Elasticity on athin shell: Formal series solution

ERWAN FAOU

Abstract. The three-dimensional equations of elasticity are posed on a domain of
R? defining a thin shell of thickness 2= . The traction free conditions are imposed on
the upper and lower faces together with the clamped boundary conditions on the lateral
boundary. After a scaling in the transverse variable, the elasticity operator admits a
power series expansion in ¢ with intrinsic coefficients with respect to the mean surface
of the shell. This leads to define a formal series problem in  associated with the three-
dimensional equations. The main result is the reduction of this problem to a formal series
boundary value problem posed on the mean surface of the shell.

1 INTRODUCTION

1.A  ORIGIN OF THE PROBLEM AND MAIN AIMS

This paper deals with shell theory, whose main aim is the approximation of the three-
dimensional linear elastic shell problem by a two-dimensional problem posed on the mean
surface. This is an old and difficult question.

Let us recall that a shell is a three-dimensional object represented as a surface S
thickened in its normal direction. We suppose that S is a compact orientable smooth
surface with boundary, embedded in R3. For ¢ < g, sufficiently small, we define the
shell as the image Q¢ of the manifold S x (—¢,¢) viathe application

®°: S x (—¢,2) 3 (P,x3) = P+ x3n(P) € R, (1.1)

where n(P) is a unit normal vector field on S. If S is a planar domain then the shell is
a plate.

We suppose that the material constituting the shell is homogeneous and isotropic, and
we consider the linear equations of three-dimensional elasticity, together with traction
free conditions on the upper and lower faces and clamped boundary conditions on the
lateral boundary. The solution w is a three-dimensional displacement and is considered
in the following as the “exact” solution to be approximated by a two-dimensional object
defined on the mean surface S'.



In the sixties, different models have been proposed: see in particular KOITER [20, 21,
22], NAGHDI [23], JOHN [18], NovozHILov [25]. Concerning plates the derivation of
the first two-dimensional model is earlier, see KIRCHHOFF [19].

Most of the shell models rely ona 3x3 system of intrinsic equations on S depending
on ¢, and write

K(e) := M +¢’B (1.2)

where M is the membrane operator on S and B is a bending operator. If all above
authors agree with the definition of the membrane operator M, different expressions of
B can be found in the literature. For general shell geometry, the most popular and natural
model is the one proposed by KoITER. This model describes the displacement of the
shell by two tensors representing the change of metric and change of curvature of the
surface submitted to a displacement. Moreover this model is elliptic for ¢ > 0 (see
[1]). However, for £ = 0, the nature of the membrane operator depends on the geometry
of the surface. In particular, M is elliptic only at the points where S is elliptic. The
Koiter model relies partly upon computations made by JOHN in [18]. But the question of
determining the best model was very controversial (see in particular the introduction in
[2] and the discussion in [21, 23]).

Different ways were explored in order to estimate the precision of a two-dimensional
model. One of the first attempts was the estimate given by KOITER. Starting from the
solution z of a 2D-problem associated with an operator K(s) of the type (1.2) he con-
structed a 3D-displacement polynomial in the transverse variable x5, and gave an esti-
mate in energy norm between this reconstructed displacement and the 3D-displacement
u . However, this estimate fails for plates and the reason for this is the presence of bound-
ary layer in the vicinity of the lateral boundary. This problem was already pointed out
by GOL’DENVEIZER [16] (see the works of NAZAROV & ZORIN [24] and DAUGE &
GRUAIS [9] for explicit proof).

More recently, the works by SANCHEZ-PALENCIA [26] and CIARLET, LoDS, Mi-
ARA [4, 6, 5] showed that the 3D-displacement « and the 2D-displacement z solution
of a system associated with the Koiter model converge toward the same limit as ¢ tends
to 0, but in a weaker norm than the energy norm. See [3] for a review on these results.
The limit is identified with the solution of a bending equation associated with the operator
B of the Koiter model.

When it is available, the use of complete asymptotic expansions allows to have an
exact representation of the behavior of the 3D displacement with respect to the thickness.
Up to now, this is only done for plates and clamped elliptic shells: see [9, 10, 7] for
plates. The result concerning clamped elliptic shells is a consequence of the present work
and will be developed in a next paper, see also [14, 15]. In these cases, we can derive sharp
estimates in every norm and analyze the performance of a 2D model. For clamped elliptic
shells, all the classical models of the type (1.2) have the same accuracy with respect to <.

The present work has several goals and consequences.
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1. It gives formal computations that can be compared to those made by JOHN in [18].
In particular, we give the most general “shell model”, e.g. the most general bending
operator appearing after the dimension reduction process. The main point is that the
mathematical setting of the result has been made precise and powerful by the use
of formal series. We also show how this general bending operator “contains” (see
below) Koiter’s bending operator. Note however that the computations of JOHN
were made for a more general 3D nonlinear elasticity model.

2. The present analysis was developed in order to find a complete asymptotic expan-
sion of the displacement in the case of a clamped elliptic shell. In particular, it
incorporates boundary layer phenomena near the lateral boundary in the case of
clamped boundary conditions. This is thus a first step in the direction of finding a
complete asymptotic expansion of the displacement (see [7] for an application to
plates eigenvalues). This formal series representation has also been used in various
situations: see [11, 12].

3. As we will see, the main result is the reduction of the 3D problem in formal series
to a 2D boundary value problem in formal series, posed on the mean surface. It
appears that the 2D formal series problem has strong similarities with Koiter’s 2D
problem. This fact can be used to state and prove a valid energy estimate in the
spirit of Koiter. This work is presented in [8]. Thus the formal series approach can
lead to real estimates and results.

1.B GENERAL CLASSICAL SETTING

We now sketch the main ideas. First of all, we set the equations in Cartesian coordinates
on the domain ¢ . Our first goal is to write the equations in normal coordinates, where
we agree that a normal coordinates system on ¢ is a system induced by the diffeomor-
phism (1.1) and of the form (z,,x3) where (z,) is a coordinate systemon S and z3 is
the transverse coordinate.

We first note that all tensor fields on Q¢ can be decomposed into several tensors fields
on the surfaces S,, := ®°(S, x3) for fixed z5. For example the displacement field u
decomposes into the surfacic 1-form (u,) and the function us . After that, we show that
any tensor field on S,, can be seen as a tensor field on S depending on z3 . Finally, the
natural spaces involved in the equations are of the type C>((—¢, =), [(7}4S,)) where S,
is identified with the surface S, and where T'(7,7S;) is the space of tensor fields of type

(p,q) on Sy

In a normal coordinate system, we write L(z,,z3; Dy, d3) the three-dimensional op-
erator, where D, is the covariant derivative on S and 03 the partial derivative with
respect to x3. Similarly, the traction operator on the upper and lower faces writes
T(z4,x3; Da, 03) .

It is important to note that even if these operators are written in a coordinate system,
they are in fact intrinsic, and express with respect to tensor operators on S, . For ease



of use, we consider the shifted displacement w obtained by multiplying the surfacic
components of » by the Jacobin of the application ®(-,z3) on S. This is a standard
change (see [23]). Thus the operators L and T act on the shifted displacement w , and
are intrinsic in normal coordinates. Moreover, we made a change of sign, and the shifted
displacement w satisfies the inner equation Lw = —f in Q¢ if f isa 1-form field
representing the loading forces.

In the equation (1.1) we note that the definition of the shell is analytic in z5. Itis
easy to show that all the natural tensors in ¢ and the covariant derivative expand in
convergent power series of 3. Hence we can show that the operators L and T expand
in power series of x3 with intrinsic coefficients with respect to Sy;. Now in order to
work on a manifold independent on ¢ we make the scaling X3 = ¢ 'z3 to state the
problem on the manifold © := S x (—1,1). The 3D elasticity operator are written L(z)
and T(e) . These operators clearly expand in power series of £ with coefficients intrinsic
operators on the manifold 2.

Theorem 3.3 provides the expressions of the operators L* and T* appearing in the

expansions
—22 kLk and T —IZ ka

This result, even if stated for the first time in this way, can be obtained using standard
expansions of the covariant derivative and the metric. Most of these expressions can be
found in [23].

1.c FORMAL SERIES

Now with the operators L(s) and T(s) we associate two formal series in powers of &
written L[e] = 7237, ,e"L" and T[] = 7' 37, " T*. Considering a formal series
Flel = 20 ek £¥ with 1-form field coefficients in Q, we state the following formal

series problem: Find a formal series wls] = 3, "w" with 1-form field coefficients,
such that -

LeJlwle] = —fle] in Q,
Tlelwle] = 0 on T4, (1.3)
wle] = 0 on Ty,

where I'y are the upper and lower faces of 2 and I'y the lateral boundary. Here, the
product between two formal series is the Cauchy product.

The equations (1.3) are in fact a collection of equations. Up to multiplication by a
constant, the first terms of the formal series L[¢] and T[e] are 8%, and dx, respectively.
But the operator (9%,,0x,) on (—1,1) has non-trivial kernel and co-kernel. In the
manifold €2, the kernel is the space of displacements independent of X, and is denoted
by X(So) . Hence, if wle] isaformal series solution of the first two equations in (1.3), the
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displacements w* are determined up to elements z* of the kernel. Moreover, solving
successively for the displacements w* requires compatibility conditions on the right-
hand sides, e.g. on the w® for ¢ < k. This conditions are in fact equations on the z*
and form a formal series equation on Sy .

Theorems 4.1 and 4.3 reduce the two first equations in (1.3) to a two-dimensional
problem. We show the existence of formal series operators V[e|, Qle], Ale] and G[e]
such that if z[e] = >,.,c2" is a formal series with coefficients in $(S,) satisfying
the equation -

Ale]z[e] = Gle] flel; (1.4)

then we can construct a formal series w/e] by the equation

wle] = VIe|z[e] + Q[e] f[e], (1.5)
solution of the problem

Llelwle] = —flg] in Q (L6)

Tlelwle] = 0 on I4.

Here, the coefficients of the formal series V[e] are polynomial in X3, and V° coincides
with the identity. Similarly, the coefficients of Q[e] are operators acting on the 1-form
fields space on Q. The coefficients of the formal series Alz] are 2D operators acting
on X(Sp) and the coefficients of G[e] take values into this space. Note that the first
coefficient G is the mean value across (—1,1).

The equation (1.4) is a two dimensional formal series problem set on the mean sur-
face. We show that the formal series A[e] writes

Ale] =M +?A% 4 .- |

where M is the membrane operator. The operator A? is a sort of bending operator. The
exact expression of A? is given in Theorem 4.4. Proposition 4.5 gives an estimate of
the difference between A% and the bending operator B of the Koiter model. We obtain
in particular that these operators coincide on the space of inextensional displacements.
This has to be related with the convergence result (see [3]). Hence in the formal series
Ale] the first term M is not elliptic for every geometry of S, but the Koiter operator
K(e) = M +£?B is always elliptic and we can estimate the difference between K(g) and
the operator M + £2A2 .

Note that in the case where the boundary 9S, is empty, no boundary conditions
are present, but orthogonality conditions to the rigid displacements are imposed to the
loading forces and the displacement. These conditions can also be expressed as formal
series conditions.



The second step of this work (Theorem 5.3) deals with boundary layer formal series.
In general, if z[¢] is a solution of (1.4), the reconstructed displacement (1.5) cannot
satisfy the condition w[e] = 0 on the lateral boundary. Indeed the operators in the formal
series V[e| have increasing orders of surfacic derivatives, and the condition we] ‘Fo =0
implies an infinity of boundary conditions on the coefficients of z[¢]. But even if we
consider that the formal series Ale] has K(e) as first term, this operator of order 2 in z,
and 4 in z3; cannot solve for an infinity of boundary condition for the coefficients z* .

