3,p—6za2r 1Za2mza2£7
m=r m=r

we calculate

-1 3
g =— (Z azk) 213 + A1 g 10 (Eolh) + Az 1 (1 — T11o),

,_.

-1 2 -1 k-1 o
3210.97 = 3 (Z a2k> 021, — 22a2k2a2q+18 (Eolo) asyv,

k=0 k=0  q=0 k=0
-1 201
1\292 1
3(Z£) 8ng =-3 Zagkv Zagka Il,
k=0
and
—1 k -1
249 1
32029y = —6 age Y azp-1Fo agk0z 11,

k=0 p=1 k=0

-1 3
(20)°0397 = (Z a2k®> 95 Ey,
k=0
/-1
32%2’@28‘%92 =6 a2k7)> 8 E() Z agk Z a2q— 1E07
k=

O

l—1 k p—1
Z‘gaxg? =6 Z asy Z a2p—1 Z G/QT(Il — L + U(IO — 1))8$E0.
k=0 p=1 r=0
After some calculations, we thus finally get

. 3
gf = (Z an> (=021 + 302Lv — 3v°0211 + v*021)

—1 -1 -1
+ GZazr 1 aom Y a2q(Io —1)(I1 — vlp)
r=1

m=r q

I
=)

+6Za27« 1Za2m2a2q 0—1 0—1)1}—[1)



which enables to calculate the expression

1 3
0, V;erl(O x,v) = 42 aor—1 (Z a2k> 8:%]3 + 38§Igv - 31}283[1 + vgfﬁlo)
/=1 k=0

s /—1 /-1 /-1
+ 242 agy_1 Z agr—1 Z aom, Z agq(Io — 1)([1 — ’UI())
/=1 r=1 m=r q=0
s /—1 /-1 r—1
+ 242 agy—1 Z agr—1 Z aom, Z agq(Io — 1)(([0 — 1)U — Il)
/=1 r=1 m=r q=0

5.4 The equations

We now summarize the equations which should be satisfied:

s
Zazgzl, 2 2261%2@2}7 1=1,
=0

and

s
Za%—l =1, [Vg] 2ZG2Z—1ZG2T =1,
/=1 /=1 r=0

for the first and second order,

s -1 2
V) 33 s (z ) 1
=1 k=0
s -1 p
[V 6> age1 Y agyy ase1=1,
=1 p=0 r=1

for the third order. To get the fourth order, we get the conditions

2
[X4a) 122:@2@2@2(; 1 <Z a2k> =1,
[(Xap) 24 Z ag Z a2q—1 Z azp Z agr—1 =1
=0 q=1 p=0 r=1

s Y4 p—1
[X3] 6 Z ase Z agp—1 Z as, =1, and
=0 p=1 r=0

and

s -1 3
[Vid] 426@4—1 <Z a2k> =

0
-1 -1 -1
[Vap] 85 ¢ 1E ay— lza2mza2q:17
r=1 m=r q=0
/-1 -1 r—1
Vzlc 24 § a2¢—1 § a2r—1 a2m a2q = 1.
r=1 m=r q=0
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The objective is to find relations between these equations to obtain a reduced system
of conditions.

Order 2. We have at first [Xo] + [V2] = 2[X1][VA]:

s L s p—1 s s
2) jaw) ampo1+2) ap-1) ax=2) ax) a1
=0  p=1 p=1 =0 =0  p=1
Next, as in [2] we introduce

p0:07 Pj+1 = a5 — Py, jZO,...,QS,

so that [X] rewrites

s s 2s5+1
D a = (pa+pas1) =Y pe=1,
=0 =0 =0

and the condition [V;] becomes

s

s 2s
Za%—l = Z(P% +p2u_1) = sz =1.
=1 =0

(=1
We recall that [Xa] — [V2] yields the condition

2s
—2> (~1)p? =0.
j=1

Order 3. First, it can be verified that the conditions [X3], [Va,], [V3s] are equivalent
to the conditions ([X3]—[Vap])/6, [X3]/6—[Vaa]/34[Vas]/6, [X3]/6+2[Vaa]/3+[V3s]/6.
To express in a simple way these last quantities, we now introduce Bs, = Z?S:o p? and

2s J*
By =Y (=1p} > pr, 55 =j— 1, if jis even, j* = j, if j is odd,
j=1 k=1

which can be recast in Bg, = Zj’:l(p%j - pgj_l) Zi]:_ll pr. Then, we check (see the
proof in the Appendix) that ([X3] — [Vap])/6, [X3]/6 — [V34]/3 + [Vap] /6 and [X3]/6 +
2[V34)/3 + [Vap] /6 can be recast as

