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Abstract. The three-dimensional equations of elasticity are posed on a domain of���
defining a thin shell of thickness ��� . The traction free conditions are imposed on

the upper and lower faces together with the clamped boundary conditions on the lateral
boundary. After a scaling in the transverse variable, the elasticity operator admits a
power series expansion in � with intrinsic coefficients with respect to the mean surface
of the shell. This leads to define a formal series problem in � associated with the three-
dimensional equations. The main result is the reduction of this problem to a formal series
boundary value problem posed on the mean surface of the shell.

1 INTRODUCTION

1.A ORIGIN OF THE PROBLEM AND MAIN AIMS

This paper deals with shell theory, whose main aim is the approximation of the three-
dimensional linear elastic shell problem by a two-dimensional problem posed on the mean
surface. This is an old and difficult question.

Let us recall that a shell is a three-dimensional object represented as a surface �
thickened in its normal direction. We suppose that � is a compact orientable smooth
surface with boundary, embedded in

� �
. For ���	��
 sufficiently small, we define the

shell as the image �� of the manifold ��������������� via the application� �� ������������������� �!��" � �$#% �'&�" �)( �*�+��, � � � (1.1)

where ( �*�+� is a unit normal vector field on � . If � is a planar domain then the shell is
a plate.

We suppose that the material constituting the shell is homogeneous and isotropic, and
we consider the linear equations of three-dimensional elasticity, together with traction
free conditions on the upper and lower faces and clamped boundary conditions on the
lateral boundary. The solution - is a three-dimensional displacement and is considered
in the following as the “exact” solution to be approximated by a two-dimensional object
defined on the mean surface � .



In the sixties, different models have been proposed: see in particular KOITER [20, 21,
22], NAGHDI [23], JOHN [18], NOVOZHILOV [25]. Concerning plates the derivation of
the first two-dimensional model is earlier, see KIRCHHOFF [19].

Most of the shell models rely on a ./��. system of intrinsic equations on � depending
on � , and write 0 �1��� �3254 &���687 (1.2)

where 4 is the membrane operator on � and 7 is a bending operator. If all above
authors agree with the definition of the membrane operator 4 , different expressions of7 can be found in the literature. For general shell geometry, the most popular and natural
model is the one proposed by KOITER. This model describes the displacement of the
shell by two tensors representing the change of metric and change of curvature of the
surface submitted to a displacement. Moreover this model is elliptic for �:9<; (see
[1]). However, for � 2 ; , the nature of the membrane operator depends on the geometry
of the surface. In particular, 4 is elliptic only at the points where � is elliptic. The
Koiter model relies partly upon computations made by JOHN in [18]. But the question of
determining the best model was very controversial (see in particular the introduction in
[2] and the discussion in [21, 23]).

Different ways were explored in order to estimate the precision of a two-dimensional
model. One of the first attempts was the estimate given by KOITER. Starting from the
solution = of a 2D-problem associated with an operator

0 �>�?� of the type (1.2) he con-
structed a 3D-displacement polynomial in the transverse variable " � , and gave an esti-
mate in energy norm between this reconstructed displacement and the 3D-displacement- . However, this estimate fails for plates and the reason for this is the presence of bound-
ary layer in the vicinity of the lateral boundary. This problem was already pointed out
by GOL’DENVEIZER [16] (see the works of NAZAROV & ZORIN [24] and DAUGE &
GRUAIS [9] for explicit proof).

More recently, the works by SANCHEZ-PALENCIA [26] and CIARLET, LODS, MI-
ARA [4, 6, 5] showed that the 3D-displacement - and the 2D-displacement = solution
of a system associated with the Koiter model converge toward the same limit as � tends
to ; , but in a weaker norm than the energy norm. See [3] for a review on these results.
The limit is identified with the solution of a bending equation associated with the operator7 of the Koiter model.

When it is available, the use of complete asymptotic expansions allows to have an
exact representation of the behavior of the 3D displacement with respect to the thickness.
Up to now, this is only done for plates and clamped elliptic shells: see [9, 10, 7] for
plates. The result concerning clamped elliptic shells is a consequence of the present work
and will be developed in a next paper, see also [14, 15]. In these cases, we can derive sharp
estimates in every norm and analyze the performance of a 2D model. For clamped elliptic
shells, all the classical models of the type (1.2) have the same accuracy with respect to � .

The present work has several goals and consequences.
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1. It gives formal computations that can be compared to those made by JOHN in [18].
In particular, we give the most general “shell model”, e.g. the most general bending
operator appearing after the dimension reduction process. The main point is that the
mathematical setting of the result has been made precise and powerful by the use
of formal series. We also show how this general bending operator “contains” (see
below) Koiter’s bending operator. Note however that the computations of JOHN

were made for a more general 3D nonlinear elasticity model.

2. The present analysis was developed in order to find a complete asymptotic expan-
sion of the displacement in the case of a clamped elliptic shell. In particular, it
incorporates boundary layer phenomena near the lateral boundary in the case of
clamped boundary conditions. This is thus a first step in the direction of finding a
complete asymptotic expansion of the displacement (see [7] for an application to
plates eigenvalues). This formal series representation has also been used in various
situations: see [11, 12].

3. As we will see, the main result is the reduction of the 3D problem in formal series
to a 2D boundary value problem in formal series, posed on the mean surface. It
appears that the 2D formal series problem has strong similarities with Koiter’s 2D
problem. This fact can be used to state and prove a valid energy estimate in the
spirit of Koiter. This work is presented in [8]. Thus the formal series approach can
lead to real estimates and results.

1.B GENERAL CLASSICAL SETTING

We now sketch the main ideas. First of all, we set the equations in Cartesian coordinates
on the domain �� . Our first goal is to write the equations in normal coordinates, where
we agree that a normal coordinates system on �  is a system induced by the diffeomor-
phism (1.1) and of the form �1"A@B��" � � where �1"C@D� is a coordinate system on � and " � is
the transverse coordinate.

We first note that all tensor fields on �  can be decomposed into several tensors fields
on the surfaces �FEHG �I2 �  � �J��" � � for fixed " � . For example the displacement field -
decomposes into the surfacic 1-form �*KL@M� and the function K � . After that, we show that
any tensor field on �FEHG can be seen as a tensor field on � depending on " � . Finally, the
natural spaces involved in the equations are of the type NJOQPR�����������)�)ST�1UWVX �F
Y�[Z where �F

is identified with the surface � , and where ST�*U\VX �F
]� is the space of tensor fields of type�_^`�)ab� on �F
 .

In a normal coordinate system, we write cD�1"L@B��" �8d)e @D�)f � � the three-dimensional op-
erator, where e @ is the covariant derivative on � and f � the partial derivative with
respect to " � . Similarly, the traction operator on the upper and lower faces writesg �1"C@D��" �8d)e @B�)f � � .

It is important to note that even if these operators are written in a coordinate system,
they are in fact intrinsic, and express with respect to tensor operators on �h
 . For ease
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of use, we consider the shifted displacement i obtained by multiplying the surfacic
components of - by the Jacobin of the application

� �Bj8��" � � on � . This is a standard
change (see [23]). Thus the operators c and

g
act on the shifted displacement i , and

are intrinsic in normal coordinates. Moreover, we made a change of sign, and the shifted
displacement i satisfies the inner equation c�i 2 �lk in �  if k is a 1-form field
representing the loading forces.

In the equation (1.1) we note that the definition of the shell is analytic in " � . It is
easy to show that all the natural tensors in �  and the covariant derivative expand in
convergent power series of " � . Hence we can show that the operators c and

g
expand

in power series of " � with intrinsic coefficients with respect to �m
 . Now in order to
work on a manifold independent on � we make the scaling n � 2 ��oqpr" � to state the
problem on the manifold � �32 �s�����utb�vt�� . The 3D elasticity operator are written cD�>���
and

g �1��� . These operators clearly expand in power series of � with coefficients intrinsic
operators on the manifold � .

Theorem 3.3 provides the expressions of the operators c�w and
g w appearing in the

expansions cD�>��� 2 � o 6 Ox w)y 
 � w c w and
g �1��� 2 � oqp Ox w)y 
 � w g w�z

This result, even if stated for the first time in this way, can be obtained using standard
expansions of the covariant derivative and the metric. Most of these expressions can be
found in [23].

1.C FORMAL SERIES

Now with the operators cD�>��� and
g �1��� we associate two formal series in powers of � ,

written cq{ �}| 2 ��o 6A~ w�� 
 � w c w and
g { �}| 2 ��oqp ~ w]� 
 � w g w . Considering a formal seriesk\{ �}| 2 ~ w]� 
 ��w}k w with 1-form field coefficients in � , we state the following formal

series problem: Find a formal series i�{ �}| 2 ~ w]� 
 � w i w with 1-form field coefficients,
such that cq{ �}|�i�{ �}| 2 �lk�{ �}| in ���g { �}|�i�{ �}| 2 ; on SJ�� �i�{ �}| 2 ; on Sm
v� (1.3)

where S��� are the upper and lower faces of � and Sh
 the lateral boundary. Here, the
product between two formal series is the Cauchy product.

The equations (1.3) are in fact a collection of equations. Up to multiplication by a
constant, the first terms of the formal series cq{ �}| and

g { �}| are f 6� G and f � G respectively.
But the operator � f 6� G �)f � G�� on ���utb�vt�� has non-trivial kernel and co-kernel. In the
manifold � , the kernel is the space of displacements independent of n � , and is denoted
by �����F
Y� . Hence, if i�{ �}| is a formal series solution of the first two equations in (1.3), the
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displacements i w are determined up to elements = w of the kernel. Moreover, solving
successively for the displacements i w requires compatibility conditions on the right-
hand sides, e.g. on the i�� for ����� . This conditions are in fact equations on the = w
and form a formal series equation on �m
 .