In the case of plates, the operator K(¢) decouples into the membrane and the bending
operator respectively. These operators are elliptic. In this case, there exists an asymptotic
expansion of the displacement in powers of ¢ with two scales (see [24, 9]). The first
scale consists of terms independent of <, and the second of boundary layer terms near
the lateral boundary. If we set r the distance to the lateral boundary and s the arc length
along 95, , these terms are of the form p(s~'r, s, 23) on Q¢ , and are exponentially
decreasing with respectto R = e~ !r.

In our case, we introduce a new formal series problem including a new scale of bound-
ary layer: Find a formal series ¢[c] whose terms are functions *(R, s, X3) exponen-
tially decreasing with respect to R, such that

(E[a], ’T[s])cp[s] =0 and wle] |Fo + ple] ‘R:O =0, (1.7)

where the formal series L[] and 7[e]| are induced by Taylor expansionsin R = 0 of
the operators L and T in coordinates (R, s, X3), and where the formal series we] is
given by (1.5). Note that R = 0 coincides with the lateral boundary T’ .

Theorem 5.3 shows that the existence of a formal series ¢[s] solution of (1.7) relies
upon compatibility conditions on z[¢] on the boundary 9S, : There exist formal series
operators d[e] and h[e] whose coefficients define four trace operators on the boundary
0Sy , such that if z[e] satisfies the equation

dle]z[e] = hle] f[e] (1.8)

on the boundary 9S, , then we can construct a formal series ¢[e] solution of the problem
(1.7). Moreover, the first term of the formal series d[s] writes

0
d’z = (Zra 25723767‘23) |85’0

where r is the geodesic distance to 95, in Sy. This operator is the natural Dirichlet
operator associated with the Koiter model K(e) for £ > 0.

The equations (1.4) and (1.8) form the two-dimensional reduced problem. If z[¢] isa
solution of the reduced problem, then we can construct two formal series w[e| and ¢|¢]
satisfying the equations (1.6) and (1.7).

Various difficulties arise when trying to solve the reduced equation. In particular, the
first terms (M, d°) do not define an invertible operator, even if the surface S, is elliptic.
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Using the estimate for A2 — B where B is the bending Koiter operator, we can however
see the formal series (Ale],d[]) as a formal series with first term (K(¢),d®) that defines
an invertible operator for every geometry of S,. This fact is used in [8] to obtain an
estimate in the spirit of Koiter.

In the case of clamped elliptic shells, the membrane operator with boundary condi-
tions z, = z, = 0 on A5, is elliptic, and we can consider the problem (1.4), (1.8) as a
singularly perturbed formal series problem. We have to introduce a new boundary layer
scale of formal series to obtain a solution. This work will be presented in a next paper
(see also [15, 14]).

In the case of plates, the operator M+ c2A? is triangular with respect to (z,, z3) and
we can show that the reduced 2D problem has a solution. This yields the construction of
a complete asymptotic expansion of the displacement as in [9, 7].

2 NORMAL COORDINATES AND TENSORS

2.A THREE-DIMENSIONAL PROBLEM

Recall that the domain 2¢ defining the shell is given by (1.1). This domain has a lateral
boundary I'§ image of S x (—¢,e) by the application ®. The upper and lower faces
S, are the images of S x {fe}. We suppose that the material constituting the shell is
homogeneous and isotropic, characterized by its two Lamé coefficients A and p. The
loading forces applied to the shell are represented by a smooth vector field f defined
on €2°. We suppose that the shell is clamped along I'j; and we imposed the traction free
conditionon S,. and S_.. The displacement of the shell is represented by the 1-form
field w . In Cartesian coordinates {¢'} the problem then writes

—0;j AUk, (u) = f' in O,
T(u) = 0 on S, (2.1)

u = 0 on If,

where AUkt = \§UGRE 1 (6% 674+ 667%)  where §; is the partial derivative with respect
to t and e;;(w) = 3(8;u;+0;u;) with u = u,dt’ in Cartesian coordinates. On the same
way f* denote the components of the vector field in the basis % . The operator T¢(u)
is the natural traction operator on the faces S, appearing after integration by parts in the

associated bilinear form:

(u,v) = [ AT (u)epe(u) dt* dt® dt’.
QE
This is the classical problem of linear elasticity set in Cartesian coordinates on a shell-
shaped domain of R? . Korn inequality [13] implies that this problem has a unique solu-
tion in H'(Q#)3.



2.B NORMAL COORDINATES

The diffeomorphism ®¢ of the equation (1.1) is called the normal parametrization of Q¢ .
A normal coordinate system is a coordinate system on Q¢ = ®¢(S x (—¢,¢)) induced
by a coordinate system on S. If (U;, ¢;):c; is an atlas of local charts on S, a natural
atlas on 2¢ is given by the charts ®° (UZ- X (—5,5)) together with the applications

R® D ®°(U; x (—¢,¢)) @, U; X (—¢,¢) ke 0i(U;) x (—¢,6) CR?. (2.2)
Moreover for fixed x3 these charts induce local charts on S,, with domains ®¢(U;, x3)
and applications

Szy D O(Uj, 73) N Ui 25 ¢i(U;) C R, (2.3)

where F,, : S — S, isdefined as ®°(-,z3).

Let us fix a local chart (U, ) of S and the associated coordinate system (z,) .
In the following Latin indices will always refer to three-dimensional indices (here 1,2,3)
while Greek indices will refer to two-dimensional indices (1 and 2). Using the application
(2.2), the system (z,,x3) is hence a local 3D coordinate system on the shell. We set

0
c%vz-

= X4, (NS {17273}

the associated coordinate vector fields. It is clear that x3(z,,z3) = n(z,) and that the
vectors x,(z4,x3) are tangentto S, : they are the coordinates vector fields associated
with the local map (2.3). In this coordinate system on Q¢ the metric is defined by

gij = <xi7Xj>]R3- (24)

For fixed z3, the surface S, isembedded in the domain ¢ of R*® and the metric of S,,
is thus the restriction of the metric g;; to S, . In the following, we usually identify the
abstract manifold S with the embedded manifold S, . We set V the standard connexion
on Q¢ associated with the Euclidean scalar product on R®. The Christoffel symbols
associated with V vanish in Cartesian coordinates. We set D*3 the connexion on S,
induced by V. A first step is to show how the 3D tensor fields on ¢ yield naturally
tensor fields on the surfaces S, . After that, we show that in fact all the tensor fields on
Sz, Can be seen as tensor fields on S = S, depending on z3. These ideas and normal
reduction of tensor fields are already explained in [23].

2.Cc NORMAL REDUCTION OF TENSOR FIELDS

Let (U, ) and (V,4) two local charts of S around P € S. Writing F,, the applica-
tion ®¢( -, x3), these two charts induce local charts (F,,(U), o F;,') and (F,(V),vo



F7.') on the surface S,, around the point Fy,(P). The changing chart application is
then po F)lo (o F) ' =gpoy! from (V NU) into o(VNU).

On the other hand, these two local charts induce local charts of the type (2.2) on Q°.
We verify that the changing chart application on Q¢ is simply

RS p(VNU) x (—,¢) "V AU x (—e,2) P8 o(V A U) x (—2,2) C BE.

The Jacobian matrix of this application writes

i (330
=1 1)

where j§ is the Jacobian matrix of the application @ o¢~! from (V' NU) into (VN
U).

Let u be a 1-form field on ©Q¢. Let u; and w; be the components of u in both
coordinate system of type (2.2) induced by (U, ¢) and (V, ) respectively. We consider
the two families of functions «, and %, where « isa surfacic varying index. These two
families define local 1-form fields on S, in two different local basis. However, as u is
a tensor field on ¢ the expression of the components of w in the two basis are related
by the matrix Ag . Using the special form of this matrix, we compute that

. Y =
Jny Ua = ALu; =T,

As jg is the Jacobian matrix of changing chart on .S, , we conclude that the components
u, and u, are the components of a 1-form field defined globally on S, . Similarly, we
have uz = A3uz = A%u; = us, and thus the component w3 in any coordinate system is
a global function defined on S, .

Similarly, consider the deformation tensor of type (2,0) on Q° written e;; and €;;
in both coordinate systems induced by (U, ¢) and (V1) respectively. We consider the
two families of functions e,3 and e,3 where « is a surfacic varying index while 3 is
fixed. Using the fact that the deformation tensor is a tensor field on Q¢ , the components
e;; and e;; are linked and we have Jy €az = AE'Y Aje;; = €,3, and we conclude that
the components e,3 define a 1-form field globally on S,, . Similarly, we see that the
components e,g, where a and 3 are surfacic varying indices, are the components of a
tensor field of type (2,0) on S, , and the component e33 defines globally a function on
Ses -

We can obviously generalize this fact to other type of tensor fields. The result is that
each tensor field on ©° can be decomposed into several tensors fields on S,, by fixing
some indices to the value 3 and letting the other vary into surfacic indices.



2.0 SHIFTER AND PROJECTIONS ON THE MEAN SURFACE

The mean surface S, is characterized by its metric a,g(x,) = gag(x,,0) and its curva-
ture tensor b,s(z,) which is symmetric. The Codazzi-Mainardi equation, expressing the
fact that the curvature tensor of Q¢ vanishes, yields that

Dabﬂa = Dﬂbaaa

where D = DP is the connexion on S, (see [23]). Recall that on a Riemannian manifold,
we use the metric to obtain isomorphisms between covariant and contravariant vector
fields spaces. In coordinate system, this means that we can lower or upper the indices,
which correspond to contraction with the metric tensor. For example the curvature tensor
bap Can be viewed as a tensor of type (1,1) and in this case the components are written
b3 = aP7b,, where a*? isthe inverse of the metric tensor. Note that even if an expression
is written in coordinate system, the equation is intrinsic provided that the indexed object
are tensor fieldson Sy .

Consider a vector field Y on Q¢ . Inalocal basis x; = (X4, X3)(Z4, 23) this vector
field writes
Y =Y (24, 23)Xs(Ta, x3) + Y?’(Za,ﬂ?s)xy,(xa,xg)-

For z3 = 0, the basis (x;(z,,0)) consists simply of a local basis x,(x,,0) onadomain
U of S, and of the normal vector field x3(x4,0) = n(z,,0). However,as U x (—¢,¢)
is embedded in R?, this basis extends by translation over the domain corresponding to
U x (—¢,¢) in QF . Hence we can decompose Y as

Y = f/"(a:a, 23)Xy(Zq,0) + }73(:va, 23)X3(q, 0).

But we compute easily using the form of the diffeomorphism (1.1) and the properties of
the curvature that we have for all x5

X3(To, T3) = X3(T0,0) AN Xy (T, T3) = Xo(Ta, 0) — 232 (24)%X5(7a,0),  (2.5)
and this implies the relation
V3 (2a,23) = Y3(240,23) and Y(zq,z3) = u%(xa,xg)Yﬂ(xa,xg),
where 12 is the shifter (see [23]) defined by
1o (T, 3) = 85 — 2307 (2a).

Hence a vector field Y can be represented by its components (Y?) or (Y?) and
the shifter appears as the Jacobian of a change of coordinates. Similarly, a displacement
(which is a covariant tensor of order 1) can be represented by its coordinates (v, v3)

10



along the basis induced by the diffeomorphism (1.1) or by its coordinates (7,,73) a-
long the coordinates associated with the fact that S is included in R?, and we have the
relations

U3 =wv3 and 9, = (u_l)gvﬂ,

where (p~1)? is the inverse of the shifter.

Now the fact that the change of coordinates application are the same for S, or for
Sz, Implies that the coordinates v, and v, are in fact both the coordinates of 1-form
fields on S, depending on x5 . More generally, if we consider a tensor field on Q°, then
by fixing some indices to the transverse index 3 it gives a tensor field on S,, of type
(p, q) . But these components yield also a tensor field on S, of type (p, ¢) depending on
z3 and thus, an element of C*((—¢,¢),[(T}¢So)) where [(T}¢S,) is the fiber bundle
of tensor fields of type (p,q) on Sy . The shifter appears as an endomorphism of these
spaces.