2s 2s
2Bg, + Bsa — Y pj(=1)' > pr =0, (5.11)
j=1 k=1
By, =0, (5.12)
2s 3
ij — 2B, — B3 = 1. (5.13)
j=1

Using the former conditions derived for order < 2 (i.e. Z?‘io(—l)j p? = 0and Z?S:o pj =

1), we obtain that these last equations finally reduce to Bs, = 0 and Bsg, = 0.
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Order 4. For the fourth order conditions [Xua], [Xas), [Vaa, [Vas], [Vac], we introduce
the notations

2s s 2j—1
ij, By = Z( 1Yp3, Bia=Y (=1)p}, Buw =Y (03 +13;-1) > Dhs
=1 =t j=1 k=1
s -1 2k—1 2k—1
Bye = Z(pgj _p%j 1 (ZP% Z De + szk 1 Z pg)
Jj=1 k=1

and
My = Bye, Ma = By, M3 = Bya, My = B3pB1,
Ms = B3.B1, Mg = B3, M7 = ByB}, Ms = Bj.

These notations enables to rewrite the fourth order conditions as follows (see the proof
in the Appendix)

[X4a] : 36My + 12My — 6Ms — 12My — AMs + Mg + Mg =1, (5.14)

[Xap] : 48My + 24My — 6Ms — 24My — 16Ms + 15Mg + 6M7 + Mg =1, (5.15)
[Via] : —12My — AM, + 2Ms — 3Mg + Mg =1, (5.16)

[Vip] : —16My — 8My + 2Ms — 5Mg + 2M7 + Mg =1, (5.17)

[Vie] : —48M; — 24My + 6M; + 24M + 8Ms — 9Mg — 6M7 + Mg = 1. (5.18)

Using the lower order conditions, we get My = Ms = Mg = M7y = 0 and Mg = 1.
Reduced expressions can then be obtained since [Vag|, [Vip] and [Vi] produce the same
condition as [X4p]. We then deduce the following equations

Byy — 2By, — 6By. = 0, Byg — 4By, — 8By, = 0,
which can be written as
Byo —2B4y, — 6Bye = 0, By + Bye = 0.

It then follows
B4b = _B4a/4a B4c = B4a/4-

Using these calculations, we verify that the conditions to get the order 4 are given by
the equations (3.4)-(3.7) or Theorem 3.10.

6 Appendix

In the sequel, the passage from the coefficients as; to p; needs some notations to deal
with odd and even terms which make easier the computations. For example, we have

s 7j—1 2s
ZCLQJ 12 agk = Y _(p2j +P2j-1) D_(Pak + po2ws1) = Y pjAj,
=0 k=0 =0
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with 4; = Zizo pr. and
T A it jodd
T A4jo1 if j even.

Introducing the notation j* such that j* = j if j is odd and j* = j — 1 if j is even, we
then get A; = A~ and

Z@, 12@%—21%4 —Zpy *—Zngpk
7=0 k=0
2s
= i | D o+ p;sin’(jm/2) Zngkaerjsm (jm/2).
=0

k<j 7=0 k<j

The notation j** can also be introduced, such that j** = j — 1 if j is odd and j** = j
if 5 is even and we have

=0
2s 3 2s
=> 0> pr=)_p Zkaer] cos® (jm/2).
=0 k=0 =0 k<j

Let us remark that another definition of the previous notations ” x” is j* = 2|(j —
1/2] +1, 7 =2[j/2].

6.1 Proof of the relations for order 3

This subsection is devoted to the proofs of the fact that conditions ([X3] — [V35])/6,
[X3]/6 — [V3a]/3+ [Vap] /6 and [X3]/6+2[V3e]/3+[V3s]/6 can be recast as (5.11), (5.12)
and (5.13).

Proof. The strategy is to express all the quantities [X3], [Va4], [Vap] as functions of a
basis family and then to identify. This can be extended to the fourth order case in the
next part. First, the condition [X3]/6 is equivalent to

s 4 k-1
1/6 = Z(pﬂ +p2e+1) ) (Pok + P2w—1 Z (p2j + P2j+1)s
(=0 k=1 j=1
2s 0 E* 2s O

=D D> DR pi=> 00
=0 k=1 j=1 =0 k=1
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with g, = pg Z§:1 Pj = Pk 2. j i Pj + Pjsin®(km/2). Hence we get

1/6 = pgi + ZMCM cos® (£ /2),

k<t

= > pipkpe+ Y pepisin® (k7 /2) + Y pip; cos®(bx/2) +Zm sin® (¢ /2) cos” (¢ /2),
J<k<t k</ j<t