Theorems 4.1 and 4.3 reduce the two first equations in (1.3) to a two-dimensional
problem. We show the existence of formal series operators ��{ �}| , ��{ �}| , �\{ ��| and �!{ �}|
such that if =�{ �}| 2 ~ w]� 
 � w = w is a formal series with coefficients in �����`
]� satisfying
the equation �\{ �}|�=�{ �}| 2 �!{ �}|1k\{ �}|*� (1.4)

then we can construct a formal series i�{ ��| by the equationi�{ �}| 2 ��{ �}|�=�{ �}|�&s��{ �}|>k�{ �}| � (1.5)

solution of the problem cq{ �}|�i�{ �}| 2 �lk�{ �}| in ���g { �}|�i�{ �}| 2 ; on SJ�� z (1.6)

Here, the coefficients of the formal series ��{ �}| are polynomial in n � , and � 
 coincides
with the identity. Similarly, the coefficients of ��{ �}| are operators acting on the 1-form
fields space on � . The coefficients of the formal series �\{ �}| are 2D operators acting
on �����F
Y� and the coefficients of �!{ �}| take values into this space. Note that the first
coefficient � 
 is the mean value across ���utb�vt�� .

The equation (1.4) is a two dimensional formal series problem set on the mean sur-
face. We show that the formal series �\{ �}| writes�\{ �}| 2�4 &�� 6 � 6 &�j8j8jm�
where 4 is the membrane operator. The operator � 6 is a sort of bending operator. The
exact expression of � 6 is given in Theorem 4.4. Proposition 4.5 gives an estimate of
the difference between � 6 and the bending operator 7 of the Koiter model. We obtain
in particular that these operators coincide on the space of inextensional displacements.
This has to be related with the convergence result (see [3]). Hence in the formal series�W{ �}| the first term 4 is not elliptic for every geometry of � , but the Koiter operator
0 �1��� 254 &�� 6 7 is always elliptic and we can estimate the difference between

0 �1��� and
the operator 4 &�� 6 � 6 .

Note that in the case where the boundary fA�m
 is empty, no boundary conditions
are present, but orthogonality conditions to the rigid displacements are imposed to the
loading forces and the displacement. These conditions can also be expressed as formal
series conditions.
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The second step of this work (Theorem 5.3) deals with boundary layer formal series.
In general, if =�{ ��| is a solution of (1.4), the reconstructed displacement (1.5) cannot
satisfy the condition i�{ ��| 2 ; on the lateral boundary. Indeed the operators in the formal
series ��{ �}| have increasing orders of surfacic derivatives, and the condition i�{ ��|�����8  2 ;
implies an infinity of boundary conditions on the coefficients of =�{ �}| . But even if we
consider that the formal series �\{ �}| has

0 �1��� as first term, this operator of order � in ¡�@
and ¢ in ¡ � cannot solve for an infinity of boundary condition for the coefficients =hw .

In the case of plates, the operator

0 �1��� decouples into the membrane and the bending
operator respectively. These operators are elliptic. In this case, there exists an asymptotic
expansion of the displacement in powers of � with two scales (see [24, 9]). The first
scale consists of terms independent of � , and the second of boundary layer terms near
the lateral boundary. If we set £ the distance to the lateral boundary and ¤ the arc length
along fA�F
 , these terms are of the form ¥¦�>� oqp £}�H¤b��� oqp " � � on �  , and are exponentially
decreasing with respect to § 2 � oqp £ .

In our case, we introduce a new formal series problem including a new scale of bound-
ary layer: Find a formal series ¨©{ �}| whose terms are functions ¨�wb� §��)¤���n � � exponen-
tially decreasing with respect to § , such thatP�ª { �}| �)«Q{ �}| Z ¨©{ �}| 2 ; and i�{ �}| ����   &�¨©{ �}| ��3¬ y 
 2 ;M� (1.7)

where the formal series ª { ��| and «{ �}| are induced by Taylor expansions in § 2 ; of
the operators c and

g
in coordinates �*§��H¤b�Rn � � , and where the formal series i�{ �}| is

given by (1.5). Note that § 2 ; coincides with the lateral boundary S®
 .

Theorem 5.3 shows that the existence of a formal series ¨+{ �}| solution of (1.7) relies
upon compatibility conditions on =�{ �}| on the boundary fA�/
 : There exist formal series
operators ¯F{ �}| and °B{ �}| whose coefficients define four trace operators on the boundaryfA�F
 , such that if =�{ �}| satisfies the equation¯F{ �}|±=�{ ��| 2 °B{ �}|>k�{ �}| (1.8)

on the boundary fA�`
 , then we can construct a formal series ¨²{ �}| solution of the problem
(1.7). Moreover, the first term of the formal series ¯F{ �}| writes¯ 
 = 2 � ¡Y³Y�)¡8´��R¡ � �)fb³)¡ � �C���µ�¶  
where £ is the geodesic distance to fA�m
 in �F
 . This operator is the natural Dirichlet
operator associated with the Koiter model

0 �>��� for �+9·; .

The equations (1.4) and (1.8) form the two-dimensional reduced problem. If =�{ �}| is a
solution of the reduced problem, then we can construct two formal series i�{ �}| and ¨©{ ��|
satisfying the equations (1.6) and (1.7).

Various difficulties arise when trying to solve the reduced equation. In particular, the
first terms � 4 �R¯ 
 � do not define an invertible operator, even if the surface �/
 is elliptic.
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Using the estimate for � 6 ��7 where 7 is the bending Koiter operator, we can however
see the formal series �*�\{ �}| �R¯F{ �}|1� as a formal series with first term � 0 �>�?�R�R¯ 
 � that defines
an invertible operator for every geometry of �m
 . This fact is used in [8] to obtain an
estimate in the spirit of Koiter.

In the case of clamped elliptic shells, the membrane operator with boundary condi-
tions ¡8´ 2 ¡8´ 2 ; on fL�F
 is elliptic, and we can consider the problem (1.4), (1.8) as a
singularly perturbed formal series problem. We have to introduce a new boundary layer
scale of formal series to obtain a solution. This work will be presented in a next paper
(see also [15, 14]).

In the case of plates, the operator 4 &¸� 6 � 6 is triangular with respect to � ¡8@B�)¡ � � and
we can show that the reduced 2D problem has a solution. This yields the construction of
a complete asymptotic expansion of the displacement as in [9, 7].

2 NORMAL COORDINATES AND TENSORS

2.A THREE-DIMENSIONAL PROBLEM

Recall that the domain �  defining the shell is given by (1.1). This domain has a lateral
boundary S  
 image of fA�·���¹�W������� by the application

�  . The upper and lower faces�h��  are the images of �·�»º �& �?¼ . We suppose that the material constituting the shell is
homogeneous and isotropic, characterized by its two Lamé coefficients ½ and ¾ . The
loading forces applied to the shell are represented by a smooth vector field k defined
on �  . We suppose that the shell is clamped along S  
 and we imposed the traction free
condition on �m¿  and � o? . The displacement of the shell is represented by the 1-form
field - . In Cartesian coordinates º8À¹Á*¼ the problem then writes�\f}Â�Ã Á Â w �[Ä w � �*-W� 2 Å Á in �  �g Á��*-W� 2 ; on � ��  �- 2 ; on S  
 � (2.1)

where Ã Á Â w � 2 ½AÆ Á Â Æ8w � &Ç¾�� Æ Á wvÆ Â � &ÈÆ ÁÉ� Æ Â w}� , where f}Â is the partial derivative with respect
to À Á and Ä Á Â��1-�� 2 p6 �*f Á K�Âb&©f�ÂHK Á � with - 2 K Á±Ê À Á in Cartesian coordinates. On the same
way Å Á denote the components of the vector field in the basis µµ)ËÍÌ . The operator

g Á �1-��
is the natural traction operator on the faces � ��  appearing after integration by parts in the
associated bilinear form:�*-\�RÎJ�J#% ÏDÐ?ÑBÃ Á Â w � Ä Á Â��*-�� Ä w � �*-�� Ê À p Ê À[6 Ê À � z
This is the classical problem of linear elasticity set in Cartesian coordinates on a shell-
shaped domain of

� �
. Korn inequality [13] implies that this problem has a unique solu-

tion in Ò p � �  � � .
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2.B NORMAL COORDINATES

The diffeomorphism
�  of the equation (1.1) is called the normal parametrization of �  .

A normal coordinate system is a coordinate system on �  2 � �P �'�s�¹�W������� Z induced
by a coordinate system on � . If �rÓ Á �H¥ Á � Á±ÔYÕ is an atlas of local charts on � , a natural
atlas on �  is given by the charts

� �P Ó Á ������������� Z together with the applications� ��Ö �  P¹Ó Á ���¹�W�������rZl×IØ ÑrÙ ��Ú�L% Ó Á �������������®Û Ì Ü�ÝßÞ�F% ¥ Á �rÓ Á ����������������à � � z (2.2)

Moreover for fixed " � these charts induce local charts on �`EHG with domains
�  �rÓ Á ��" � �

and applications �LEHG Ö �  �[Ó Á ��" � �lá �âÚã G�L% Ó Á Û Ì�L% ¥ Á �rÓ Á ��à � 6�� (2.3)

where ähEHG � ��% �LEHG is defined as
� Y�Bj8��" � � .

Let us fix a local chart �[Ó��H¥T� of � and the associated coordinate system �1"F@D� .
In the following Latin indices will always refer to three-dimensional indices (here 1,2,3)
while Greek indices will refer to two-dimensional indices (1 and 2). Using the application
(2.2), the system �1"A@q��" � � is hence a local 3D coordinate system on the shell. We setffB" Á 2'å Á � æ�,çº?tb�H�M�).�¼
the associated coordinate vector fields. It is clear that å � �1"C@q��" � � 2 ( �>"C@D� and that the
vectors å @q�1"C@q��" � � are tangent to �FEHG : they are the coordinates vector fields associated
with the local map (2.3). In this coordinate system on �  the metric is defined byè Á Â 2�é1å Á � å Â�êrë G z (2.4)

For fixed " � , the surface �LEHG is embedded in the domain �  of
� �

and the metric of �FEHG
is thus the restriction of the metric è Á Â to �LEHG . In the following, we usually identify the
abstract manifold � with the embedded manifold �/
 . We set ì the standard connexion
on �� associated with the Euclidean scalar product on

���
. The Christoffel symbols

associated with ì vanish in Cartesian coordinates. We set e EHG the connexion on �`EHG
induced by ì . A first step is to show how the 3D tensor fields on �  yield naturally
tensor fields on the surfaces �`E G . After that, we show that in fact all the tensor fields on�LE G can be seen as tensor fields on � 2 �m
 depending on " � . These ideas and normal
reduction of tensor fields are already explained in [23].