As it will be of constant use, we define the space X(Sp) := ['(17.50) x C*(.Sp) . Thus
the natural space for a 3D 1-form field w» after the normal reduction on the surface will
be the space C*((—¢,¢), %(So)) .

Recall that w = (uq,u3) denotes the 3D displacement solution of (2.1). The 3D
equations are simpler when expressed with respect to the shifted displacement = . That
is why we will always denote by w the shifted displacement associated with w .

Hence, in normal coordinates, the problem (2.1) can be written

L(za,23;Dg,03)w = —Ff in Qf
T(24,23; Do, 03)w = 0 on Sy, (2.6)
w = 0 on I,

where w is the shifted displacement, and where the operators
L:C®((—¢,2),5(Sp)) = C=((—¢,2),2(S0)), T:C®((—¢,2),2(S)) = X(Sse)

are intrinsic operators. Note that the fact that we decided to define the operators L and
T as taking values in the space C*((—¢,<),$(S;)) and $(Ss.) implies that the f ap-
pearing in the equation (2.6) is considered as a element of C°°((—s, £), E(SO)) . Hence,
in terms of components, the covariants components of f: f; = g;; f/ are involved in the
equations.

3 EXPANSION OF THE OPERATORS

In this section, we give the expansions of the operators L and T . All the framework
for these computations can be found in [23] or in [14] for a similar presentation.
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3.A EXPANSION OF THE CONNEXION

In the following, we only write the dependence on z3 of the tensor fields. Using the
equations (2.4) and (2.5) we have that

ggi(fl?g) = 61'3 and gaﬂ(l‘g) = Qo — 2.733[)&5 + l‘gcaﬂ, (31)

where 6;; is the Kronecker tensor, and where we used the classical notation: c,z =
b%bss . The equation (3.1) is valid in the space C*((—¢,¢),T(T2S,)) and hence is in-
trinsic and does not depend on the coordinate system on S, . Note that the relation (3.1)
can be written g.s(3) = pg(v3)pz(3)a,, - Itis clear that for &, sufficiently small, the
shifter is invertible, and that we have the expansion:

oo

(1)) = Y ak(bh)5, (3.2)

k=0

where we write (b¥)5 for v1b22--- b5 with the convention (%)% = 67 . Hence it is

V-1

clear that the metric tensor is invertible, and we compute that:

(e 0]

g*(xs) = 6" and  g*%(x3) = (k+1)a§(v*)*. (3.3)

k=0

Recall that the Christoffel symbols in any coordinate system are defined by the formula
T = 29" (igje + 0,9 — 0ugij),

where ¢% is the inverse of the metric tensor. From the previous equations we have that

Tis(z3) = 0,

Ios(z3) = 0,

Fiﬁ(%) = —%933@3)53%[?(353) = baaﬂ%(%) = bag — T3Cap,
Tos(z3) = 59%(03)05ga0(x3) = —b3(™)3(xs) = — Lo a5(0FHh)5.

(3.4)

Moreover, it is clear that the Christoffel symbols I'7;(z3) are the Christoffel symbols
of the connexion D*3 on S,, . In the following we identify the connexion D and D°.
Hence in a fixed normal coordinate system, the Christoffel symbols I') 5 := T')5(0) are
the Christoffel symbols associated with the connexion D. The following proposition
gives the expansion of the Christoffel symbols (see [23, 14]):

Proposition 3.1 In a fixed normal coordinate system, we have the expansion

TYg(zs) =T05 — > ai(b™ ")7Dabj. (3.5)
n=1
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Note that this equation can also be written
I 4(xs) =I5 — za(u™ ")} (23)Dabp. (3.6)

The most important fact is that the difference I');(z3) — I} 5 is an element of the space
C*((—e,e),I(T4S,)) and thus is intrinsic. In particular, this implies that the covariant
derivative of a tensor field on S,, expands with respectto =3 inan intrinsic way. Let us
take for example a tensor field 7%(z3) viewed as a tensor field on S, or as an element
of C*((—¢,2),T(T{S,)) . The covariant derivative DZ*T5(z3) defines an element of
(T, S,,) . But the previous expansion implies that in the space C>((—¢,¢), (T35 5S,))
we have the expansion

DTy (x3) = Do T3 () + s (1™ )§ (23) T3 (23)Do by, — s ()5 (23) T (3) Db,

and thus the covariant derivative D*3 expands with respect to D . Similar formula can be
found for other type of tensors.

3.B 2D-OPERATORS AND DEFORMATION TENSOR

We call 2D-operator an operator independent of x3 acting on ¥(.Sp) and taking values
in a tensor field space on Sy . We will see that the expansions of the operators L and T
involve naturally 2D operators on Sy . Let us define the following classical 2D operators:
we first recall that the change of metric tensor is the 2D-operator ~y : ¥(Sq) — I'(755))
defined by

Yap(2) = %(DaZﬂ + Dgzy) — bag2s, (3.7)

for z € X(Sy) . The change of curvature tensor is the 2D operator p : 3X(Sy) — I'(7250)
defined by:

Pap(2) = DaDpgzs — capzz + bgDpzs + DobG2,. (3.8)
Moreover we define the operator 6,(z) = D,z3 + 092, and the operator
Aaﬂ(z) = %(bngZﬂ — bgDazg). (39)

All these operators are intrinsic with respect to the mean surface S,. These operators
act naturally by extension on the space C*°((—¢,¢),(S;)) . Remark that the operator
Aqp is not symmetric. Thus we write A%, = a®? A, for the corresponding (1, 1) tensor
field.

The deformation tensor on Q¢ writes e;;(u) = +(V,;u; + V;u;) in any coordinate
system. We define the shifted deformation tensor as: é,;(w) = e;;(u) where w is the
shifted displacement associated with « . The following result gives the expansion of the
operators é;;
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Proposition 3.2 For w € C*((—¢,¢),(S,)) we have the expansions

és3(w) = Osws,
bas(w) = 1(B3wa — 2308 05w5 + Ou(w)), (3.10)
Cap(w) = 7a5(2)+ 3 (Caﬁwg — %bngwU - %bgDawU).

Remark that using the normal reduction of tensor fields, the first equation of (3.10)
is valid in C*((—¢,¢),2(Sp)) , the second in C*((—¢,¢),I'(71S0)) and the third in
C“((—s,s),F(TQSO)) .
Proof. (i) In a normal coordinate system we have using the equation (3.4),
es3(u) = Ozuz — Dby (w3)u; = Azus.
As u3 = ws We get the result.
(i1) On the same way we compute that
2eq3(u) = 3uq + Oqusg — 2F§3(x3)u5
using the fact that I';(z3) = 0. Using the relations u, = p?(x3)ws and (3.4), we have
2603(w) = Ol (3)wp + Opws + 2b8wp
= 3wy — O(23b8w5) + Opwsz + 208 wp,
and we get the result.
(iii) We have that
6aﬂ(u) = %(aa“ﬂ + aﬁuoz) - Fzﬁ(xfi)uv - Fgﬁ($3)u3-
Using (3.6) and (3.4) we get
eqp(u) = %(Dau5 + Dgu,) + x3w5Dabg — bopws + T3Capws.
We find the result using u, = w, — x3b§wﬁ and the Codazzi-Mainardi equation. [ ]

Recall that &2 (w) = ¢%(z3)é5q(w) . Using Proposition 3.2 and the expansion (3.3)
of ¢*%(z3) we can show that we have expansion (see [14]):

e5(w) = y5(w) + ) af(t")rh(w) + ) naf (0" A5 (w). (3.11)

3.C EXPANSION OF THE OPERATOR

In normal coordinates, the system (2.1) writes
—VinjMekg(u) = fz in Qf
A%kl (u) = 0 on Si.

u = 0 on I%,



where A7k = \g¥(23)g" (z3) + 21(g%* (23) 7% (z3) + g*(23) g7 (x3)) . Hence, using the
definitions of L and T and the fact that the covariant derivative ¥V commutes with the
metric, we have:

Li(w) = 4,7V, ér(w) and Ti(w) = A; 2 e (w).
Hence we have
Li(w) = AV;é5(w) + 2uV,eé(w) and Ti(w) = M63el(w) + 2uéd(w).  (3.12)

It is clear that the operators L and T admit power series expansions with respect to x5 .
In order to set the problem in a manifold independent on «, we make the following scaling
on the transverse variable: We define the manifold Q@ = S x (—1,1) and we set I =
(—1,1) . A normal coordinate system on € is a coordinate system of the form (z,, X3)
where {z,} is a coordinate system on S and where z3 = X3 is the corresponding
point in ¢. We note I'; the upper and lower faces of Q2 and I’y the lateral boundary
correspondingto 95 x I.

We then define the 3D elasticity operator on Q as the operators L(c) and T(e):
L(e) : C*(1,5(Sp)) = C=(I,%(So)) and T(e): C=(I,%(So)) — B(T'+),

obtained from L and T after the scaling z3 = £Xj3. Hence in any normal coordinate
system, we have

(L(g), T(2))(za, X35 Da, 0x,) = (L, T)(2q,eX3; Do, e ' Ox,).

In the following, if w € C>(I,X(Sp)) is independent on &, we set &2(c)w the defor-
mation tensor after the scaling. Hence we can write the equation (3.11) as

€5(e)w = i ek (ég(s)w)k (3.13)
k=0
where forall £ > 0,
(5(e)w)" = XEF)35(w) + k XEDF)2A y(w). (3.14)

Using the previous expansions, it is easy to show that the operators L(c) and T(e) ex-
pand in power series of . The following theorem gives the expressions of these expan-
sions. As it is a simple computation, the proof is given in Appendix A. Note that all the
framework required to obtain these expansions is present in [23].

Theorem 3.3 The operators L(s) and T(e) expand in power series of ¢ for ¢ < ¢
and write

L(e) =e72 ZekLk and T(g)=¢"* Zska,
k=0

k=0
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where we have the following expressions: for £ = 0, we have L% = (0 9%, et T° =
o dx, , where {(w) = (pwa, (A + 21)ws) , moreover

Lzlr(w) = _:ubgaXswa + ()\ + M)Daaxgws - X3ub§8§(3wa,

3.15
Ly(w) = —pub20x,ws + (A + u)72(dx,w), (3.15)

and

g

L2 (w) = —puX3c20x,w, + X 3b2bPdx,ws — ubDyws — ,ubgbf,‘wa + AD,74 (w)
+ 2uDa7g (w),
L2(w) = —puX3c%0x,ws + (A + u)bfn;‘ (0x,(X3w)) + ubgvg(w) + uD%y (w).
(3.16)
Moreover, for n > 3, we have
Lo(w) = —pX3 7 (0")a0x,ws + X537 (0" 71)5b00xws — pX52(0" )56 (w)
+ AD, (b")372 (X3 ~w) + 2uDa (5 (e)w)" ™
+ 2 Y XA ()3 (@ (e)w)" T Dal
n— 1o~ n—2—k v
— 23 XE ()3 (85 (e)w) " Do
(3.17)

and
Lg(w) = —Mngl(b")gaxe’wg + ()\ + ,u)(b"il)gfyg (an (ngflw))

n—1ya, B yn— n— g e (3.18)
+ (= 1" )578 (X5 72w) + i g (0D (6" 505( X5 *w),

where forall £ > 0, (ég(s)w)’C is given by the equation (3.14). For the traction opera-
tor, we have

T (w) = pb,(w) — pX3b20x,w,, and T2(w)=0 for n > 2, (3.19)
and
Thw) = A" 55 (X5 'w) for n>1. (3.20)

4 FORMAL SERIESSOLUTION

Using the theorem 3.3, we associate with the operators L(¢) and T(e) the formal
series L[z] and T[e] defined by

Llg] =<2 ZekLk and T[] =¢! Zska.

k>0 k>0
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We recall that if £ and F are two function spaces, if ale] = >°,.,£¢* is a formal
series with coefficients a¥ € L(E, F), and if ble] = 3_,.,*b* is a formal series with
coefficients b* € E, then the formal series c[e] = ale]b[e] is defined by the equation
cle] = 350"k where forall n, ¢ =37, ako"F.