= > pipkpe+ Y pipesin’(§7/2) + Y p;pi cos® (km/2).
j<k<t i<k Jj<k
Second, the condition [V3,]/3 can be recast into
s /-1 /-1

1/3 = Z(mz + p2r—1) Z P2k + Dok+1) Z P2k + P2k+1),
=0 k=0 k=0

2s *
IS WIS i it
=0 = /=0 k=0
with g, = py, Z _oPj = Dk Zjdpj + prpesin?(¢r/2). Hence we get

1/3 = Zquk + Zpeqzsm (bm/2),

£=0 k<t

2s
= sz > ok Y pj +prpesin® (m/2)) + Y pegesin®(¢r/2),

=0 k<t j<t =0

2s
= Ipe> _pr)*+ ) pepi sin®(0r/2) + Y pip; sin®(br/2) + pf sin®(¢m/2)),

=0 k<t k<t j<t

= Zp]pk+2 Z p]pkpg+22pjpk sin?(km/2) +ij sin?(j7/2),

>k j<k<t J<k J
=2 Z pjpkpg—}—Zp]pk—l—QZp]pksm (km/2) —|—ij sin?(jm/2).
j<k<t i<k i<k j

Finally, the condition [Vap]/6 rewrites

s /-1 k
1/6 = (par +p2e-1) > _(Pak + p2xi1) Y _ (D2 + p2j1)
=0 k=0 =1

0* k**

2s
—ZpeZkapg Zquk
/=0 = (=0 k=1
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with ¢, = p Zé?;*l Pj = Dk ;<1 j + Pj cos*(jm/2). Hence, we get
1/6 = Z DePkDj —|—Zpgpk cos?(km/2) —|—Zp£pj sin? (¢ /2) —|—sz sin? (¢ /2) cos? (¢ /2),

j<k<t k<t gj<t
= Z DjPkPe + ijpk cos®(km/2) + ijpk sin?(km/2).
j<k<t k<j i<k

To summarize, we have

[X3]/6 <= 1/6 = > pippe+ Y piprsin®(jm/2) + > pipi cos® (kr/2),

j<k<t i<k i<k
[Vaa /3= 1/3=2 > pjprpe+ Y _pipe +2 Y pipisin®(kn/2) + ) pfsin®(jm/2),
j<k<t i<k i<k J
[Vapl /6 <= 1/6 = > pipkpe + Y pippsin’(km/2) + ) pipi cos(j7/2).
j<k<t i<k j<k
Thus, using (cos?(jn/2) —sin?(jn/2)) = (=1)7, ([Vap] — [X3])/6 can be rewritten as
= piph(—DF+ > pipe(—1)7. (6.1)
j<k j<k
The expression ([X3] — 2[V3,] + [V3])/6 can be reformulated as
0= 3 pid(—1)F = 3 psind(jr/2). (6.2
i<k J

And finally, ([X3] 4+ 4[V3a] + [V3s])/6 is also
1= ([X3] — 2[Vaa] + [V3e]) /6 + [V3a],
so that we get

1= pipi(-1)F - ZP? sin®(j/2)

Jj<k

+6 Z pjpkpg—&—GZp]pksm (km/2) +3Zp]pk+32p] sin?(jm/2),
Jj<k<t j<k i<k

=6 > pipkpe+ Y piph(3 —2(— +3Zp]pk+22p] sin®(jm/2) (6.3)
J<k<t i<k j<k

On the other side, Bgy, is
2s

By =3 (=0 > pe =3 pipk (=) = 3w sin? (j/2),
J

= k=1 j<k
from which we rewrite the condition ([X3]—2[V3,]+[Vap])/6 given by (6.2) into Bs, = 0.

27



Moreover, (5.11) can be recast into

2s 2s
0:22(* pjpk+2z bln (jm/2) +Zp] Zpg(,l)jzpk”
J=1 k=1

i<k
=23 (-1)pip — pr-(—l P — Y _Pi(=1)pg,
i<k i<k i>k
=> (=1)7pipe — Y pip(— D).
i<k <k

which is exactly the condition ([X3] — [Vap])/6 given by (6.1).
We also have
3

2s
| =6 papkpe+32wk+3Zwk+2py~
j=0

J<k<t i<k i>k

Hence (5.13) becomes

ij — 2B3p — Bag,

=6 Z PiPEPe + 321?;1% + 32%1% + Zp]

J<k<t i<k j>k
~22 P+ 2 i) —ij,
i<k j
=6 > pipkpe+ Y piph(3 —2(— +3Zp]pk +2Zp] sin®(jm/2),
j<k<t i<k i<k
which is exactly the condition ([X3] + 4[Vaa] + [V3])/6 given by (6.3). |

6.2 Proof of the relations for order 4

In this subsection, we prove that the fourth order conditions [Xuq], [Xup], [Vaa], [Vas)
and [Vj.| rewrite as (5.14), (5.15), (5.16), (5.17) and (5.18)

Proof. As in the previous proof, we express all the quantities M;,7 = 1...,8 as a
function of a basis family. The same is performed for the conditions [X44], [Xap), [Vaal,
[Vip], and [Vi.] which then enables to find the new expression of the order conditions
as a function of M;,i =1,...,8.