2.C NORMAL REDUCTION OF TENSOR FIELDS

Let �[Ó��H¥T� and � íT�Rî!� two local charts of � around �ï,�� . Writing äJEHG the applica-
tion

�  �Bj8��" � � , these two charts induce local charts � ä®EHGv�rÓu�R�H¥uð®ä oqpEHG � and �*ähEHG8� í+�)��î²ð
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ä�oqpEHG � on the surface �FE G around the point ä®E G �*�+� . The changing chart application is
then ¥¸ð!ä+oqpE G ðñ�*î�ð�ä+oqpE G ��oqp 2 ¥Qð�î!oqp from î\��í'ò�Óñ� into ¥¦� í:òóÓñ� .

On the other hand, these two local charts induce local charts of the type (2.2) on �\ .
We verify that the changing chart application on �  is simply� � Ö î�� í:òôÓu�����¹�W�������/õ �âÚ Ü�ÝßÞ�L% í:òôÓö������������� Û Ü�ÝßÞ�L% ¥¦� í�òôÓñ�¦�������M���?��à � � z
The Jacobian matrix of this application writesÃ ÁÂ 2ø÷�ù @ú ;; t8û �
where ù @ú is the Jacobian matrix of the application ¥²ð$î oqp from î�� í�ò�Óu� into ¥¦� í�òÓñ� .

Let - be a 1-form field on �  . Let K Á and K Á be the components of - in both
coordinate system of type (2.2) induced by �[Ó��H¥T� and � íT�Rî!� respectively. We consider
the two families of functions KL@ and KC@ where ü is a surfacic varying index. These two
families define local 1-form fields on �FE G in two different local basis. However, as - is
a tensor field on �� the expression of the components of - in the two basis are related
by the matrix Ã Â Á . Using the special form of this matrix, we compute thatù @ý KC@ 2 Ã Áý K Á 2 K ý z
As ù @ú is the Jacobian matrix of changing chart on �`E G , we conclude that the componentsKC@ and KA@ are the components of a 1-form field defined globally on �/EHG . Similarly, we
have K � 2 Ã �� K � 2 Ã Á � K Á 2 K � , and thus the component K � in any coordinate system is
a global function defined on �`EHG .

Similarly, consider the deformation tensor of type ���M�R;�� on �� written Ä Á Â and Ä Á Â
in both coordinate systems induced by �rÓ��H¥T� and ��í$�Rî�� respectively. We consider the
two families of functions Ä @ � and Ä @ � where ü is a surfacic varying index while . is
fixed. Using the fact that the deformation tensor is a tensor field on �  , the componentsÄ Á Â and Ä Á Â are linked and we have ù @ý Ä @ � 2 ÃWÁý Ã Â � Ä Á Â 2 Ä ý � , and we conclude that
the components Ä @ � define a 1-form field globally on �`EHG . Similarly, we see that the
components Ä @ ú , where ü and þ are surfacic varying indices, are the components of a
tensor field of type � �M�);�� on �FEHG , and the component Ä �r� defines globally a function on�LEHG .

We can obviously generalize this fact to other type of tensor fields. The result is that
each tensor field on �  can be decomposed into several tensors fields on �mEHG by fixing
some indices to the value 3 and letting the other vary into surfacic indices.

9



2.D SHIFTER AND PROJECTIONS ON THE MEAN SURFACE

The mean surface �`
 is characterized by its metric ÿ�@ ú �>"��?� 2 è @ ú �1"����);�� and its curva-
ture tensor

� @ ú �1"���� which is symmetric. The Codazzi-Mainardi equation, expressing the
fact that the curvature tensor of �  vanishes, yields thate @ � ú � 2 e ú � @��M�
where e 2 e 
 is the connexion on �`
 (see [23]). Recall that on a Riemannian manifold,
we use the metric to obtain isomorphisms between covariant and contravariant vector
fields spaces. In coordinate system, this means that we can lower or upper the indices,
which correspond to contraction with the metric tensor. For example the curvature tensor� @ ú can be viewed as a tensor of type ��tâ�vt�� and in this case the components are written� ú @ 2 ÿ ú � � �]@ where ÿ @ ú is the inverse of the metric tensor. Note that even if an expression
is written in coordinate system, the equation is intrinsic provided that the indexed object
are tensor fields on �`
 .

Consider a vector field � on �! . In a local basis å Á 2 � å @B� å � �)�1"C@q��" � � this vector
field writes � 2�� � �1"C@q��" � � å �M�1"C@q��" � �F& � � �>"C@q��" � � å � �1"C@q��" � � z
For " � 2 ; , the basis � å Á �1"C@q�);?��� consists simply of a local basis å �M�1"C@q�);?� on a domainÓ of �F
 and of the normal vector field å � �1"C@B�R;�� 2 ( �1"C@q�);?� . However, as Ó �ç�¹�W�������
is embedded in

� �
, this basis extends by translation over the domain corresponding toÓö�������M���?� in �  . Hence we can decompose � as� 2��� � �1"C@q��" � � å �M�1"C@q�);��F& �� � �>"C@q��" � � å � �1"C@q�);?� z

But we compute easily using the form of the diffeomorphism (1.1) and the properties of
the curvature that we have for all " �å � �>"C@q��" � � 2:å � �1"C@q�);�� and å �M�1"C@q��" � � 2�å ���1"C@q�);?�h��" � � ú � �1"C@D� å ú �1"C@q�);��R� (2.5)

and this implies the relation�� � �1"C@q��" � � 2	� � �1"C@q��" � � and �� � �>"C@q��" � � 2 ¾ �ú �>"C@q��" � � � ú �>"C@q��" � �)�
where ¾ ú � is the shifter (see [23]) defined by¾ ú � �>"C@q��" � � 2 Æ ú� ��" � � ú � �>"C@D� z

Hence a vector field � can be represented by its components � � Á*� or � �� Á1� and
the shifter appears as the Jacobian of a change of coordinates. Similarly, a displacement
(which is a covariant tensor of order t ) can be represented by its coordinates ��
��M�
 � �
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along the basis induced by the diffeomorphism (1.1) or by its coordinates � �
���� �
 � � a-
long the coordinates associated with the fact that � is included in

�!�
, and we have the

relations �
 � 2 
 � and �
�� 2 � ¾ oqp � ú � 
 ú �
where �*¾hoqpR� ú � is the inverse of the shifter.

Now the fact that the change of coordinates application are the same for �h
 or for�LEHG implies that the coordinates �
�@ and 
�@ are in fact both the coordinates of 1-form
fields on �F
 depending on " � . More generally, if we consider a tensor field on �  , then
by fixing some indices to the transverse index 3 it gives a tensor field on �/E G of type�_^`�)ab� . But these components yield also a tensor field on �/
 of type ��^`�)ab� depending on" � and thus, an element of NhOQP)�����������)�)ST�*U�VX �F
]�[Z where ST�*U�VX �F
]� is the fiber bundle
of tensor fields of type ��^F�)a�� on �`
 . The shifter appears as an endomorphism of these
spaces.

As it will be of constant use, we define the space �����/
Y� �32 ST�*U p �F
]�F� N O � �F
]� . Thus
the natural space for a 3D 1-form field - after the normal reduction on the surface will
be the space N/OQPR�����M���?�R�H�����F
��[Z .

Recall that - 2 �*KC@B�RK � � denotes the 3D displacement solution of (2.1). The 3D
equations are simpler when expressed with respect to the shifted displacement �- . That
is why we will always denote by i the shifted displacement associated with - .

Hence, in normal coordinates, the problem (2.1) can be writtencD�>"C@q��" �vd)e @D�)f � �ri 2 �ñk in �  �g �>"C@q��" �vd)e @D�)f � �ri 2 ; on �®��  �i 2 ; on S  
 � (2.6)

where i is the shifted displacement, and where the operatorsc � N O P �����M���?�R�H�����F
�� Z % N O P �¹�W�������)�)�����F
]� Z � g � N O P �¹�W�������R�H�����F
]� Z % �����h��  �
are intrinsic operators. Note that the fact that we decided to define the operators c andg

as taking values in the space N OQP �����������)�H��� �F
]� Z and �����h��  � implies that the k ap-
pearing in the equation (2.6) is considered as a element of N OQP �����������)�H��� �F
]� Z . Hence,
in terms of components, the covariants components of k : Å Á 2 è Á Â Å Â are involved in the
equations.

3 EXPANSION OF THE OPERATORS

In this section, we give the expansions of the operators c and
g

. All the framework
for these computations can be found in [23] or in [14] for a similar presentation.
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3.A EXPANSION OF THE CONNEXION

In the following, we only write the dependence on " � of the tensor fields. Using the
equations (2.4) and (2.5) we have thatè � Á �1" � � 2 Æ Á � and è @ ú �1" � � 2 ÿ�@ ú ����" � � @ ú &�" 6��� @ ú � (3.1)

where Æ Á Â is the Kronecker tensor, and where we used the classical notation: � @ ú 2� �@ � � ú . The equation (3.1) is valid in the space N®O P �¹�W�������)�RS��1U 6 �F
Y� Z and hence is in-
trinsic and does not depend on the coordinate system on �/
 . Note that the relation (3.1)
can be written è @ ú �1" � � 2 ¾ �@ �>" � �[¾ ý ú �1" � �rÿ�� ý . It is clear that for ��
 sufficiently small, the
shifter is invertible, and that we have the expansion:�*¾ oqp � ú @ �1" � � 2 Ox w)y 
 " w� � � w � ú @ � (3.2)

where we write � � w � ú @ for
��� Ú@ ������ Ú j8j8j � ú ��� ��Ú with the convention � � 
 � ú @ 2 Æ ú@ . Hence it is

clear that the metric tensor is invertible, and we compute that:è � Á �1" � � 2 Æ Á � and è @ ú �1" � � 2 Ox w)y 
 ���u&:t���" w� � � w � @ ú z (3.3)

Recall that the Christoffel symbols in any coordinate system are defined by the formulaS wÁ Â 2 p6 è w �)� f Á è Â � &�f}Â è ÁÉ� �»f � è Á Âv�)�
where è Á Â is the inverse of the metric tensor. From the previous equations we have thatS Á �r� �>" � � 2 ;D�S �@ � �>" � � 2 ;D�S �@ ú �>" � � 2 � p6 è �r� �1" � �[f � è @ ú �1" � � 2 � @��â¾ �ú �>" � � 2 � @ ú ��" � � @ ú �S ú @ � �>" � � 2 p6 è ú � �1" � �[f � è @��D�>" � � 2 � � �@ � ¾hoqp�� ú � �>" � � 2 � ~ Ow)y 
 " w� � � w ¿ pR� ú @ z