Let fle] = 3",50c"f* be a formal series with coefficients in C(1,%(Sy)) . The
three-dimensional formal series problem is the problem of finding a formal series w[s] =
>, "w” with coefficients in C>(1,%(Sp)) , solution of the equations

Lielwle] = —f[e] in Q,
Tlelwle] = 0 on Ty, 4.1)
wle] = 0 on T.

In the following we denote by T : $(Sp) — C*(I,%(So)) the canonical injection.

4.A FIRST TERMS

We will first consider the two first equations in (4.1):

Llelwle] = —fle] In Q,
wle] = ~fl w2
Tlelwle] = 0 on T..
These equations are in fact collections of equations written:
" Llwmt = —f"? in Q,
Vn € N, 2e=0 ! (4.3)
S Tiw™™ = 0 on T..

For £ < 0,wepose f‘= 0. Accordingto [18], we pose p = A(A+2u)~. For n =0,
the equations (4.3) write

(4.4)

LPw® = 0 in
Tow® = 0 on TI\..

The transverse components of this equation write
(A+21)0%,w§ = 0 in Q,
(A +2u)0x,ws = 0 on Ty,

We thus get immediately
X3
(ﬁggwg dX3=0= 8X31Ug(X3),

-1
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whence wd(z,, X3) = 29(z,) Where 22 is a function independent on X3 . Similarly,
the surfacic components of (4.4) write

pox,ws = 0 in Q
/,LaXswg = 0 on I4..

Hence in a normal coordinate system, we have w?(x,, X3) = 2%(z,). Moreover, it is
clear that the components z, define a 1-form field on S, , independent on X35 . Thus we
have the intrinsic equation w® = 2° in the space C*°(1,%(S)) .

For n = 1 the equations (4.3) write
Lw! = —L'w® in Q,
(4.5)

Tow! = —T!w® on T4.

Butas w® = 2% is independent on X3, and using the expressions (3.15) of the operator
L' and (3.19), (3.20) of T', we see that L'w® =0, T!(w%) = pb,(2°%) and Ti(w®) =
A2 (2%) . Thus the transverse components of the equation (4.5) write

(A +21)d%,w} = 0 in Q,
(A +21)0x,w; = —A5(2°) on Ty

These equations define a Neumann problem whose compatibility condition [y (2°)] J_’i =
0 is always satisfied. Hence we have

8X3w§(X3) = aXsw;,(_l) = _p,yg(ZO)’

and thus w3 = z3 — X3py2(2°) where, as before, the function z3 is independenton X3 .
Moreover, the surfacic components of the equations (4.5) write

pox,we = 0 in Q,
pox,wt = —pb, (2% on Ii.

As before, we deduce that w! = 2! — X36,(2°%) where 2! does not depend on X3 and
defines a 1-form field on Sy . Finally we have the equations

w’=2" and w!=z'+ V20, (4.6)

where 2% and z! are elements of the space 3(S,), and V' : $(S;) — C*(1,%(S)))
is the operator defined by

Vi(2) = —Xaf,(2) and V() — Xapr2(2). (4.7)

The equation (4.6) show that the first terms of the formal series w[e] solution of the
problem (4.2) can be computed from the terms 2° and z! and are polynomials in X5 .
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4B FORMAL SERIES REDUCTION

Let wle] be a formal series solution of the problem (4.2). The coefficients of this formal
series satisfy the equations:

0% wk = —SF Lkt — 1R in Q
Vk € N, { & 2t d

k k p—1T¢,, k-2 (4.8)
Ox,w* = >, (7' T'w on T;.

In the previous subsection, we showed that the two first terms of the formal series w/e]
depend on elements of X(.Sy) . This dimension reduction constitute the main point of this
section. We now resume the general facts.

Let % fixed, and let us suppose that there exist & + 1 elements 27 € (S;) for
j =0,...,k,such that for j < k, the terms w’ depend only on 2% ... 27 and on
f° ..., f772 . The equation (4.8) for £+ 1 show that w**' is a solution of a Neumann
problem on I, which implies a compatibility condition on the right-hand side. This
compatibility condition yields an equation for the terms 27 for j = 0,... ,k and f’
for j = 0,...,k — 1. The term w**! is hence the sum of a term depending on the
27, for j =0,...,k, aterm depending on the f7 for j = 0,...,k — 1, and of an
element of the kernel of the Neumann problem. But this kernel turn to be precisely the
space Y(Sy) . We name this element z*+1 and this shows by induction that there exists
a family {z*} of elements of 3(Sp) such that for each %, the term w* depends on
the z7 for j = 0,...,%k and on the terms f/ for j = 0,... ,k — 2. Moreover, the
terms {z*} satisfy a collection of equations coming from the successive compatibility
conditions.

The goal of this section is to show that the relation between the {w*} and the two
families {2*} and {f*} can be written as an equation in formal series: there exist formal
series operators V]| and Q[e] such that

wle] = VIe|z[e] + Qle] f[e], (4.9)

where the coefficients V* are operators acting on %(S;) and taking values in the 3D
1-form fields space. The coefficients Q* are operators on the 3D 1-form fields. The
computations made in the previous subsection show that we can take V° =7 and V! =
V! and for Q° and Q! the null operator.

Moreover, the compatibility condition can also be written
Ale]z[e] = Gle] fle] (4.10)

where Ale] is a formal series with 2D operator coefficients taking value in X(.Sp), and
Gle] is a formal series with coefficient operators on the 3D 1-form field space, taking
value in (Sp) . Hence, the formal series wle] is a solution of (4.2) if and only if there
exists a formal series z[] with coefficients in (.S,) satisfying the equations (4.9) and
(4.10).

19



In the previous computations, the compatibility conditions at the rank 0 and 1 where
obviously satisfied. The operators A™ and G" are determined from the compatibility
conditions at the order £ > 2. We now show the existence of the operators involved in
the previous equations (4.9) and (4.10):

Theorem 4.1 (i) Forall £ € N, there exist in a unique way:

e an operator V¥ : £(S;) — C*(I,%(Sp)) polynomial in X3 with 2D operator
coefficients, vanishingon Sy for £ > 1,
e a 2D operator AF : 33(S;) — £(Sp),

such that the formal series Vie] = Y°,.,*V¥ and Ale] = 3, ., c"A* satisfy the equa-
tions - -

{L[g]V[g](z) = —T oAl](2), (4.11)

forall z € 3(S,) . Moreover, V° is the canonical embedding Z and V! is the operator
defined by (4.7).

(if) Forall £ € N, there exist in a unique way:

e an operator Q% : C*°(I,%(Sp)) — C*(I,%(Sy)) composition of 2D operator
and integration with respect to X3, and vanishing on the mean surface,

e an operator G* : C*(I,%(S;)) — X(S;) composition of 2D operators and
integration with respectto X3 on I,

such that the formal series Gle] = 3", ., ¢"G* and Q[e] = 3,5, ¥ Q" satisfy the equa-
tions - -

{L[a]Q[s](f) =ZoGE(f) - f, (4.12)

Tle]Q[e](f) =0,

forall f € C*(I,%(S,)) . Moreover the operators Q° and Q' are the null operators,
and we have

6'(f) =3 / F(X0) dXa (4.13)

Proof. We will show the existence of formal series V[e], Ale], Qle] and G[e] satisfying
the condition of the theorem, and such that the following equations are valid:

{L[e]V[e]IoA[s], . {L[e]Q[s]IoG[e]Id, i

T[e]Q[e] = 0,
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in the corresponding formal series spaces.
1. We first show the existence of the formal series V[s] and Ale] satisfying the first
system in (4.14). This means that

"_ Lkvn—k — —IA"_Z,

Vn e N ?‘0 o (4.15)
TRV k =0,
k=0

These equations write

82 V? = — Zn_ E_lLkV"_k _ E_IIAH_Q,
VneN { °° r= (4.16)
Ox, V" = — S0 (I Thyn—k,

We set A~ = A2 = 0, and the previous subsection shows that (4.16) is satisfied for
n =0 et 1 with the operators V° et V! defined in the theorem.

Let » > 0, and suppose that the operators V¢ and A*2 are determined for ¢ =

0,...,n, such that the operators V* are polynomials in X3. let z € %(S;). Con-
sider the equations
% v = =S piietkyrttcky _ITAM 2 in Q, @17)
Ix,v = — S ATyt on T\.. '

with unknowns v and A" 'z . This is a Neumann problem on I, and the corresponding
compatibility condition write

1
/ 0%, vdX; = [9x,0]" ),
-1

which writes again
2A™ 15 Zn+1 (Lkvn—l—l k )(Xg) dX;
+ 3 pE L (TR HI=k ) (1) — SRt (TRVrH k) (—1). (4.18)
This equation defines the operator A”~!. The unique solution » = V**!z vanishing on

the mean surface (for X3 = 0) of the equation (4.17) yields the operator V**! | It is easy
to verify that V**!is a polynomial in X5 with 2D operators coefficients.

2. The second system in the equation (4.14) means that the formal series Q[e] and G[e]
satisfy the following equations:

S L FQE = TG 2 — 621d,
Vn € N, k=0 (4.19)
ZZ:O Tn—ka — 0,

where 62 is the Kronecker tensor. Setting Q° = Q' =0 and G2 = G~ = 0, we see
that these equations are satisfied for n = 0 et n = 1. Let f € C>(1,%(Sy)). For

21



n = 2, the problem is to find g and G°f solution of
0%, = C'IGF—0'f in Q,
8X3q =0 on Fi"

This Neumann problem has a solution if and only if a compatibility condition is satisfied,
and we find the expression (4.13) for the operator G°. The operator Q? is thus the unique
solution of the Neumann problem vanishing for X5 =0:

X3 u
Q*f = / ( / HZGf - )t dt)du. (4.20)
0 -1
Suppose now that the operators Q¢ and G‘~2 are determined for / = 0,...,n, with
n>3.Let f €C>®(I,2(S;)) and consider the problem:
0%, = =S CILHEQRf +0IIGLf in Q, a2
Ox,g = — g T FQES on T, |

with unknowns g and G"~!f. Again, this problem has a solution if the compatibility
condition

26" f = Yop, [, (LHEQRF) (X5) dXG
— ke (THFRQEF) (+1) + Yf, (TPFFQEF) (1) (4.22)

is satisfied. This equation defines the operator G™~!, and the operator Q™*! is the unique
solution operator vanishing for X3 =0. [ |

Let us consider a 2D operator acting on z = (z4,23) € X(Sp). The notion of
surfacic derivative order in z, or z3 isintrinsic. Hence if A is an operator taking values
in 3(Sp) , we set a;(j) the derivative order in z; of the operator A, , and we write

= () 3)

Moreover, we define the order relation:
degA<degB <<= Vi,j a(j) <b(y),

where the b;(j) are the orders of B. We also make the convention that an operator
with negative order of derivative is the null operator, and that the null operator has the
derivative degree —oco . Note that this notation extends obviously to 2D operators acting
on the space C* (I, Z(SO)) . Using the previous theorem, we see that

degV0=< 0 _(fo) and  deg V! = ((1) (1)> (4.23)

—00

We now give the following result:
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Proposition 4.2 With the notations of Theorem 4.1, the operators V* are polynomials of
degree k£ in X3 forall £ > 0. Moreover, for all p > 0 we have the estimates

2p 2p—1 2p 2p+1
2p 2p+1
degV? < (2p 12y ) and degV < (2]) 1 2 ) , (4.24)

2p4+2 2p+1 2p4+2 2p+3
2p < 2p+1 < . .
deg A < (2p 1 2 2) and degA < <2p 3 242 (4.25)

Proof. We prove this result by induction using the formulas in the proof of Theorem 4.1
and using the expressions of the operators L* and T* and their surfacic derivatives orders
(see [14] for details). Note that we have similar estimates for the surfacic derivatives order
of the operators Q* and G* (see [14]). n

As corollary of Theorem 4.1, we have the following result:

Theorem 4.3 The formal series (V[e], Q[e], Al], Gle]) have the following properties:
Let f[e] be aformal series with coefficients in C*° (1, X(So)) ,

(i) If z[e] = X,.,¢%2" is a formal series with coefficients in 3(S,) satisfying the
equation -

Ale|z[e] = Gle] fle], (4.26)

then the formal series w|e] defined by

wle] = V[e]z[e] + Qle] f[e], (4.27)
is a solution of the problem

Lelwle] = —fle] in Q, (4.28)

Tlelwle] = 0 on T'..