First, for simplifying the expressions, we skip the sum over ordered indices, i.e. instead
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of writing

Mg= > 24pipepepm+ Y 120pkp; + > 12p;pipe

Jj<k<t<m I<k</t J<k</t
+ > 1205pkpe+ D6 + > Apipk + Y Apipi + pr
j<k<t j<k j<k i<k

we just write
Mg = 24p;pepepm + 12p;pipi + 12p;pipe + 1203 prpe + 6p3pk + 4p3p1 + 4P} + D]

Moreover, we adopt the notation p§~k) for Zj(—l)j p? i
We next calculate

M, = 2pjpkp2 ) (2) 2) (3) ®3) (2 2) 2 §4)

+ 2,07 pe + 208 pipe + 20508 + 208 i + 207 + 002 4 p

Mg =2p'p? +pt and  Ms = p;p} + plpi + pi.

(2) (2) (2) ®3) (3) (4)

My = 2pipkp, +pipy Pe+pip;, +305Pk — 3D, Dkt 5piPL+30ip, + 3P} — 5D
4 4
M3 = pg. ) and My = pjp% + Qp] — §p§ ) and
2 3 2 2 2 4
M = pipipy) — Spipd + pipl” + sl — WP — Lpt 4 1plY.

On the other side, we express in the following the conditions [Xua], [Xas], [Vaa], [Vas)
and [Vj.] in the same basis.

Calculation of [X,,]/12. This relation can be written

k-1 k-1 R
5= Zazy Za% 1Za2z Z az2m = Zp] Zkapz me,
Jj=0 7=0 k=1 {=0
= Zp] Zpk Zm > pmt ij Zpk szpk sin®(k/2),
=0 k=1 (=0 m<k =0 k=1 (=0
2s el
= ij Zpk Z Z Depm + Z PkPm Sin2(/€7r/2)]
7=0 k=1 Li<k m<k m<k
2s g r
+ ij Zpk Zpgpk sin?(kw/2) + pi sin2(k:7r/2)] ,
j=0 k=1  Le<k

2
= 2D pkDePm + PIPRPE + DiDEDe + DiDEDE — DD\ De + DDy

3
+P203/2+ P20 /2 + plpe/2 — 0 pe /2.
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Calculation of [Xy4]/24. We have

1 s l g—1 p
a1 azy a2q—1 a2p a2r—1,
TR BLDILEDILDD
— q:l p:o r=1

25 ]** R 2s j** k* 4—1 2s J** k*
>N Z PiPkPDmy = 3 D> pipkpepm+tY > > piprp; cos®({r/2),
7=0 k=0 ¢=0 m=0 7=0 k=0 £=0 m=0 7=0 k=0 ¢=0
2s j** k—1 ¢— 2s j** k—1 2s 7** k—1
= Z Z pgpkpepm+z Z Z pipisin’ (km/2) pm-i-z Z pipkps cos?(¢r/2),
7=0k=0/¢=0m 7=0 k=0 m=0 7=0 k=0 ¢=0

2
= D;PkPePm + (D30kDe + DiEpe + Dipkpi + P\ Prpe — 0oy pe + pipeny)) /2

+ ik A+ P ph /A + i 4+ pPp /4.

Calculation of [Vj,]/4. This relation can be written

3

s Jj—1 /
i = z_:lazj—l (;0 a2k> ZP; kzopk Zpé Z DPm;

7=0

Z D opk D> pe Y pm+3psin(7/2) > pe Y pe+3p;sin®(j7/2) > pr + plsin®(j7/2) |

7=0 k<j 1<j m<j k<j 1<j k<j
2s
=> 0 (6 ) pppm+2 Y ppi+2 D> pmbi+ >, PiPk+ Y DDk
=0 m<t<k<j k<t<j m<k<j k<t<j (<k<j
2s
—|—3Zp? sin’(jm/2) Z pkpg—l—Zpk —|—3ij sin?(j7/2) me—i—Zp] sin? (jm/2),
7=0 I<k<j k<j m<j

(2)

= 6p;DkDEDPm 3D DkDe+3D; PRpe+3DiPeb; — 3P PPy @)

3 3
+=p3 (Di—py, ) +PiPR+

s 1
5 =0 i) +5 ).