(3.4)

Moreover, it is clear that the Christoffel symbols S �@ ú �>" � � are the Christoffel symbols
of the connexion e EHG on �LEHG . In the following we identify the connexion e and e 
 .
Hence in a fixed normal coordinate system, the Christoffel symbols S ý @ ú �I2 S ý @ ú � ;�� are
the Christoffel symbols associated with the connexion e . The following proposition
gives the expansion of the Christoffel symbols (see [23, 14]):

Proposition 3.1 In a fixed normal coordinate system, we have the expansionS ý @ ú �1" � � 2 S ý @ ú � Ox � y p " � � � � � oqp � ý � e @ � �ú z (3.5)
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Note that this equation can also be writtenS ý @ ú �>" � � 2 S ý @ ú ��" � � ¾ oqp � ý � �>" � � e @ � �ú z (3.6)

The most important fact is that the difference S ý @ ú �1" � �®��S ý@ ú is an element of the spaceN O P)�����M���?�R�)ST�*U�p6 �F
��[Z and thus is intrinsic. In particular, this implies that the covariant
derivative of a tensor field on �`EHG expands with respect to " � in an intrinsic way. Let us
take for example a tensor field U ú@ �1" � � viewed as a tensor field on �`EHG or as an element
of NmOQPH�¹�W�������R�)ST�*U pp �F
]�rZ . The covariant derivative e EHG� U ú@ �1" � � defines an element ofST�1U p6 �LEHG]� . But the previous expansion implies that in the space N®OQPR�����M���?�R�)ST�*U p6 �F
Y�rZ
we have the expansione EHG� U ú@ �1" � � 2 e ��U ú@ �>" � �F&»" � �*¾ oqp � ý � �>" � �rU úý �1" � � e � � �@ ��" � � ¾ oqp � ú � �1" � �rU ý@ �>" � � e � � �ý �
and thus the covariant derivative e EHG expands with respect to e . Similar formula can be
found for other type of tensors.

3.B 2D-OPERATORS AND DEFORMATION TENSOR

We call 2D-operator an operator independent of " � acting on �����F
]� and taking values
in a tensor field space on �m
 . We will see that the expansions of the operators c and

g
involve naturally 2D operators on �m
 . Let us define the following classical 2D operators:
we first recall that the change of metric tensor is the 2D-operator � � ��� �h
Y��% ST�*U 6 �F
]�
defined by � @ ú �*=h� 2 p6 � e @�¡ ú & e ú ¡v@D�h� � @ ú ¡ � � (3.7)

for =ç,ô�����F
]� . The change of curvature tensor is the 2D operator � � ��� �/
Y�J% ST�*U 6 �F
]�
defined by: � @ ú �*=h� 2 e @ e ú ¡ � � � @ ú ¡ � & � �@ e ú ¡��W& e @ � �ú ¡�� z (3.8)

Moreover we define the operator �}@C� =/� 2 e @�¡ � & � �@ ¡�� and the operator� @ ú � =h� 2 p6 � � �@ e �â¡ ú � � �ú e @�¡��?� z (3.9)

All these operators are intrinsic with respect to the mean surface �h
 . These operators
act naturally by extension on the space N®OQP)�����������)�H��� �F
]�[Z . Remark that the operator� @ ú is not symmetric. Thus we write

� @!  ú 2 ÿ @�� � � ú for the corresponding �¹tb�vt�� tensor
field.

The deformation tensor on �! writes Ä Á Â��1-W� 2 p6 ��ì Á K�Â�&:ìuÂ)K Á � in any coordinate
system. We define the shifted deformation tensor as: �Ä Á Â��*i � 2 Ä Á Â��*-!� where i is the
shifted displacement associated with - . The following result gives the expansion of the
operators �Ä Á Â :
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Proposition 3.2 For i ,N OQP �����������)�H��� �F
]� Z we have the expansions�Ä �r� �1ió� 2 f ��"!� ��Ä @ � �1ió� 2 p6 P f ��" @u��" � � ú @ f ��" ú &#�v@C�1i � Z ��Ä @ ú �1ió� 2 � @ ú �*=®�F&»" � P � @ ú "!� � p6 � �@ e ú " �\� p6 � �ú e @ " ��Z z (3.10)

Remark that using the normal reduction of tensor fields, the first equation of (3.10)
is valid in N/O P �����������)�H��� �F
]� Z , the second in NhO P �����������)�)ST�1U p �F
�� Z and the third inNmOQP)�����M���?�R�)ST�*U 6 �F
Y�rZ .

Proof. (i) In a normal coordinate system we have using the equation (3.4),Ä �r� �*-�� 2 f � K � �»S Á�r� �1" � �rK Á 2 f � K � z
As K � 2 "!� we get the result.

(ii) On the same way we compute that� Ä @ � �*-�� 2 f � KA@\&�f?@�K � ���âS ú@ � �>" � �rK ú
using the fact that S �@ � �>" � � 2 ; . Using the relations KA@ 2 ¾ ú @ �>" � � " ú and (3.4), we have� �Ä @ � �*i � 2 f � ¾ ú @ �1" � � " ú &�f�@ "!� &s� � ú @ " ú2 f ��" @ñ�»f � �1" � � ú @ " ú �F&�f�@ "!� &s� � ú @ " ú �
and we get the result.

(iii) We have thatÄ @ ú �*-�� 2 p6 � f�@�K ú &�f ú KC@M�®��S ý@ ú �>" � �rK ý �»S �@ ú �>" � �rK � z
Using (3.6) and (3.4) we getÄ @ ú �*-�� 2 p6 � e @bK ú & e ú KA@��m&�" �$" � e @ � �ú � � @ ú "!� &�" � � @ ú "!� z
We find the result using KA@ 2 " @u��" � � ú @ " ú and the Codazzi-Mainardi equation.

Recall that �Ä ú @ �1iô� 2 è ú � �>" � � �Ä � @C�*ió� . Using Proposition 3.2 and the expansion (3.3)
of è @ ú �>" � � we can show that we have expansion (see [14]):�Ä @ú �1ió� 2 � @ú �*ió�F& Ox � y p " � � � � � � @� � �ú �*ió�F& Ox � y p % " � � � � � oqp � @� � �   ú �*ió� z (3.11)

3.C EXPANSION OF THE OPERATOR

In normal coordinates, the system (2.1) writes��ì ÂHÃ Á Â w �[Ä w � �1-W� 2 Å Á in � Ã � Â w � Ä w � �1-W� 2 ; on �®�� - 2 ; on S  
 �
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where Ã\Á Â w � 2 ½ è Á Â �>" � � è w �)�1" � �B&��â¾J� è Á w �1" � � è Â �H�>" � �B& è ÁÉ���>" � � è Â w �>" � ��� . Hence, using the
definitions of c and

g
and the fact that the covariant derivative ì commutes with the

metric, we have:c Á �*i � 2 Ã  3Â w �Á  & & ìuÂ �Ä w � �*i � and
g Á �1i � 2 Ã  � w �Á  & & �Ä w � �*ió� z

Hence we havec Á �*i � 2 ½Aì Á �Ä �� �*i �F&��â¾mì � �Ä � Á �1ió� and
g Á �*ió� 2 ½AÆ �Á �Ä �� �*i �F&s��¾ �Ä �Á �*ió� z (3.12)

It is clear that the operators c and
g

admit power series expansions with respect to " � .
In order to set the problem in a manifold independent on � , we make the following scaling
on the transverse variable: We define the manifold � 2 �:�'���utb�vt�� and we set ' 2�¹� tâ�vt�� . A normal coordinate system on � is a coordinate system of the form �>"`@B�Rn � �
where º8"A@B¼ is a coordinate system on � and where " � 2 ��n � is the corresponding
point in �¦ . We note S��� the upper and lower faces of � and Sh
 the lateral boundary
corresponding to fA�s�(' .

We then define the 3D elasticity operator on � as the operators cD�>��� and
g �1��� :cD�>��� � N O P 'C�H�����F
Y� Z % N O P 'C�H�����F
�� Z and

g �1��� � N O P 'C�H��� �F
Y� Z % ���*S��� �R�
obtained from c and

g
after the scaling " � 2 ��n � . Hence in any normal coordinate

system, we haveP cD�>�?�R� g �1��� Z �>"C@B�Rn �vd)e @D�)f � G]� 2 ��cM� g �H�>"C@B����n �vd)e @M��� oqp f � G]� z
In the following, if i<,�N O P 'C�H��� �F
Y� Z is independent on � , we set �Ä ú @ �1���ri the defor-
mation tensor after the scaling. Hence we can write the equation (3.11) as�Ä @ú �1���ri 2 Ox w)y 
 � w P �Ä @ú �>���ri Z w (3.13)

where for all �*)�; ,� �Ä @ú �>���ri Z w 2 n w� � � w � @� � �ú �1i �F&s��n w� � � w oqp � @� � �   ú �*ió� z (3.14)

Using the previous expansions, it is easy to show that the operators cD�>��� and
g �1��� ex-

pand in power series of � . The following theorem gives the expressions of these expan-
sions. As it is a simple computation, the proof is given in Appendix A. Note that all the
framework required to obtain these expansions is present in [23].