(i) If wle] is a 3D formal series solution of the problem (4.28), then the formal series
z[e] with coefficients in X(.Sy) defined by

z[e| == wle] ‘ngo , (4.29)
satisfies the equations (4.26) and (4.27).

Proof. (i) Let z[z] be a formal series with coefficients in X(S,) . The equations (4.14)
show that

LielVie]z[e] = —TA[e]z[e], and LelQlelf[e] = ZGle] £le] — flel,
T[e]Q[e] f[e] = 0.
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By summing these equations, we see that the formal series wle] = Ve]z[e] + Q[e] f[e]
is a solution of (4.28) if the condition (4.26) is satisfied.

(i1) Reciprocally, if w(e] is a solution of (4.28), then we show by induction the existence
of a formal series z[¢] with coefficients in ¥(Sy) satisfying the equations (4.27) and
(4.26) by using the solution operators of the theorem 4.1. The fact that the operators V*
for £k > 1 and QF for > 0 vanish on the mean surface shows that z[e] is the restriction
of wle| to Sy . Thus the formal series z[e] = w|e] |X3:0 satisfies the equations (4.26) et
(4.27), and this proves the result. [ |

4.Cc FURTHER TERMS
The following theorem gives the expression of the first terms of the formal series given in
Theorem 4.1. In particular, the exact expression of the “bending” operator A? is given.

In the following we denote by M the membrane operator (see [3, 21, 23, 26]) defined
by the equations

{Mg(z) = —AD,72(2) — 2uDa72(2), (4.30)

Ms(2) := —\b2vj (2) — 2ub§E(2).
where \ = 2\u(X + 2p) L. This operator is associated with the bilinear form :
(Z, zl) = Maﬂa&,}/aﬂ(z)’}%d(z’)dsﬂa
So

where M@P9% s the tensor defined by MP% = Xa®Pq7% + (a0 a? + a*9aP°) . The
expressions in the following theorem can be compared with those found in John [18].

Theorem 4.4 We consider the formal series of Theorem 4.1. The formal series Ale] has
for first terms A° = M the membrane operator defined by (4.30) and A' = 0. The first
terms of the formal series V[e] write

VO =17, V},(z) = —X30,(z) and Vé(z) = —X3pva(2).
Moreover we have
2 2
V2(z) = ZipDoy2(2) and  V3(z) = 3ip(p2(2) — pbevs(2) — 26873 (2)).

The first term of the formal series G[e] writes G%(f) = %f_ll f(X5)dXs. In the follow-

ing we set m(f) = ¢ (ZG°(f) — f) where £(u) = (pu,, (A + 2p)us) . The operator
G! then writes

GL(f) = %/_1 (/_13(/\D,,m3 — ub2m,)(f)du) dX;
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and

61 =5 [ ([ tm) = itgma) () du) A

Moreover, all the operators G* for k£ > 1 are factorized through the operator m : there
exists operators R* : C>(I,%(Sy)) — X(Sp) suchthatfor £ > 1 we have G¥ = RFom.
The formal series Qle] has for first terms Q° and Q' the null operators, and Q? writes

Q% (f) = 0X3 ([, m(f)(t)dt)du. Like for the operators G¥, the operators Q* are

factorized through m for all & > 2. Finally, the operator A? is given by the formulas

A2 = —2ubDap2 — 2upb3D,pl + up?Do(b2h) + % 1pDo bl
+ 3upDab2 ol + 2ubgDapl + 21pEDabl — 51D biD*0
+ 31D DP0, — Db A, — 31up°D DDy — $upDaD*Dyryy
— 20up* Do (c§7Y) + 2upbiDabeyy — 2ppb3Dablvy — 2pupbysDab?
+ 2ubyDab%yE + 2upbDobg vy — pp* Do (b3b55) — 2 upDy (c§vl)
— 5upDabZb)7h — 3ub§Dablry — §ubeDabl — §ub§Dabiye
— b3 A§DabY + 2ubyiDaby + 2ubne Dbl + 2ubib3 Dol
+ 377D, (B8Ms) — 3pByD, M + LpDabeMs.

(4.31)

where Mj; is given by (4.30), and

AL 2 2 pDDapl, + 2uDD, p, + upcdpl, + Sucspl + Lup(3p — 2)b205 %

+ 2u(2p — 1)02b% 8 — 2upDDyblyE — uD Dabyye — 3uD Dabgyy
— up*biDDayy — 2upD Dab2vy — 2upb3DPDoyy — ZuD7~2 Db,
— 2uDbeDoyY — 2updyy — Lpudgyf — Lup(3p — 2)b3bgbsY
— upelbly — 2up(3p — 2)blesyy — 2u(2p — 1)bAchE — 2u(3p — 2)bgchy]
+ 1pD*D,M; + 1p(3p — 2)bb2M; + $pcaMs.
(4.32)

Proof. We first prove the results concerning the operators in z .

1. We will first compute the operators A° and V? by using the formulas (4.18) and
(4.16). Using the equations (3.15) and (4.7) we compute that if z € ¥(S,) we have

LL(Viz) = {ub%0, — (A + u)pD,2} 2,
Li(Viz) = {(A+2u)pb%vs — (A + 1)D%,} 2,

where we used the fact that v2(V'z) = Xg{bgfyg — D*4,}z . Moreover, using the equa-
tions (3.19) and (3.20) we have

TL(V'2) = —XsupDoysz  and  T3(V'z) = X3{ApbZyj — AD%0,} 2.

(4.33)
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Finally we have using the equations (3.16)
L2(V02) = {—ub20, + AD,7v% + 2uDyv2} 2,
L3(VO2) = {(A+2u)b57§ + uD0,}z,

and similarly T2(V°z) = 0 and T3(V°z) = X35Ab§~5z . Collecting the previous com-
putations, we see that the transverse component of the equation (4.16) writes

R, Viz = { pba’yﬂ bi~g + pD%0a}z — (A +2u) 'Adz in Q,
8X3V§Z = Xgp{ pba"}/ﬁ + D*6, — b[ﬂa}z on I'4.
The formula (4.18) written as a compatibility condition then shows that we have

(4.34)

(4.35)

2A%z = dp{—pb%yj — bivg 2.

But we have 2up = X, and thus it is clear that we have A = M3 (see (4.30)). Similarly,
the surfacic components of (4.16) write

{ 9%, V2iz = {pDg7e — A1 —p)u~'Dp7s — 2Da73}z — ptASZz i Q,

aX3Vc27'z = X3pD0’}/g(Z) on Fi‘-
(4.36)

The compatibility condition then implies that
2A0z = {=2\(1 = p)D,75 — 4puDavs } 2.
and using A(1 —p) = X we easily get Al =M, (see (4.30)).
Now by taking the integral of (4.35) from —1 to X3 and using the boundary condition
on T, we find (recall that A = M3):
Ox,V32z = (X3 + 1){—pb27j — bi7§ + pD0a — (A +21)"'Ms} 2
+p{pba'yﬁ D%, + 03575}z in Q.

Replacing the expression of M3z we find 9x,V2z = X3p{D%0, —pba’yﬂ b5}z . As
D*8, = p& — bﬁfyﬁ we get the expression of VZ by simple integration.

Using the fact that A2 = —\(1 — p)D,72 — 2uD,72 , the equation (4.36) writes
0%, Viz =pD,y2(z) in Q and Ox,Viz = X3pD,7%(z) on Ty

Thus we easily find that x,V?z = X3pD,72%(z) and the result by integration.
The goal is now to compute the operators A! and A%. The equation (3.14) shows that for
w € C(I,%(Sy)) we have (£2(e)w) = X3b@yd(w) + X5A% (w). For z € 3(Sp)
and using the previous results, we compute successively that:

LL(V22) = Xa{—upb2Dy2 + (A + p)pDyD%, + (A + 1) £DeM; — upb2Dye} 2,

Li(V22) = X3{— (A + 2u)pb®D%5 — (A + 2u) Zb2M3 + (X + p)pD*DyS} 2,

2u o
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and
Tzlf(VZZ) = XTgp{MDUDaea + lDaM?, - MbaDafY:/l}z’
TH(V22) = G Ap{D7Dy — byD 0 — 5HoMa} 2.
Moreover we have

L2(V'2) = Xs{uc2, — pb2b20s + ppb2Deyy + pblgh20q
— AD, D0, + ApD,b5y, — uDaD,0% — uD,D*8, + 2upD b3, }z
and
V' 2) = Xa{upcary — (27 + 3Dt + (2X + 3u)pcayy
— ppD*Dyy, — uDb0, } 2,
while TZ(V'z) = 0 and T3(V'z) = XIA{—b5Dab” + pc2yy}z . Finally we have
L3(V°2) = X3{—ucq0, + AD 0375 + 2uDab3y) + 2uDa A%,
+ 2u72Dob” — 2172 D% } 2,

and
L3(V°2) = Xs{2(\ + 2u)c§vl + nDbi0s + pb) D05} 2,

while T3 (V0z) = 0 and T3(V°z) = X3Achvg(2) .
Using the formula (4.18) for the operator A' we see easily that A! = 0. As we will see,
the computation of the operator A? via (4.18) only requires to compute the mean value
[V3z]*1. Using the previous equations and integrating the equation (4.16) for n = 3
from —1 to X3 we find that

0x,V3z = 2ip{~D,D,0" + b2D 7" — 2D M}z + (35 — 1{D,D,6" + DD,

+2pD,D, 68" + D, Ms — 2pD,, bafyy —20%DyyY — 299DybY — 2D, A% ) 2.
But we compute that we have
5(Dabs + Dgba) — Aap = pap — b3750

and in particular D%, = p% — bﬁy“ . Hence we deduce that we have

[V3 ] ={- pDUpV Dapg‘ D M3 + 3pD bayﬁ 4Dab§7§
+ 800Day + 5pDabiy + 305 Day 4+ 575 Dbl 2. (4.37)
Similarly we have
Ox,Viz = 3{ p2D°‘Da”y —|—p2b‘*D59ﬂ+2pbo‘D 68 —2p? oy — 2p057ﬁ+p beMs}z

(5 = 1)(1 — p){phaD,8” + B3DL8° — 2pent — 26598 + LbeMy}z.
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By integration we find using the fact that 5*’A,5 = 0,
[Viz]*1 = {—5p"D*Dayy + 5(3p — 2)b30% + %(2p — 1)b505
— 5(8p — 2)b3bns — 2p(3p — 2)cany — 3(5p — 3)cgva + & (3p — 2)ba Ms] ().
(4.38)
Now using the equation (4.18) we have

1
A2y — — / (L1v3z SV 4 PV + L4V0z> dX,

1

+1
+ [T1V3z STV 4+ TV 2 + T4V°z] . (4.39)

We verify that only the term [V32]*] is involved in this expression. This is due to the
fact that we have

1 11
- [ Lz axs s [Thvs)] T = urglviat - AD, Ve !
-1 -1
and

1 +1
- / LI(V32)dXs + [Té(vg’z)} — 2ub®[V32] ! — uDVE 2]t
-1 1

The expression of A% comes from the computation of (4.39): see the details in [14].