2 2

Calculation of [Vj,]/8.

1 s j—1 j—1  j-1
] Z a25—-1 Z A2k—1 Z aze Z a2m;
j=1 k=1 =k  m=0

2s g 7* k*
:ijzpk ZP@ przpm :A—B,
j=1 k=1 =0 =
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2

7 7 j
with A = Zp]Zpk Zpg and B = ZpJZkapg me Let us first
k=1 k=1 (=

Jj=1 j=1
evaluate A:
2s ]**
A=D"pi > ok | D pe+pisin®(r/2) | | D pm +pysin®(7/2) |,
j=1 k=1 0<j m<j
2s j**
= Z Zpg me—l—ijsm (j7/2) Zpg —i—p] sin?(j7/2) |,
j=1 k=1 l<j m<j 0<j
2s 2s
=2 pi [ Y e +picos’(im/2)| D pomt 0 | D pr+picos’(im/2) | > p}
7=1 k<j m<l<j j=1 k<j 1<j
+2Zp] sin®(jm/2) ZkapeJerj sin®(jm/2) Y _ i,
k<j 1<j k<j
and hence
2s
2
A=6pppwm +2Y 0 [ Y pwd+ Y pubd | Foimne} +0)7)
7=1 k<tl<j m<k<j
2s
2
w3 | S w2+ 0k | +pR 0} + 02
7=1 k<tl<j I<k<j k<j
2 2 3
+ 20002 — p7) + 220} — ) + i (B — P2,
(2), 3 2 (3)

= 6p;PRPeDIm 32 DEDE-3Di DR P 3D PRDE —DiPRDy o SPiPh— 21?] p Dot (i —p) /2.

Let then calculate B

Gr* :
B= Zp] > ok Zm Z P,
k=1 =

j=1

= Zpg > bk + pj cos®(jm/2) (Zpe + pr Sin2(/~€7r/2)> > pm +pysin®(G7/2) |

k<j 1<k m<j
whence
B=Y p; > ppe(D_ pmtpysin’(jr/2) +ij cos®(j7/2) > " pe( D pmtp; sin®(jm/2))
j I<k<j m<j 1<j m<j
+ij Zpksin (km/2) me—}—pjsin (jm/2)).
J k<j m<j
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This shows that

B =3p;pkpipm + D, pipkPi + D, Pipipe+ Y peprp] sin®(jr/2)

I<k<j I<k<j I<k<j
2 pjeoin/2) ) pe ) b
1<y m<j
+ Z piD; sin2(k7r/2)pm + Z pipi sin® (km/2)py, + ijpz sin?(km/2)
m<k<j k<m<j k<j
+ 3 p?sin®(jm/2)p} sin® (kr/2),
k<j

= 3p;pkpepm + P2kpe+ ip3pe+ ok (0 — ) /24 20k (0 +087) 2+ 02 (0} 40 /2
+ i} — p7)/2 pe+ (02 = D) /2 preve + (02 — ) /2 i+ (02 — D) (R — 0D /4,

=3 3 2 3 3 > 1 (2 RN ) 2,3 29
= pjpkmperzp]pkpeJr2pgpkpe+2pjpkpg 5Pj PEPE= 5PiPy pe+2pgpkp + PPk
1 1 (3)
+ 4p§p,(c ) — Zp§ 'p} + 4p§ o2+ 02— ) /2 pre

We then obtain the following expression for [Vy]/8

(p§-2)pkpz +pipy)

1 (3) 1
—p; Dy +2pg( P )ty

2
e — 3D kD) )

02 + )i

3 1
*(pjzpkpz + pjp%pe + pipkp7) + 5

2 2
399 35 (2 @2 1 (@2 (2
+ijpk_1pjpk +4P] Pk~ g

1
3= 3piprpPepm +

Calculation of [V, ]/24.

7j—1
Zazg 1Za2k 1Za232a2m_8 B

with B = Z] 1 Pj izl Dk Ze:o Do Zm:(] Pm = 1/12 (using the first line of the com-
putation of [Xy,]/12).

Assembling conditions (5.14), (5.15), (5.16), (5.17) and (5.18) using the new expressions

of M;,i=1,...,8 enables to recover the order conditions [Xuaq], [Xuap], [Via], [Vas] and
[Vic], which ends the proof. |
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