Theorem 3.3 The operators cM�1��� and
g �>��� expand in power series of � for ��� �b


and write cD�1��� 2 � o 6 Ox w)y 
 � w c w and
g �1��� 2 � oqp Ox w)y 
 � w g w �
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where we have the following expressions: for � 2 ; , we have c 
 2 �Wðñf 6� G et
g 
 2�TðWf � G , where �b�1i � 2 P ¾ " @B�8��½�&s�â¾h� "!� Z , moreoverc p� �*ió� 2 �\¾ � @@ f � G " ��& ��½�&�¾h� e ��f � G "!� ��n � ¾ � @� f 6� G " @B�c p� �*ió� 2 �\¾ � @@ f � G "!� & � ½�&�¾/� � @@ � f � GRió�)� (3.15)

andc 6� �*i � 2 �\¾Fn � � @@ f � G " ��&�¾Fn � � @@ � ú � f � G " ú ��¾ � @@ e � "!� ��¾ � úú � @� " @�&�½ e � � @@ �*i �&��â¾ e @ � @� �1iô�R�c 6� �*i � 2 �\¾Fn � � @@ f � G "!� & � ½�&�¾/� � ú @ � @ú Prf � G8�*n � i �rZ�&�¾ � ú @ � @ú �1ió�F&�¾ e @ �v@C�*ió� z
(3.16)

Moreover, for % )�. , we havec � � �1iô� 2 ��¾Fn � oqp� � � � � @@ f � G " ��&�¾Ln � oqp� � � � oqp � @@ � �� f � G " � �»¾Ln � o 6� � � � oqp � @@ ���D�1ió�&�½ e ��� � � o 6 � @ú � ú@ �*n � o 6� ió�F&s�â¾ e @mP �Ä @� �1���riQZ � o 6&��â¾ ~ � o 6w)y p nów� � � w oqp � �� P �Ä @� �>�?��i Z � o 6 o w e @ � ������¾ ~ � o 6w)y p n w� � � w oqpR� @� P �Ä �� �>�?��i Z � o 6 o w e @ �+�� �
(3.17)

andc � � �*ió� 2 �\¾Fn � oqp� � � � � @@ f � G "!� & � ½�&�¾h�)� � � oqp � @ú � ú@ P[f � G8�*n � oqp� ió�[Z&�¾�� % �'t��H� � � oqp � @ú � ú@ �*n � o 6� ió�F&�¾ ~ � o 6� y 
 � � � � �@ e @ � � � o 6 ob� � ú � � ú �*n � o 6� ió�)� (3.18)

where for all �,)�; , P �Ä @ú �>���riQZ w is given by the equation (3.14). For the traction opera-
tor, we haveg p� �*i � 2 ¾-���D�1iô�h�»¾Ln � � @� f � G " @B� and

g � � �*ió� 2 ; for % ):��� (3.19)

and g � � �1ió� 2 ½h� � � oqp � @ú � ú@ �*n � oqp� i � for % ) t z (3.20)

4 FORMAL SERIES SOLUTION

Using the theorem 3.3, we associate with the operators cM�1��� and
g �1��� the formal

series cC{ ��| and
g { �}| defined bycC{ �}| 2 � o 6 x w]� 
 � w c w and

g { ��| 2 � oqp x w]� 
 � w g w z
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We recall that if . and ä are two function spaces, if ÿ`{ �}| 2 ~ w]� 
 � w ÿ w is a formal
series with coefficients ÿ w , ª �/.©�)ä�� , and if

� { �}| 2 ~ w�� 
 � w � w is a formal series with
coefficients

� w�,0. , then the formal series � { �}| 2 ÿF{ ��| � { �}| is defined by the equation� { ��| 2 ~ w]� 
 ��w � w where for all % , � � 2 ~ � w)y 
 ÿ�w � � o w .

Let kW{ �}| 2 ~ w]� 
 � w k w be a formal series with coefficients in N O P/'C�H�����F
Y�rZ . The
three-dimensional formal series problem is the problem of finding a formal series i�{ �}| 2~ w ��w�i�w with coefficients in N/O P 'A�)�����F
]� Z , solution of the equationscq{ �}|�i�{ �}| 2 �lk�{ �}| in ���g { �}|�i�{ �}| 2 ; on SJ�� �i�{ �}| 2 ; on Sm
 z (4.1)

In the following we denote by 1 � ��� �m
]��% N/O P 'C�H�����F
]� Z the canonical injection.

4.A FIRST TERMS

We will first consider the two first equations in (4.1):cq{ �}|�i�{ �}| 2 �lk�{ �}| in ���g { �}|�i�{ �}| 2 ; on S �� z (4.2)

These equations are in fact collections of equations written:2 % ,43W� 5 ~ �� y 
 c � i � ob� 2 �ñk � o 6 in ���~ �� y 
 g � i � ob� 2 ; on SJ�� z (4.3)

For �ñ�·; , we pose k � 2 ; . According to [18], we pose ^ 2 ½/��½u&»�â¾h�Roqp . For % 2 ; ,
the equations (4.3) write 6 c 
 i 
 2 ; in ���g 
 i 
 2 ; on SJ�� z (4.4)

The transverse components of this equation write5 � ½�&s�â¾/�[f 6� G " 
� 2 ; in ���� ½�&s�â¾/�[f � G " 
� 2 ; on S��� z
We thus get immediately

Ï � Goqp f 6� G " 
� Ê n � 2 ; 2 f � G " 
� �*n � �R�
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whence " 
� �1"C@q��n � � 2 ¡ 
� �>"C@D� where ¡ 
� is a function independent on n � . Similarly,
the surfacic components of (4.4) write5 ¾`f 6� G " 
� 2 ; in ���¾`f � G " 
� 2 ; on SJ�� z
Hence in a normal coordinate system, we have " 
� �1"C@q�Rn � � 2 ¡ 
� �1"C@M� . Moreover, it is
clear that the components ¡8@ define a 1-form field on �`
 , independent on n � . Thus we
have the intrinsic equation i 
 2 = 
 in the space N/OQP/'C�H��� �F
Y�[Z .

For % 2 t the equations (4.3) write5 c 
 ióp 2 � c?p¹i 
 in ���g 
 i p 2 � g p i 
 on SJ�� z (4.5)

But as i 
 2 = 
 is independent on n � , and using the expressions (3.15) of the operatorc�p and (3.19), (3.20) of
g p , we see that c?p[i 
 2 ; ,

g p� �*i 
 � 2 ¾!���M� = 
 � and
g p� �*i 
 � 2½ � @@ � = 
 � . Thus the transverse components of the equation (4.5) write5 ��½�&��â¾h�rf 6� G " p� 2 ; in �����½�&��â¾h�rf � G " p� 2 ��½ � @@ �*= 
 � on SJ�� z

These equations define a Neumann problem whose compatibility condition 7 � @@ � = 
 �/8 ¿ poqp 2; is always satisfied. Hence we havef � G " p� �*n � � 2 f � G " p� ���ut�� 2 ��^ � @@ � = 
 �)�
and thus " p� 2 ¡�p� �Èn � ^ � @@ �*= 
 � where, as before, the function ¡Dp� is independent on n � .
Moreover, the surfacic components of the equations (4.5) write5 ¾`f 6� G " p� 2 ; in ���¾`f � G " p� 2 �\¾!���B�*= 
 � on S �� z
As before, we deduce that " p� 2 ¡ p� �»n � ���M� = 
 � where ¡ p� does not depend on n � and
defines a 1-form field on �`
 . Finally we have the equationsi 
 2 = 


and i p$2 = p &»� p = 
 � (4.6)

where = 
 and =hp are elements of the space �����`
]� , and ��p � �����F
��\% N O P 'C�H�����F
Y� Z
is the operator defined by� p� �*=h� 2 �Wn � ���B� =/� and � p� �*=®�h��n � ^ � @@ � =®� z (4.7)

The equation (4.6) show that the first terms of the formal series i�{ ��| solution of the
problem (4.2) can be computed from the terms = 
 and = p and are polynomials in n � .
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4.B FORMAL SERIES REDUCTION

Let i�{ �}| be a formal series solution of the problem (4.2). The coefficients of this formal
series satisfy the equations:2 �Q,(3�� 5 f 6� G i w 2 � ~ w� y p ��oqp]cv�ri w ob�/����oqp�k w o 6 in �f � GRiQw 2 � ~ w� y p � oqp g � iw ob� on SJ�� z (4.8)

In the previous subsection, we showed that the two first terms of the formal series i�{ ��|
depend on elements of �����`
Y� . This dimension reduction constitute the main point of this
section. We now resume the general facts.

Let � fixed, and let us suppose that there exist �È&5t elements = Â ,������F
]� forù 2 ;D� zYzvz �H� , such that for ù � � , the terms i Â depend only on = 
 � zvzYz �)= Â and onk 
 � zvzYz �]k Â o 6 . The equation (4.8) for ��&st show that i w ¿ p is a solution of a Neumann
problem on ' , which implies a compatibility condition on the right-hand side. This
compatibility condition yields an equation for the terms = Â for ù 2 ;D� zYzvz �H� and k Â
for ù 2 ;M� zvzvz �)���t . The term i w ¿ p is hence the sum of a term depending on the= Â , for ù 2 ;D� zYzvz �H� , a term depending on the k Â

for ù 2 ;D� zvzvz �H�Q�öt , and of an
element of the kernel of the Neumann problem. But this kernel turn to be precisely the
space �����F
Y� . We name this element =mw ¿ p , and this shows by induction that there exists
a family º�=`w�¼ of elements of �����`
Y� such that for each � , the term i¸w depends on
the = Â for ù 2 ;D� zvzvz �H� and on the terms k Â

for ù 2 ;M� zvzvz �)�Q� � . Moreover, the
terms º�=Fw�¼ satisfy a collection of equations coming from the successive compatibility
conditions.

The goal of this section is to show that the relation between the º}i w�¼ and the two
families º�=Fw�¼ and ºbk w ¼ can be written as an equation in formal series: there exist formal
series operators ��{ ��| and ��{ �}| such thati�{ �}| 2 ��{ �}|�=�{ �}|�&s��{ �}|>k�{ �}| � (4.9)

where the coefficients � w are operators acting on ��� �m
Y� and taking values in the 3D
1-form fields space. The coefficients �Ww are operators on the 3D 1-form fields. The
computations made in the previous subsection show that we can take � 
 2 1 and � p 2� p , and for � 
 and � p the null operator.

Moreover, the compatibility condition can also be written�\{ ��|±=�{ ��| 2 �!{ �}|>k�{ �}| (4.10)

where �W{ �}| is a formal series with 2D operator coefficients taking value in ��� �h
Y� , and�!{ �}| is a formal series with coefficient operators on the 3D 1-form field space, taking
value in �����F
Y� . Hence, the formal series i�{ �}| is a solution of (4.2) if and only if there
exists a formal series =�{ ��| with coefficients in �����m
Y� satisfying the equations (4.9) and
(4.10).
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In the previous computations, the compatibility conditions at the rank ; and t where
obviously satisfied. The operators � � and � � are determined from the compatibility
conditions at the order �9)5� . We now show the existence of the operators involved in
the previous equations (4.9) and (4.10):

Theorem 4.1 (i) For all �È,(3 , there exist in a unique way:: an operator ��w � ��� �F
Y�ñ% N/OQP;'C�H�����F
]�rZ polynomial in n � with 2D operator
coefficients, vanishing on �m
 for �,) t ,: a 2D operator �$w � ��� �F
]��% ��� �F
Y� ,

such that the formal series ��{ ��| 2 ~ w�� 
 ��wH�Tw and �\{ ��| 2 ~ w]� 
 ��wY��w satisfy the equa-
tions <=?> cq{ �}|_��{ �}| � =h� 2 �@1çð!�\{ �}| � =h�R�g { �}|_��{ �}| � =h� 2 ;D� (4.11)

for all =�,������F
]� . Moreover, � 
 is the canonical embedding 1 and ��p is the operator
defined by (4.7).