2. Now we investigate the computation of the operator G'. Recall that the operators G*
are determined by the equation (4.22). We compute successively that

L;(Q2f) = - fj(ls :U“bgma(f) du + ff(f()‘ + M)Dam?:(f) du — X?)Mbgma(f)a

and
Ly(QF) = — [ pbams(F) du+ [77 (A + p)7& (m(F)) du,
while
THQ?f) = [} f” uD,ms(£) dt dut ;52 [ pb2ma (f) dt du—pXsbg 7 ma(f) du,
and TA(Q?f) = [, [* M2 (m(f))dt du . Thus using the equation (4.22) we find

2GLf =~ [ f_Xf pbem (f) dudXs + [1, [72 AD,my(f) dudXs
— 1 Xapbema(£) dXs — [1 " pbema(£) dtdu + [ pbema(£) du,
and we find the result after an integration by part. Similarly we have
2G3(f) = — [, [T mbma(f) dudXs+ [} [P (A4 p)ye (m(f)) dudXs

— 5 [ e (m(F))dtdu — [0 [ M@ (m(f))dt du,
and this yields the result.
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The factorization properties of the operators G* and Q* are easily shown by induction
using the definition of the formal series Gle| and Qle]. The reader interested can find
the expression of G2 and Q2 in [14]. n

Now we give a result showing that the operator A? “contains” the classical bending
operator. Recall that Koiter’s bending operator B writes

Br = —2upb2Dapl — 2upDab2pl — 2ub2Dypl — 2D, b2 ok, (4.40)
Bs = ZupDDapl + 2uDD, gl — 2upclpl — 2uch ps. '
This operator is associated with the bilinear form :
! 1 afod !
(2,2") — 3 MP%° pos(2) prs(2')dSo.
So

Recall that the notion of Sobolev space is consistent on manifolds, as the notion of deriva-
tive order. We denote by H*(S;) the Sobolev space of order k on S,. For tensors,
we easily can define the space H*(S,) corresponding to the type of the tensor. Hence,
z € H' x H%(S,) means that the 1-form field (z,) belongs to the space H'(Sy) and 23
belongs to H?(.S,) . We can also naturally define the space Hj(S,) of functions vanish-
ing on the boundary, and similarly f € H2(S,) means that f ‘aso =0, f \650 = 0 where
0, denote the reentrant derivative along the boundary of S,. With these notations we
have

Proposition 4.5 Let z and n € X(Sy) . If i satisfies the boundary condition n ‘aso =
0, then we have

(A2 = B)2, )y | < C (172 g Vs,

+||z||H1XH2(S(]) ||’7<"7)||L2(50) + ||7(z)||H1(SO) ||"7||H1><H1(50)) ’ (441)

where B is the bending Koiter operator and C' a constant depending only on Sj .

The proof of this result is presented in the appendix B at the end of the paper. As corol-
lary, the restriction of A? to the space of inextensional displacements coincides with the
restriction of B: if Vg = {2 € Hy x H2(Sy)|Vas(z) = 0}, then

VzaUEVB, <A2Zan>: <Bzan>
This result is consistent with the convergence result in [3, 26].

Note that in the case where the boundary 95, is empty, we impose to the loading
forces and to the displacement solution to be orthogonal to the rigid displacements in R? .
We can expand the six rigid displacements of R? in normal coordinates and hence to each
rigid displacement R; is associated a formal series R;[¢] inpowersof ¢ (i =1,...,6).
Thus the solution z[e] has to fulfill a new condition due to the fact that the reconstructed
displacement w(e] is orthogonal to the formal series R;[¢| for the L? scalar product in
Q.

29



5 BOUNDARY LAYERS

We consider the formal series (V[e], Q[e], Ale], G[e]) of Theorem 4.1. If z[¢] isa
formal series with coefficients in ¥(Sp), and if this formal series satisfies the equation
(4.26), then the formal series wle| defined by the equation (4.27) is a solution of the
problem (4.28). However, we can show that for all formal series z[s] = Y, ,c2", the
trace

fw[g] |F0 = (V[&]Z[S] + Q[g]f[s]) ‘Fo

does not vanish in general and thus the problem (4.1) does not have a solution in general.
In the following, r denotes the geodesic distance to the boundary 9S,, and s denotes
the arc-length along 9S,. We can show that in this coordinate system, the metric a,g
satisfies a,;, = 0 and a,, = 1 in a neighborhood of 95, , while az;s =1 on 95, .

The goal of this section is to show that under certain conditions there exist a formal

series
(p[{—:] = Z gk(Pk(Ra S, 333)

k>0

with boundary layer coefficients *(R, s, z3) exponentially decreasing with R = r /¢,
such that the equations

Llelele] = 0,
Tlelele] = 0, (5.1)
elel | poo + (VI 2[e] + QlElfEN) |, = O,

are satisfied for given formal series z[s] and f[e], where the formal series L[¢] and T [¢]
are obtained by doing the change of variables (r,s,z3) — (R, s, X3) in the operators
L(e) et T(e).

We then show that the existence of a formal series [c] with exponentially decreasing
coefficients satisfying the equations (5.1) relies upon the fact that the formal series z[e]
satisfies a condition written

dle]z[e] = hle] fle], (5.2)

where d[¢] is a formal series with coefficients operator taking values in C*°(9S,)*, and
such that

d’z = (2,, z,, 23, 0, 23) |350 )
Thus, if z[¢] satisfies the equations

{AMzM = G[e]f[e], (5.3)

dlelzle] = hlelfle],
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then there exists a formal series lc]| of boundary layer coefficients satisfying the equa-
tions (5.1), and moreover, the formal series w(e] defined by (4.27) satisfies the system
(4.28).

However, the problem (5.3) does not admit a solution in general. When it is possible,
as in the case of plates, is gives an asymptotic expansion.
5.A THREE-DIMENSIONAL BOUNDARY LAYER OPERATORS

Consider the coordinate system (r, s, X3) in a neighborhood of T’y in Q. We set

1
R= r and thus 0, = —Opg. (5.4)
g

9

The coordinate system (R, X3, s) isdefined on the manifold Xt x9S, where X+ :=
Rt x I > (R, X3) is a semi-strip. The boundary of ~* decomposes into a lateral
boundary v, := {R = 0} x I and the two half-lines v, := Rt x {X3 = *1}. In
coordinates (r, s, x3), we write (L, T)(r, s, z3; d,,ds,03) the 3D operators. For ¢ < ¢,
we define the operators (L(g), T(g)) on * x 95, by the formulas

{E(s)(R,s,Xg;aR, 0s,0x,) := L(eR, 5,eX3;67'0R, 05, '0x,) and 55)

T (e)(R, s, X3;0g, 05, 0x,) = T(eR, 5,6 X3, 10r, 05,61 0x, ).

The formal series (L[e], Te]) are then the formal series associated with these operators
using the Taylor expansionin R =0 and X3 = 0 of the coefficients.

We then write

Lle] =72 Zekﬁk and Tle] =" ZskT’“,

k>0 k>0
where
LF:C® (T %S,)° = (R %x8S)" and  T*: C®(T+x8S,)° — € (14xS,)’

are operators of degree 2 polynomialsin R and X35.

We compute that the first term of the formal series L[e] writes, using the fact that the
metric tensor is the identity on 9. :

LY () = w05k + 0%,9r) + (A + 1)Or(0rUr + Ox,13),

L) = p(9%s + 0%,1bs), (5.6)
L3() = p(0xs + 0%,03) + (A + 1) Ox, (Ortr + Ox,Vs)-
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Remark that this operator is independent on s, and that it does not depend on the geome-
try of Sy . In particular, it is the same as for plates. Similarly, the first term of the formal
series T[] writes

Tr(¥) = 1(0x,¥r + Orts),
T (%) = ndx, s, (5.7)
T3 (%) = (A + 2)Ox, Y3 + AIpYg.

As in [7], we introduce the following spaces: Let $3(X*) be the space of C> functions
¢ on the semi-strip % except in the non regular points (R = 0, X3 = £1), and such
that ¢ is exponentially decreasing with R in the following sense:

Vi, j k€N, e’ RF 0,0%, 0 € L2(Z1),

where 6 > 0 is a real strictly less than the smallest Papkovich-Fadle exponent (see [17]).
In the neighborhood of the two corners of the semi-strip, we impose the following: if p
denote the distance in ¥ to a point (R = 0, X3 = £1), we suppose that each ¢ in
H(XT) satisfies

Vi, jeN, i+j#0,  pH 0%, € LA(ET).
We then define the corresponding displacement space
H(EY) == {p = (¢r, s, 03) € HET)PL

As the arc-length appears as a parameter, the natural space in which the equations will be
posed is hence C*°(85,, H(EH)) .

We now define the associated range spaces: We set £(X*) the space of ¢ € C®(Xt)
such that

Vi j k€N, e RFOL, v € LA(SY) and Vi, j €N, pHH 050% v € LA(ZY)

with the same notations. Similarly, we introduce the same space corresponding to the
trace operators on 4 : let £(~+) the space of couple of functions * € C*(+4) such
that

VikeN, eBRFOLYT € L2(vs) and Vi,j €N, pHH2900% € L2 (qyy).
We then define the spaces
ﬁ(2+) = {¢ = (1/11%7%,103) € ﬁ(EJr)?’}a

and

A(s) = {F = (U, Ui, ¥5) € R(12)*}.
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Thus the operators £° et 7° act on the space C*(9Sy, $H(E)) and take values in
C> (89S, R(XT)) and C>(8S,, K(v+)) respectively.

The properties of the operators £° and 7° involve the rigid displacement space
3 spanned by the four following displacements, written in coordinates (R, s, X3) (see

[10]) :

1 0 0 —X;
Z'=10 Z2=11 Z=10 Z' = 0 . (5.8)
0 0 1 R

These displacements are in the kernel of the operator (£° 7°) without boundary condi-
tion on the lateral boundary. The operators £° and 7° have the following property (see
for example [10, section 5]):

Proposition 5.1 Let ¢ € K(X1), ¥* € &(1x) and v € C=(7,)*. There exist a
unique ¢ € $H(XT) and aunique 2 € 3 such that
L@—-2) = ¢ in T%
T(e—2Z) = 9 on 7 x7, (5.9)
(QO_Z)‘R:O""'ULYO = 0

Remark that as Z € 3 the left-hand sides of the two first equations of (5.9) are equals
to £%¢) et T°(p). The following corollary is clear using the fact that the operator
(£°% 7°) does not depend on s:

Corollary 5.2 If in the previous proposition we have 3 € C*(9Sy, &(ZH)), v~ €
C*>(8S,, K(v+)) and v € C=(T)* then the functions solution of (5.9) are in the spaces
¢ €C>(9S,,H(XT)) and Z € €*(0S,3) .

5.B FORMAL SERIES SOLUTION

We now want to find a formal series ¢[c] = Y-, e"¢"(R, s, X3) with coefficients in
the space C*(0Sy, $H(XT)) satisfying the equation (5.1) If we set wle] = Y, ., cFwF =
V[e|z[e] + Q[e] fe] , this formal series equation is equivalent to the following collection,
for k>0,

LOpF = =% Lloft in 9S, x T,
TOk = — 35 Th%** on Sy x v, x 7,
‘pk|R:0+wk|ro = 0
Note that the sum ¢|[e] \RZO + wle] |FO only make sense on the boundary. Using Proposi-

tion 5.1 we prove the following theorem:
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Theorem 5.3 Let (V[e],Q[e], Ale], G[e]) be the formal series of Theorem 4.1. For all
k > 0 there exist

e anoperator U : $(Sp) — C*(0Sy, H(ZT)),
e anoperator ©% : C*(I,(S;)) — C* (050, H(TH)) ,
e an operator 0% : 3(Sy) — C*(8S,,3),
e anoperator h* : C>(I,2(S;)) — C=(85,,3),
such that if z[¢] is a formal series with coefficients in X(Sy) satisfying the relation
o[e]z[e] = ble] fle],
where f[e] is a formal series with coefficients in C>(I,%(S;)) , then the formal series
ple] := V[e]z[e] + Ole] fle]
is a solution of the formal series problem
Llelele] = 0,
Tlelele] = 0, (5.10)
Plel [ o + (VIElzle]l + QleIfIEN) [, = O
Moreover, ¥°, 0% and ©!, h° and h! are the null operators and we have that
o'z = (& |aso )2+ (2 ‘aso )27+ (2 ‘aso )27, (5.11)
and
'z = (a72(2) |650 VZ' + (6.(2) ‘850 )24, (5.12)
where ¢; is a coefficients dependingon A and ;. , and ¥ is defined by

Vpz = (P72(2) |55, )Pr Wiz = (0:(2) |55, ) @5 and W3z = (p72(2) |4, ) s,
(5.13)

where @' = (pk, P., @s) is an element of $(X1) independenton ¢.

Proof. As for Theorems 4.1 and 4.3 we will show that the formal series satisfy in
fact formal series functional equations. We will show separately the existence of the
formal series W[e] and 9[e] acting on X(Sp) and ©[¢] and h[e] acting on the space
C>(1,%(So)) respectively. We conclude by summation.

1. We first show the existence of operator formal series U[e] = >, ,*U* and 0[] =
350 0k satisfying the equations -

Tlel¥le] = 0, (5.14)



in the space of formal series with operators coefficients acting on 3(S;) . For £ =0 and
for z € 2(Sp), the equations for ¥° and 9° write

LO‘IIOZ = 0 in 850 X E+,
TOU% = 0 on 39Sy x 74 X 7,
0 0 0 _
(U2 -2 z)‘R:0+Vz|FO = 0.
As V02 =T o z,we see that ¥ = 0 and ?° given by (5.11) are solutions.

Suppose that ¥* and o* are constructed for £ < n,where n € N, and let z € 3(Sy) .
We consider the equation in 2 :

LO% = =S Loty in 98, x BT,
TOp = S0 THU =tz on 9Sy x 14 x v, (5.15)
¢‘R:0+V”+1z‘ro = 0.
Using the properties of the operators £¢ and 7, we see that the right-hand sides of the t-
wo first equations are in the spaces C*(9Sy, &(X")) and C*(0S,, &(7+)) respectively.

Corollary 5.2 then shows the existence of ¢ € (95, H(X*)) and Z € (85, 3)
such that b = ¢ — Z is solution of the system.

Setting U™tz := ¢ and 2" 'z := Z, we obtain the existence of the operator at the
rank n + 1.

2. Similarly we show the existence of the formal series ©[e] = >, ., e*©* and ple] =
Y ksoc'h* satisfying the equations:
L[e]®Oe] = 0,
Tlel®e] = 0, (5.16)
(O] + bl]) g + QlEl |, = O,

in the space of formal series with operator coefficients acting on C*° (I, E(SO)) . The fact
that Q° = Q! = 0 shows that taking ©°, ©!, K and h! as the null operators is a
solutionfor £ =0,1.

Suppose that the operators ©F and h* are constructed for £ < n where n € N. Let
f €C>=(1,%(S,)) and consider the equation in 1 :

Lo% = =St ctert=tf in 9S8, x Bt
Top = =S TOI=tf on 9Sy x v x 7.,
1’b|1«2:0_|'(’)n+1f|1“0 = 0.

Using the properties of £¢ and 7¢, we see that the right-hand sides of the first two
equations are in the spaces C*(95,, R(X)) and C*(dSy, &(7+)) . Corollary 5.1 then
shows the existence of ¢ € C*=(95,,H(X")) and Z € C>(8S,,3) such that ¢ =
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@ — Z is solution of the system. Setting ©"*'z := ¢ and h"*'z := —Z proves the
existence of the operators at the order n + 1.

3. Now let z[e] is a formal series with coefficients in X(Sy) and f[e] a formal series
with coefficients in C> (1, 3(S,)) . By summing the equations (5.14) applied to z[¢] and
the equations (5.16) applied to fle], we see that ¢[c] := U[e]z[e| + Ole| fe] satisfies
the equation (L[e], T[e])[e] = 0 with the boundary equation

lel| oy + (VIEl2lE] + QLelFlel) |p, + (= Dlelzle] + blel fle]) [y = 0-
We deduce the result from these equations.
4. The equations satisfied by ¥! and 9! write, for z € 3(S,),

(L% T)¥'2=0 and (¥'z-2'2)|,  +V' 0.

Z‘BSO =

In coordinates (r,s,x3) the components of V! write V!(z) = —X360,(z), Vi(z) =
—X30,(z) and Vi(z) = —X3py2(2z) . Note that the operator (£°,7°) does not depend
on s and does not contain derivatives of s. Asonly V! |650 is involved in the equations
and thanks to the linearity of the operator we only have to look for the solution of the
similar problem with right-hand sides — X3 in each component.

(a) We first consider the solution (¢, Z) for the problem
(L%5T)e =0 and (p— Z)|,_,+ (—X30,0)],, =0.

Recall that Z* = (—X3,0, R) and that this element is in the kernel of (£°,77). Hence
the solution of the previous problem is simply ¢ =0 and Z = Z*. But as

(L8 T)(0r(2) [ 55, ) 2" = (0r(2) |5, ) (£°, T) 2" =0
we deduce that the couple ¢ =0 and Z = (6,(z) \850 )Z* satisfies the equations
(L% T)e =0 and (p—Z)|,_,+(V;(2),0,0) |5 =0.
(b) Consider now the equation
(LT =0 and (p—2)|,_,+(0,-X30)|5 =0. (5.17)

We note that the operators £° and 7° decouples into two parts: the operators £° and
72 acting on ¢, and the operators (£%, £9) and (72, 72) acting on (¢g, ©3) respec-
tively. In particular, the components ¢ and @3 of ¢ equal to zero, and the components
of Z onthe vectors Z', Z3 and Z* are zero.

Moreover, Proposition 5.4 and Lemma 5.5 of [10] yield that there exists a unique non zero
function @. of the space $(XT) such that

(L, T)p, =0 and o, |R:0 = X3.

The terms ¢ = (0,%!,0) and Z = 0 are solution of (5.17). We hence verify that for
z € X(Sp) the elements

Z=0 et ¢=(0s(2)],)0,70)
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are solution of the equations

(L5T)p=0 and (p—2)|,_,+(0,V((2),0)|,5 =0. (5.18)
(c) Finally we consider the equations

(L%Te =0 and (p—Z)|,_,+(0,0,-X;5)|,, =0. (5.19)

The splitting of the operator (£° 7°) in components s and (R, X3) shows that the
components s of the elements Z and ¢ solutions of (5.19) are zero.

Moreover the equations (6.4) and (6.5) of [10], using the parities of the operators £° and
T, show that there exists a unique element (L, %5) of the space $H(XT)? and a unique
constant ¢; depending only on A and p, such that

(Lh L3) (PR ?3) = 0 in ¥,
( }(2)77?30)(5%27@%) =0 on Y+ X V=,
@}-{ R=0 —C = 05
EHR:O = X
The couple ¢ = (9%,0,75) and Z = ¢; 2" is then a solution of (5.19). Thus the
elements
Z = (ap1a(2) |y, ) 2" and @ = (172(2)|,s, ) Pk, 0,93)
are solution of the system
(L% T)e =0 and (p—Z)|,_;+(0,0,V5(2))|,q = 0. (5.20)
The previous equations show the theorem. [
For all k, the operators ¥ decompose into 4 operators o} : ¥(S;) — C*(9So)
where 0¥z is the component of 9%z along Z*. We define also similarly the operators
b¥ : C®(1,5(Sp)) — €>(dS,). Theorem 5.3 then shows that 29z = 2, 0%z =

2 \650 , 092 = 23 |8S0 , 99z = 0 and moreover diz = (9,23 + blz, + biz,
generally, we can prove the following result (see [14]):

‘850'
)|350'

Proposition 5.4 Let W[e] and d[e] be the formal series of Theorem 5.3. For all % there
exist a finite subset F}, of N such that

o forall j € Fy, there exist functions 7 of C>(dS,, $(X")), depending only
on Sy, A and pu,

e for all j € Fj, there exist 2D operators Pf with scalar values, with degree of
derivative at most £,

e forall : = 1,2,3,4, there exist 2D operators D% with scalar values with degree
of derivative at most %,
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such that for £ > 0 and for z € 3(S,), we have

4
Uz =Y (Phz)|,0 @™ and ofz=) (Dkz)|,, 2. (5.21)

JEF i=1

6 CONCLUSION

In order to obtain an equation of the form (5.2), we transform the equation d[¢|z[¢] =
ble]fle] : We define the formal series d[e] and h[e] with coefficients d* : ©(S;) —
C*(0Sp)*, and h* : C*°(1,%(Sp)) — C*(0Sp)*, as

dle] = (01¢], Da[e], D3]], e 0ule] — 04[] — bEDse]) (6.1)
and

hle] = (bl[g]a bale], 53[5]>57154[5] — brbi[e] — bij[e]), (6.2)

where b and b2 are the components b7.(r, s) and b:(r, s) evaluated on 9S, We see that
h? is the null operator and

d’z = (2,, 2, 23, O, 23 (6.3)

os,

and it is clear that the formal series equations d[¢]z[¢] = h[e] f[e] and d[e]z[e] = h[e] fe]
are equivalent. The final result then states:

Theorem 6.1 Let (V[e],Q[e], Alg], G[e]) the formal series given by Theorem 4.1 and
(¥le], ©[¢], d[e], he]) the formal series of Theorem 5.3 and the equations (6.1),(6.2). If
fle] is a formal series with coefficient in C>(1,%(S,)) and if z[e] is a formal series
with coefficients in ¥(.Sp), such that the equation

{A[€]Z[€] = Glelflel,
dle]zle] = hlelf[e],

are satisfied, then the formal series wle| := V[e|z[e] + Q[e] fle] and ¢[e] := ¥[e]z[e] +
Ole] fle] are solutions of the equations

{ Llelwle] = —Fle], and {ﬁ[€]¢[€] = 0,
TleJwle] = 0,

(6.4)

with the boundary condition

wle] |FO + ¢[e] ‘R:O =0.
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APPENDIX A: PROOF OF THEOREM 3.3

(a) We first consider the surfacic components of the operator. Using the equation
(3.12) and the fact that &%(w) is a function, we have in normal coordinates on the mani-
fold Q¢ that

Lo (w) = AD, (&3 (w) + &(w)) + 21(Vaél (w) + Vaég(w)).
In this expression, we have
Valg(w) = dafg(w) + Log(w3)e5 (w)
+ o5 (23) 85 (w) — To, (3)85 (w) — Tg, (23)85 (w).