(ii) For all �È,(3 , there exist in a unique way:: an operator �Ww � NmOQP;'A�)�����F
]�rZó% NmOQP/'C�H�����F
Y�rZ composition of 2D operator
and integration with respect to n � , and vanishing on the mean surface,: an operator �hw � N/OQP;'C�H�����F
]�rZ:% �����F
Y� composition of 2D operators and
integration with respect to n � on ' ,

such that the formal series �!{ �}| 2 ~ w]� 
 ��w}�hw and ��{ �}| 2 ~ w]� 6 ��wv�!w satisfy the equa-
tions <= > cC{ �}| ��{ �}| �[k�� 2 1�ð��!{ �}| �[k��h�sk!�g { �}| ��{ ��| �[k�� 2 ;D� (4.12)

for all k:,�N/OQP;'C�H�����F
��[Z . Moreover the operators � 
 and � p are the null operators,
and we have � 
 �rk�� 2 t� Ï poqp k!�*n � � Ê n � z (4.13)

Proof. We will show the existence of formal series ��{ ��| , �W{ �}| , ��{ �}| and �!{ �}| satisfying
the condition of the theorem, and such that the following equations are valid:<= > cC{ ��|_��{ ��| 2 �A1çð��\{ �}| �g { �}|���{ �}| 2 ;D� and

<= > cC{ �}| ��{ ��| 2 1�ð��!{ �}|q�CBEDT�g { �}|���{ �}| 2 ;D� (4.14)
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in the corresponding formal series spaces.

1. We first show the existence of the formal series ��{ �}| and �\{ ��| satisfying the first
system in (4.14). This means that2 % ,(3 <= > ~ � w)y 
 c�wH� � o w 2 �A1�� � o 6 �~ � w)y 
 g w�� � o w 2 ; z (4.15)

These equations write2 % ,(3 <=?> f 6� G � � 2 � ~ � w)y p �}oqp�c w � � o w ���}oqpF1�� � o 6 �f � G�� � 2 � ~ � w)y p � oqp g w�� � o w z (4.16)

We set � oqp 2 � o 6 2 ; , and the previous subsection shows that (4.16) is satisfied for% 2 ; et t with the operators � 
 et � p defined in the theorem.

Let % ) ; , and suppose that the operators � � and � �ro 6 are determined for � 2;M� zvzvz � % , such that the operators � � are polynomials in n � . let = ,	�����F
Y� . Con-
sider the equations5 f 6� G Î 2 � ~ � ¿ pw)y p � oqp c�wH� � ¿ pro wv=Q��� oqp 1�� � oqp = in ���f � G)Î 2 � ~ � ¿ pw)y p � oqp g w�� � ¿ pro wv= on S��� z (4.17)

with unknowns Î and � � oqp�= . This is a Neumann problem on ' , and the corresponding
compatibility condition write Ï poqp fq6� G Î Ê n � 2 7 f � G Î 8 ¿ poqp �
which writes again��� � oqp = 2 � ~ � ¿ pw)y p-G poqp P)c�w�� � ¿ pro w8=`Z?�*n � � Ê n �& ~ � ¿ pw)y p P g w�� � ¿ pro w8=`Z?��&�t��h� ~ � ¿ pwRy p P g wH� � ¿ pro wv=mZ��¹� t�� z (4.18)

This equation defines the operator � � oqp . The unique solution Î 2 � � ¿ p = vanishing on
the mean surface (for n � 2 ; ) of the equation (4.17) yields the operator � � ¿ p . It is easy
to verify that � � ¿ p is a polynomial in n � with 2D operators coefficients.

2. The second system in the equation (4.14) means that the formal series ��{ �}| and �!{ ��|
satisfy the following equations:2 % ,(3��

<= > ~ � wRy 
 c � o wY�!w 2 1!� � o 6 ��Æ 6� BED��~ � wRy 
 g � o wv�!w 2 ;D� (4.19)

where Æ 6� is the Kronecker tensor. Setting � 
 2 � p 2 ; and � o 6 2 � oqp 2 ; , we see
that these equations are satisfied for % 2 ; et % 2 t . Let k , N®O P 'C�H��� �F
Y� Z . For
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% 2 � , the problem is to find H and � 
 k solution of5 f 6� G H 2 � oqp 1�� 
 k���� oqp k in ���f � G�H 2 ; on S��� z
This Neumann problem has a solution if and only if a compatibility condition is satisfied,
and we find the expression (4.13) for the operator � 
 . The operator � 6 is thus the unique
solution of the Neumann problem vanishing for n � 2 ; :� 6 k 2 Ï � G
 I ÏKJoqp � oqp P 1�� 
 k���k Z �1ÀR� Ê ÀML Ê K z (4.20)

Suppose now that the operators � � and � �ro 6 are determined for � 2 ;D� zvzvz � % , with% )�. . Let k�,¸NmOQP/'A�)�����F
Y�[Z and consider the problem:5 f 6� G H 2 � ~ � w)y 6 � oqp c � ¿ pro wv�!w}k &�� oqp 1!� � oqp k in ���f � G�H 2 � ~ � w)y 6 � oqp g � ¿ pro wv�!w8k on SJ�� � (4.21)

with unknowns H and � � oqp k . Again, this problem has a solution if the compatibility
condition�?� � oqp k 2 ~ � w)y 6 G poqp P)c � ¿ pro w � w kTZ��*n � � Ê n �� ~ � w)y 6 P g � ¿ pro wY��w8kTZ?��&�t��A& ~ � w)y 6 P g � ¿ pro wv�!w8kTZ?���ut�� (4.22)

is satisfied. This equation defines the operator � � oqp , and the operator � � ¿ p is the unique
solution operator vanishing for n � 2 ; .

Let us consider a 2D operator acting on = 2 � ¡}@q�)¡ � ��, ��� �F
Y� . The notion of
surfacic derivative order in ¡8@ or ¡ � is intrinsic. Hence if Ã is an operator taking values
in ��� �F
Y� , we set ÿ Á � ù � the derivative order in ¡HÂ of the operator Ã Á , and we write

ÊONEP Ã 2 ÷ ÿ��D� ü$� ÿ��D�*.��ÿ � ��ü�� ÿ � � .?� û z
Moreover, we define the order relation:ÊONEP Ãö� ÊONEPRQ SUT 2 æ�� ù ÿ Á � ù ��� � Á � ù �)�
where the

� Á � ù � are the orders of Q . We also make the convention that an operator
with negative order of derivative is the null operator, and that the null operator has the
derivative degree �WV . Note that this notation extends obviously to 2D operators acting
on the space N O PX'C�H��� �F
]�[Z . Using the previous theorem, we see that

ÊYNZP � 
 2ø÷ ; �WV�WV ; û and ÊYNZP � p 2ø÷ ; tt ; û z (4.23)

We now give the following result:

22



Proposition 4.2 With the notations of Theorem 4.1, the operators � w are polynomials of
degree � in n � for all �*)�; . Moreover, for all ^[)�; we have the estimates

ÊONZP � 6 X � ÷ �]^ ��^©�'t�]^²�·t �]^ û and ÊONEP � 6 X ¿ p � ÷ ��^ ��^�&�t��^�&�t �]^ û � (4.24)

ÊONZP � 6 X � ÷ �]^ &s� �]^u&:t�]^ &:t �]^u&s� û and ÊONZP � 6 X ¿ p � ÷ ��^�&�� ��^�&�.��^�&�. ��^�&�� û z (4.25)

Proof. We prove this result by induction using the formulas in the proof of Theorem 4.1
and using the expressions of the operators cbw and

g w and their surfacic derivatives orders
(see [14] for details). Note that we have similar estimates for the surfacic derivatives order
of the operators �Ww and �®w (see [14]).

As corollary of Theorem 4.1, we have the following result:

Theorem 4.3 The formal series P ��{ �}|*�H��{ �}|*�R�\{ ��|*�]�!{ �}| Z have the following properties:
Let k\{ �}| be a formal series with coefficients in N®OQP;'C�H�����F
��[Z ,

(i) If =�{ �}| 2 ~ w]� 
 � w = w is a formal series with coefficients in �����m
Y� satisfying the
equation �\{ �}|�=�{ �}| 2 �!{ �}|1k\{ �}|*� (4.26)

then the formal series i�{ �}| defined byi�{ �}| 2 ��{ �}|�=�{ �}|�&s��{ �}|>k�{ �}| � (4.27)

is a solution of the problem cq{ �}|�i�{ �}| 2 �lk�{ �}| in ���g { �}|�i�{ �}| 2 ; on SJ�� z (4.28)

(ii) If i�{ �}| is a 3D formal series solution of the problem (4.28), then the formal series=�{ �}| with coefficients in �����`
Y� defined by=T{ �}| �32 i�{ �}|â�� � G y 
 � (4.29)

satisfies the equations (4.26) and (4.27).

Proof. (i) Let =�{ �}| be a formal series with coefficients in �����m
Y� . The equations (4.14)
show that<= > cC{ �}|���{ �}|�=�{ �}| 2 �@1��W{ �}|±=�{ �}| �g { �}|���{ �}|�=�{ �}| 2 ;D� and

<= > cq{ �}|���{ �}|1kW{ �}| 2 1��!{ �}|1k\{ �}|q�skW{ ��|*�g { �}|���{ �}|1kW{ ��| 2 ; z
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By summing these equations, we see that the formal series i�{ �}| 2 ��{ �}|�=¦{ ��|B&���{ �}|1k\{ �}|
is a solution of (4.28) if the condition (4.26) is satisfied.

(ii) Reciprocally, if i�{ �}| is a solution of (4.28), then we show by induction the existence
of a formal series =T{ �}| with coefficients in �����m
Y� satisfying the equations (4.27) and
(4.26) by using the solution operators of the theorem 4.1. The fact that the operators �!w
for �,) t and ��w for )�; vanish on the mean surface shows that =�{ �}| is the restriction
of i�{ �}| to �F
 . Thus the formal series =T{ �}| 2 i�{ �}|��� � G y 
 satisfies the equations (4.26) et
(4.27), and this proves the result.

4.C FURTHER TERMS

The following theorem gives the expression of the first terms of the formal series given in
Theorem 4.1. In particular, the exact expression of the “bending” operator � 6 is given.

In the following we denote by 4 the membrane operator (see [3, 21, 23, 26]) defined
by the equations 5 4 �M� =h� �32 �]\ ½ e � � @@ � =h�h���â¾ e @ � @� � =h�R�4 � �*=®� �I2 �^\ ½ � @@ � úú � =h�h���â¾ � @ú � ú@ � =®� z (4.30)

where \ ½ 2 �â½A¾�� ½�&s��¾h� oqp . This operator is associated with the bilinear form :�*=��)=`__�$#% Ï ¶] `a @ ú � � � @ ú � =®� � � � � =`_±� Ê �F
v�
where a @ ú � � is the tensor defined by a @ ú � � 2 \ ½Aÿ @ ú ÿ � � &'¾��*ÿ @�� ÿ ú � &'ÿ @ � ÿ ú � � . The
expressions in the following theorem can be compared with those found in John [18].

Theorem 4.4 We consider the formal series of Theorem 4.1. The formal series �W{ �}| has
for first terms � 
 2 4 the membrane operator defined by (4.30) and �!p 2 ; . The first
terms of the formal series ��{ �}| write� 
 2 1W� � p� � =®� 2 �Wn � ���D�*=h� and � p� �*=®� 2 �Wn � ^ � @@ � =®� z
Moreover we have� 6� � =h� 2 � �G6 ^ e � � @@ � =®� and � 6� � =®� 2 � �G6 ^ P � @@ �*=®�h�ó^ � @@ � úú �*=®�h��� � ú @ � @ú � =h� Z z
The first term of the formal series �!{ �}| writes � 
 �[k�� 2 p6 G poqp k!�1n � � Ê n � . In the follow-
ing we set b��rk¦� 2 � oqp�P 1!� 
 �[k����'k Z where �â�1-W� 2 �*¾FKc�?�8� ½+&'�â¾h�rK � � . The operator�$p then writes � p� �[k�� 2 t� Ï poqp P Ï � Goqp ��½ e ��b � �»¾ � @@ bd�?�)�[k�� Ê KAZ Ê n �
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and � p� �[k¦� 2 t� Ï poqp PMÏ � Goqp � ¾ � @@ ��bu�h�»¾ � @@ b � �H�rk¦� Ê KAZ Ê n � z
Moreover, all the operators �®w for �*)öt are factorized through the operator b : there
exists operators eFw � NmOQPX'C�H��� �F
]�[Z�% ��� �F
Y� such that for �,) t we have �Jw 2 eLw�ðcb .
The formal series ��{ �}| has for first terms � 
 and � p the null operators, and � 6 writes� 6 �rk¦� 2 G � G
 P G Joqp b��[k��H�>ÀR� Ê À¹Z Ê K . Like for the operators �Jw , the operators ��w are
factorized through b for all �*):� . Finally, the operator � 6 is given by the formulas� 6� 2 � 6� ¾ � �� e @ � @� � 6� ¾D^ � úú e � � �� &�¾D^ 6 e ��� � @@ � �� �F&gf � ¾D^ e � � @ú � ú @& p� ¾D^ e @ � @� � �� & 6� ¾ � @ú e @ � ú � & 6 � ¾ � @ú e @ � ú � � p� ¾ e @ � ú � e @ � ú& p� ¾ e @ � @ú e ú ���l� 6� ¾ e @ � @� � �   h� � p� ¾D^ 6 e � e @ e @ � �� � p� ¾D^ e @ e @ e � � ���»��¾D^ 6 e �M� � @@ � �� �F& 6� ¾D^ � úú e @ � @� � �� � 6� ¾D^ � @ú e @ � ú � � �� � 6� ¾D^ � @ú � �� e @ � ú �& 6 � ¾ � �� e @ � @ú � ú� & 6� ¾D^ � úú e � � @� � �@ ��¾D^ 6 e �D� � @@ � ú � � �ú �h� p 
� ¾D^ e ��� � @ú � ú@ �� p� ¾D^ e @ � @� � ú � � �ú � 6� ¾ � @ú e @ � ú � � �� � 6� ¾ � �ú � @� e @ � ú � � 6� ¾ � @ú e @ � ú � � ����f � ¾ � �� � @� e @ � �� & 6� ¾ � @� � �� e @ � �� & 6� ¾ � úú � @� e @ � �� & 6� ¾ � �� � @ú e @ � ú�& p6 ^ 6 e �M� � @@ 4 � �h� p� ^ � �� e � 4 � & pi ^ e @ � @� 4 � z

(4.31)

where 4 � is given by (4.30), and��6� 2 6 � ¾D^ e @ e @ � �� & 6 � ¾ e @ e � � �@ &�¾D^ � @@ � �� &gf � ¾ � @ú � ú @ & p� ¾D^m�*.Y^+���?� � @@ � úú � ��& 6� ¾�����^+�'t�� � @@ � �ú � ú � � 6� ¾D^ e @ e @ � �ú � ú� � p� ¾ e � e @ � �� � @� � p� ¾ e � e @ � @� � ��� p� ¾D^ 6 � úú e @ e @ � �� � 6 � ¾D^ e � e @ � @� � �� � p� ¾D^ � @ú e ú e @ � �� � 6� ¾ e � � @� e @ � ��� 6� ¾ e � � @� e @ � �� �»��¾D^kj @@ � �� � p 
� ¾!j @ú � ú@ � p� ¾D^m�*.Y^²�»�?� � @@ � úú � �� � ���»¾D^ � @@ � ú � � �ú � 6� ¾D^m�*.Y^+���?� � �� � @@ � úú � 6� ¾�� �]^+�'t�� � @@ � �ú � ú� � 6� ¾�� .Y^²�»��� � @@ � �ú � ú�& p� ^ e @ e @ 4 � & pi ^m� .Y^²�»��� � �� � @@ 4 � & p6 ^ � @@ 4 � z
(4.32)

Proof. We first prove the results concerning the operators in = .

1. We will first compute the operators � 
 and � 6 by using the formulas (4.18) and
(4.16). Using the equations (3.15) and (4.7) we compute that if =�,������h
Y� we have5 c p� �>� p =®� 2 º�¾ � @@ ���l�'��½�&�¾h��^ e � � @@ ¼�=®�c p� �>� p =®� 2 º���½�&��â¾h��^ � @@ � úú ����½�&�¾h� e @ �v@B¼�=�� (4.33)

where we used the fact that � @@ �1� p =/� 2 n � º � @@ � úú � e @ �v@B¼�= . Moreover, using the equa-
tions (3.19) and (3.20) we haveg p� �1� p =®� 2 �Wn � ¾D^ e � � @@ = and

g p� �1� p =®� 2 n � º�½?^ � @@ � úú ��½ e @ �v@D¼�= z
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Finally we have using the equations (3.16)5 c 6� �1� 
 =h� 2 º?�\¾ � @@ ���W&s½ e � � @@ &s��¾ e @ � @� ¼�=J�c 6� �1� 
 =h� 2 º�� ½�&s�â¾/� � ú @ � @ú &�¾ e @ �v@B¼�=J� (4.34)

and similarly
g 6� �1� 
 =h� 2 ; and

g 6� �>� 
 =h� 2 n � ½ � @ú � ú@ = . Collecting the previous com-
putations, we see that the transverse component of the equation (4.16) writes5 f 6� G � 6� = 2 º?��^ � @@ � úú � � ú @ � @ú &�^ e @ �v@B¼�=Q��� ½�&s��¾h� oqp � 
� = in ���f � GR� 6� = 2 n � ^Fº?��^ � @@ � úú & e @ �v@u� � @ú � ú@ ¼�= on S��� z (4.35)

The formula (4.18) written as a compatibility condition then shows that we have��� 
� = 2 ¢�¾®º?��^ � @@ � úú � � ú @ � @ú ¼�= z
But we have �â¾D^ 2 \ ½ , and thus it is clear that we have � 
� 254 � (see (4.30)). Similarly,
the surfacic components of (4.16) write5 f 6� G � 6� = 2 ºH^ e � � @@ ��½h�¹tW� ^L�[¾ oqp e � � @@ ��� e @ � @� ¼�=��»¾ oqp � 
� = in ���f � G � 6� = 2 n � ^ e � � @@ � =h� on SJ�� z

(4.36)

The compatibility condition then implies that��� 
� = 2 º?���b½h�¹t��ó^L� e � � @@ ��¢�¾ e @ � @� ¼�= z
and using ½/��t!�ô^L� 2 \ ½ we easily get � 
� 2�4 � (see (4.30)).

Now by taking the integral of (4.35) from �ut to n � and using the boundary condition
on S o , we find (recall that � 
� 254 � ):f � G�� 6� = 2 �*n � &:t���º?��^ � @@ � úú � � ú @ � @ú &�^ e @ �v@ ��� ½�&s�â¾/� oqp 4 � ¼�=&�^LºH^ � @@ � úú � e @ �v@�& � @ú � ú@ ¼�= in � z
Replacing the expression of 4 � = we find f � G�� 6� = 2 n � ^Fº e @ �v@��È^ � @@ � úú � � @ú � ú@ ¼�= . Ase @ �v@ 2 � @@ � � ú @ � @ú we get the expression of � 6� by simple integration.

Using the fact that � 
� 2 ��½/��t��ô^L� e � � @@ ���â¾ e @ � @� , the equation (4.36) writesf 6� G � 6� = 2 ^ e � � @@ � =®� in � and f � G�� 6� = 2 n � ^ e � � @@ � =®� on S��� z
Thus we easily find that f � G�� 6� = 2 n � ^ e � � @@ � =®� and the result by integration.