As the terms T'2_(z3) are the Christoffel symbols of the connexion D% on S,,, and
using the equation (3.4) we have

Vafg(w) = D& (w) — b5, (17§ (23)€5 (w) — b s (23)E5 (w), (6.5)
where we have using (3.6)
Dég(w) = Oaég(w)+Tos(23)es (w) — I, (23)é5(w)

= Dagg(w) — a(u)§ (23)2 (w)Dabf + 2(n~)] (23)2 () Dl
(6.6)

Moreover, we have using (3.4)

Vaéy(w) = 958y (w) — s, () 3(w) = 8¢} (w) + b5 (u )5 (wa)3(w).  (6.7)

But we have é§(w) = gaﬁ(l'g)ggg(.’ﬂ:g)é%(W). As g (z3) = (ufl)g(wg)(ufl)?(xg)a“‘s,
we see that

b s (23) 5 (w) = b sy (23) (1 )5 (x3) (n )5 (w5)a el (w).
As we have b° s, (23) = b2 j150(23) We thus have
0] (1 )5 (w3) &5 (w) = b puse (w3)E5 (w).
Hence, by summing the equations (6.5) and (6.7) we get
Vs (w) + V3 (w) = 958, (w) + D3?&5 (w) — by (171§ (23) 5 (w)
and as é3(w) = d3ws we get
Lo(w) = AD,E2(w) + A3D,ws + 2udsés (w)

+2uD3eg (w) — 2ubo (11§ (23)é5(w).  (6.8)
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We denote by D,(g) the connexion DZ* after the scaling, viewed as an operator on S, .
After the scaling, the previous equation then writes

Ly(e)(w) = ADyéq(c)w + )\6_18X3D(,w3 +2uDy(e)és(e)w
2 O w — 2 (1D (X ) (. (69

We compute successively the expansions of the terms in this equation. Using the equation
(3.14) and the fact that (b*)5A%; = 0 for k > 0 we find that
AD,E%(e)w = AD, S (w) + Y "Dy (b")575 (X5 w).
n=1

Using (6.6), we compute that

2uDy(e)és(e)w = Z e"2u(Da()E%(e)w)"

with
(Da(e)25 (e)w)" = Da(5(e)w)" = Sy A2 (E )" Dap
+ St ) (65 (<)) "Dab |
Using the equation (3.10) and the fact that ¢®* = 0, we see that we have
203 (e)w = & pdx, wy + P, (W) — PX3b%0x,We- (6.11)

We thus have that
2ue M Ox, s (e)w = e P pdi, We + pe Ox, b, (w) — pe Ox, (X302 05w, ),
and
2ubo (™15 (e Xs)Eg (e)w =
5’1ub§<9x3w(, + qucg8X3w,, — ub’ngbfaXSwﬂ + ,ubgt%('w)

+ D0 e X (B )20x, we + X3 (0728, (w) — p X5 (0" )abE Oxgwp
(6.12)

By using (6.9) and summing the previous equations, we get the expressions claimed in
Theorem 3.3 after identifying the powers of <.

(b) In normal coordinates on 2¢, the transverse component of L writes

Ly(w) = AV5 (£3(w) + & (w)) + 251V (w) + Vsé(w))
= (N + 202) g + A (w) + 200(DEE (w) + Ty )y — Do) (w)).
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Thus after the scaling we have
Ls(e)w = (A + 21) 0%, w3 + €' ADx, €2 (e)w
+ 21Da (£)85 () w + 2ue ' T(eXa)Oxyws — 21l 03 (e X3) 5 (e)w
But using (3.4) we compute that

T (e Xs)dx,ws = — Y " X2 (") 20, ws (6.13)

n=0

and similarly by (3.14)

Ax,e%( Ze”(b" B (0x, (XFw)). (6.14)
Moreover, we have
5. (cX3) €5(e Zs” XK bk+1)ﬁ( g(e)'w)nfk.
n=0 k=0

Again using the fact that (b’“)gA‘,‘ﬁ'i = 0 for £ > 0 we find by the equation (3.14) that

o0

Tha(eXa)ég(e)w =Y (n+ 1" X5 (0" )58 (w). (6.15)

n=0

To show the result, it remains to find the expansion of D, (¢)ég(e)w . As gag(eX3) isthe
metric on the surface S.x, , this tensor commutes with the covariant derivative D, (¢) .
Hence we have

Dy(e)és(e)w = gaﬂ(ng)Da(e)éﬂg(s)w.
But we have using (3.6)

Da(e)égs(e)w = Dyépa(e)w + X3 (eX3)é3, () w Dabg.

As the equation (6.11) can be written 2é3()w = ' 1§ (e X3)dx,wa + O (w) , we find:

2D, (g)éps(e)w = aleaug(ng)axawg + D,fs(w)
+ X3(0x,ws)Dabj + eX3(1 )5 (€X3)05 (w)Daby,

and thus
2D, (g)éps(e)w = aleac'?XSwﬁ — X3b3Daw,

+ Dobs(w +25"X" (0" )50, (w)DybS.

n=1
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Using the expansion (3.3) of the inverse of the metric tensor we obtain the expansion of
the term D, (¢)ég(¢)w . Grouping these expansions, we get the expressions in Theorem
3.3 after tedious computations (see [14] for details).

(c) The equation (3.19) and (3.20) are consequences of the formulas for the expan-
sions of the tensors &/ (w) and the fact that

T,(w) =2ue3 (w) and Ti(w) = Aé%(w) + (A + 2u) & (w).

The expressions (3.10) and (3.11) yield the result after the scaling.

APPENDIX B: PROOF OF PROPOSITION 4.5

Using the equation (4.40) and the expressions (4.31), (4.32) for the operator A% we
compute that we have

A2 — B, = 2uph?Dapl, + 2upDabl ol + 2ub2D, g% + 2uD,b2 %,
— 2ubyDapg — 2upbDepl, + 1p*Doe(b3pY) + 4 upDobg ol
+ 31pDabpl + 5105Dap + 511 Dabl — 51D abiD0;
+ 5uDabGDP0, — 2uDabgAY; — 3up*De DDyt — 5 upDe DDy
— 2up®Do(c87Y) + 2upbiDably — 2upbgDabsay — 3upbg75D by
+ 2pbiDab7E + 2upbiDebov — up?Da(b3b84) — L ppDy(c§2)
— upDabeiY — 2ubgDabSy — ZubyyeDabl — 2pub§Dabi?
— —ub ¥8Dabl + 2ub273Dabs + 2ubreDabl + 2ubbgDar?
p*Do (b5 M3) — %pb5D0M3 + épDab?M&

and

AZ By = ° qupelpl, + 2pcgpl + 5up(3p — 2)b“bgpu
+ 2p(2p — 1020 p8 — FupD Dbyl — 3uD Dbl ye — 3uDDabgny
— Lup?tDeDyY — 2pupDoD, ba% Lupb§DPDyY — 2Dy Dby
— 2uDb Doy — 2updSyy — L udgys — Lup(3p — 2)bSbabs Y
— upelbln — 2up(3p — 2)bhesys — 2u(2p — 1)bacsnE — 2u(3p — 2)bgcy]
+ 3pD*DoMs + 2p(3p — 2)b5bI M3 + 5pct M.

Now let n satisfying n ‘650 = 0. Then when evaluating the scalar product

(A’ - B)z, 77>L2(50)
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it is possible to integrate by parts one time. We have
(A7 - B)Za’7>L2(So) = /S 11'(A7 — B;)(2) dSy,
0

and after integration by part, we see that :
(R =Bz m)gagsy| < [ 170150+ OVl s sy 616
0

where
T (z,m) = =2up(Dan’b3)p(2) — Sup(Dan®)b3 04 (2) — 51(Dunbg) pa(2)
— 2u(Dyn”)b2p4(2) + 2u(Dan”t2)p2(2) + 2up(Dynb3) b (2)
— up?(Den®)b2p%(2) — $up(Don® 0505 (2) — 3 up(Dan® )02 ps(2)
— 3u(Dan’b3)p5(2) + Sum” p3(2)Dabl + 511(Dan?)b]D*05(2)
— 31(Dan”)b3DP0,(2) + 21(Dan” )b AY 5 (2) 4 519°(Don?)D*Dayy (2)
+ 31up(Dan”)DDory (2) + Spupnicapy(z) + 2umPcpl(z)
+ 3up(3p — 6P b 04 (2) + 2u(2p — 1)bSb4NpE(2) — 2up*anPDeD,yY (2)
— 3upbn*DP Doyl ().

Hence we have :

I(z,m) = py(2)[ = 2upDanb2 — 2upb?Dan’ + 2ppD,onT bl
— up?b2D,on? — LupbeDan® + upnPel + Lup(3p — 2)b2n*by]
+ p4(2)[ = 3uDun7bs — FubsDy” + ZuD,n°b]
— pbSDen° — 5uDgn®bl + 2un Db + 2unPed + 5 pu(2p — 105657’ ]
+ $1(Dan”)bID05(2) — 31u(Dan”)b§DP0,(2) + 21u(Dan” )bEAY ()
+ Lup®75 (MDD (2) + Supvg (m)DPDu: ().
(6.17)
The term multiplied by p¥(z) writes

— 2upDanbg — 2upbsDan’ + 2upDen”t — up*bgDyn”
— §upbgDan” + SupnPcs + 5up(3p — 2)ben°Y
= —2upbgDan” — 5upn°Dabg — 5upb3Dan” + 3upn Dby
+ 2upbgDon® — pp?baDon” — Supb?Dan” + SupnPel + $up(3p — 2)b2n*b3.
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This terms writes also

—21upbeDan” + 2upbys () — 2upb2Dan’” + 2upcin® — up*bin2(n),
or
—11p(3p — 26y () — 2upb2y3(m).
In the same way, the term multiplied by p%(z) in the equation (6.17) writes
— SuD b — Sub3Du1 + FuDyn*b; — §upbDen”
— 2uDgnbf + 2un D, bg + 2uncl + Su(2p — 1)b0g°
= —2ubsDyn” — 3un°D,bg — SubeD,n” + SubD,n® + %un°D, b
— Supb2Dn” — SubSDgn® — 5 un“Dgbl + 5 un"Dybg + 2ucsn’
+ S upb3ben® — 2ub3ben®.
This last term also writes

2pbgye(m) — upbeye () — 2ub2Dyun” — 2ubDyn” — 2ubfDan® + 2ucin®.
Thus we have
I (z,m) = —Lup(3p — 2)p5(2)b372 (M) — Suppt(2)b395(M). + 2upt(2)bgve(n)
— Suppa(2)b3 (1) = 3pupt(2)b3 D" — 2up(2)b3 Dy — 2upy(2)b5Dgn®
+ 2up%(2)nPcs. + $u(Dan®)biD*05(2) — 511(Dan?)b3DP0,(2)

+ 2u(Dan® BN (2) + 2 up?y5 (m)DDas(2) + L1 v§(m)DPDat(2).
(6.18)

Now we focus our attention to the terms that are not multiplied by the tensor in ~v,3(n)
in the equation (6.18). These terms write :

Az,m) == =2uph(2)b3D,n° — 2upk(2)08Dyn — Sups(2)biDen™ + 2upk(z)con’.
+ 3 11(Dan?)bID03(2) — 51(Dan”)b5DP0,(2) + 21(Dan” b2 A ().
Using the fact that :
Aaﬂ = %(Doﬂﬂ + Dﬂga) — Pap + bgﬁ/ﬁa
we have

A(z,m) = —2up%(2)b2Dyn" — 2pp% (2)b5Dgn® + 20 (2)cen®
+ $ub8D%05(2)(Dan”) — 3103DP0,(2)(Dan”) + 314(Dan”)beDy6" (2)
+ 51(Dan?)02D"0,(2) — 21(Dan )02 p4(2) + 3 11(Dan?) eyl (2).

44



Thus
A(z,m) = =3 upt(2)0eDy1° — §uo4(2)bEDsn™ + 2up%(2)con®
1b3D%05(2)5(Dan’ + D1a) + Fu(Dan” )57y (2)-
But we have
2ubiD05(2) 5 (Dar” + D7na) = 2ubiD05(2)72(n) + 2uciD*0p(2 ) 3
= ZubiD0s(2)v3 (n) + Fuchpg(2)n® — uding (2)n®.

Hence we have

Az,m) = —5up%(2)b2Dyn” — Supb(2)bEDgn™ + Such pf(2)n®
+ 2ubBD*0g(2)yg () — 2udig (2)nP. + Suciyy(2)(Dan”).
or

Az, m) = —3upl(2)b2s () +3ublD0s(2)8 (n)— 2 uding (2)n*+3 ncgys () (Dan?).

The equation (6.18) then writes :

I(z,m) = —5up(3p — 2)pl(2)0515 (M) — Supet(2)0575(M). + Zupl(z)bgre(n)
— suppa(2)b5ng (n) — Sups(2)0gg (1) + 2ubiD0s(2)v5 (n)
= 2udSng(2)n® + 2pcie(2)(Dan’) + 31up* (D*Das(2)) 75 (0)
+ 3up(DPDovs(2)) 75 (m).

This result and the equation (6.16) then yield the result.
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