The goal is now to compute the operators ��p and � 6 . The equation (3.14) shows that fori ,�N/OQP;'C�H�����F
]�rZ we have � �Ä @� �1���riQZ p 2 n � � @� � �� �*i �®&·n � � @!  h� �*ió� . For =','�����F
]�
and using the previous results, we compute successively that:c�p� �>� 6 =h� 2 n � º?�\¾D^ � @@ e � � �� &:��½�&�¾h� ^ e � e @ �v@�&:��½�&�¾h� X6;l e � 4 � �»¾D^ � @� e @ � �� ¼�=J�c p� �1� 6 =®� 2 n � º?��� ½+&s�â¾h��^ � @@ e � � � �·��½�&��â¾h� X6;l � @@ 4 � &:��½�&�¾h� ^ e @ e @ � �� ¼�=®�
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and g p� �1� 6 =®� 2 � �G6 ^Fº�¾ e � e @ �v@�& p6 e � 4 � �»¾ � @� e @ � �� ¼�=J�g p� �>� 6 =/� 2 � �G6 ½�^Fº e � e � � @@ � ���� e @ �v@u� p6;l � @@ 4 � ¼�= z
Moreover we havec 6� �1� p =h� 2 n � º�¾ � @@ �����»¾ � @@ � ú � � ú &�¾M^ � @@ e � � �� &�¾ � úú � @� �v@��½ e � e @ �v@�&�½?^ e � � @@ � �� �»¾ e @ e �m� @ ��¾ e @ e @ ���W&s�â¾M^ e @ � @� � �� ¼�=
andc�6� �>� p =®� 2 n � º�¾D^ � @@ � �� �'���â½�&�.b¾/� � ú @ e ú � @ & ���â½�&�.b¾/� ^ � @@ � ���»¾D^ e @ e @ � �� �»¾ e @ � �@ � � ¼�=��
while

g 6� �1��p�=h� 2 ; and
g 6� �1��p�=/� 2 n 6� ½`º?� � @ú e @�� ú &�^ � @@ � �� ¼�= . Finally we havec �� �1� 
 =h� 2 n � º?�\¾ � @@ ���W&s½ e � � @ú � ú@ &s�â¾ e @ � @� � �� &s�â¾ e @ � @n  o�&s��¾ � @� e @ � �� ���â¾ � �� e @ � @� ¼�=��

and c �� �>� 
 =®� 2 n � º��D� ½�&s�â¾/� � @ú � ú@ &�¾ e @ � ú @ � ú &�¾ � �@ e @ � � ¼�=��
while

g �� �1� 
 =h� 2 ; and
g �� �1� 
 =/� 2 n 6� ½ � ú @ � @ú �*=h� .

Using the formula (4.18) for the operator �!p we see easily that ��p 2 ; . As we will see,
the computation of the operator � 6 via (4.18) only requires to compute the mean value{ � � =F| ¿ poqp . Using the previous equations and integrating the equation (4.16) for % 2 .
from �ut to n � we find thatf � G�� �� = 2 � �G6 ^Fº?� e � e � � � & � @� e @ � �� � p6;l e � 4 � ¼�=©& � � �G6 � p6 �Rº e @ e �m� @ & e @ e @ ���&��]^ e � e � � � & X l e � 4 � ���]^ e @ � @� � �� ��� � @� e @ � �� �»� � @� e @ � �� ��� e @ � @p  h� ¼�= z
But we compute that we havep6 � e @�� ú & e ú �v@M�®� � @ ú 2 � @ ú � � �@ � ú �
and in particular e @ �v@ 2 � @@ � � ú @ � @ú . Hence we deduce that we have{ � �� =L| ¿ poqp 2 º?�rq� ^ e � � �� �sf � e @ � @� � q Xi l e � 4 � &tq � ^ e � � ú @ � @ú &0f � e @ � @ú � ú�& X � � @� e @ � �� &gf � ^ e @ � @� � �� &gf � � @� e @ � �� &gf � � @� e @ � �� ¼�= z (4.37)

Similarly we havef � G�� �� = 2 � �G6 º?��^ 6 e @ e @ � úú &�^ 6 � @@ e ú � ú &Q�]^ � @ú e @u� ú �È�]^ 6 � @@ � �� �Ç�]^ � @ú � ú@ & X �6;l � @@ 4 � ¼�=� � �G6 � p6 �H�¹tW�ô^A�RºH^ � @@ e � � � & � @ú e @u� ú ���]^ � @@ � �� ��� � @ú � ú@ & X6;l � @@ 4 � ¼�= z
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By integration we find using the fact that
� @ ú � @ ú 2 ; ,{ � �� =F| ¿ poqp 2 º?� p� ^ 6 e @ e @ � �� & X � �*.Y^²���?� � @@ � �� & 6 � � �]^²�'t�� � @ú � ú @� X � �*.Y^²���?� � @@ � �ú � ú� � 6� ^`� .Y^²���?� � @@ � �� � 6� �/v]^²��.�� � @ú � ú@ & Xi l � .Y^+����� � @@ a � 8 � =h� z

(4.38)

Now using the equation (4.18) we have��� 6 = 2 ��Ï poqp I c p � � = &:c 6 � 6 =©& c � � p =©& c f � 
 =-L Ê n �
&xw g p � � =Ç& g 6 � 6 = & g � � p = & g f � 
 =`y ¿ poqp z (4.39)

We verify that only the term { � � =F| ¿ poqp is involved in this expression. This is due to the
fact that we have� Ï poqp c p� �1� � =®� Ê n � &xw g p� �1� � =/�;y ¿ poqp 2 ¾ � @@ { � �� =L| ¿ poqp ��½ e �B{ � �� =F| ¿ poqp z
and ��Ï poqp c p� �>� � =/� Ê n � & w g p� �>� � =/� y ¿ poqp 2 ��¾ � @@ { � �� =F| ¿ poqp �»¾ e @ { � �@ =L| ¿ poqp z
The expression of � 6 comes from the computation of (4.39): see the details in [14].

2. Now we investigate the computation of the operator � p . Recall that the operators �Jw
are determined by the equation (4.22). We compute successively thatc p� ��� 6 k¦� 2 � G � Goqp ¾ � @@ bW�M�[k�� Ê K+& G � Goqp � ½�&�¾h� e ��b � �rk¦� Ê K©��n � ¾ � @� b\@C�[k��)�
and c p� ��� 6 k�� 2 � G � Goqp ¾ � @@ b � �[k�� Ê K�& G � Goqp � ½�&�¾h� � @@ Pb��rk¦�[Z Ê K/�
whileg p� ��� 6 k�� 2 G � G
 G Joqp ¾ e ��b � �[k¦� Ê À Ê K®& G � G
 G Joqp ¾ � @� b\@C�[k¦� Ê À Ê KT� ¾Fn � � @� G EHGoqp b\@C�[k�� Ê K/�
and

g p� ��� 6 k¦� 2 G � G
 G Joqp ½ � @@ P b��[k�� Z Ê À Ê K . Thus using the equation (4.22) we find�?� p� k 2 � G poqp G � Goqp ¾ � @@ bW�M�[k�� Ê K Ê n � & G poqp G � Goqp ½ e ��b � �[k�� Ê K Ê n �� G poqp n � ¾ � @� b\@C�[k�� Ê n � � G poqp G Joqp ¾ � @� b\@C�[k�� Ê À Ê K+& G poqp ¾ � @� b\@C�[k�� Ê K/�
and we find the result after an integration by part. Similarly we have�?� p� �rk¦� 2 � G poqp G � Goqp ¾ � @@ b � �[k¦� Ê K Ê n � & G poqp G � Goqp � ½�&�¾h� � @@ Pzb��rk¦�[Z Ê K Ê n �� G p
 G Joqp ½ � @@ P b��[k¦� Z Ê À Ê KÇ� G 
oqp G Joqp ½ � @@ P b��[k�� Z Ê À Ê K/�
and this yields the result.
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The factorization properties of the operators � w and � w are easily shown by induction
using the definition of the formal series �!{ ��| and ��{ �}| . The reader interested can find
the expression of � 6 and � �

in [14].

Now we give a result showing that the operator � 6 “contains” the classical bending
operator. Recall that Koiter’s bending operator 7 writes5 7!� 2 � 6� ¾D^ � @� e @ � �� � 6� ¾D^ e @ � @� � �� � 6 � ¾ � @� e � � �@ � 6� ¾ e � � @� � �@7 � 2 6� ¾M^ e @ e @ � �� & 6 � ¾ e @ e � � �@ � 6 � ¾D^ � @@ � �� � 6� ¾ � ú @ � @ú z (4.40)

This operator is associated with the bilinear form :� =J�R= _ �J#% t. Ï ¶   a @ ú � � � @ ú �*=h� � � � �*= _ � Ê �F
 z
Recall that the notion of Sobolev space is consistent on manifolds, as the notion of deriva-
tive order. We denote by Ò�wb� �F
]� the Sobolev space of order � on �m
 . For tensors,
we easily can define the space { w ���F
]� corresponding to the type of the tensor. Hence,=�,|{ p �QÒ 6 ���F
Y� means that the 1-form field � ¡8@D� belongs to the space { p ���F
Y� and ¡ �
belongs to Ò 6 ���F
]� . We can also naturally define the space Ò p
 ���F
]� of functions vanish-
ing on the boundary, and similarly Å ,�Ò 6
 ���F
Y� means that Å �� µ]¶   2 fb³ Å �� µ�¶   2 ; wherefb³ denote the reentrant derivative along the boundary of �/
 . With these notations we
have

Proposition 4.5 Let = and }�,ç�����`
Y� . If } satisfies the boundary condition } ��Éµ�¶   2; , then we have���h~ �1� 6 ��7®�[=J�$}A�Z� � × ¶�  Ù ��� ��� I�� �W� =h� ��� � × ¶   Ù � �W��}�� � � � × ¶   Ù& � = � � Ú Ü�� � × ¶   Ù � �W��}�� � � � × ¶   Ù & � �W� =/� � � Ú × ¶   Ù � } � � Ú Ü�� Ú × ¶   Ù L+� (4.41)

where 7 is the bending Koiter operator and � a constant depending only on �®
 .

The proof of this result is presented in the appendix B at the end of the paper. As corol-
lary, the restriction of � 6 to the space of inextensional displacements coincides with the
restriction of 7 : if í�� 2 º�=�,|{ p
 �ôÒ 6
 ���F
Y�Z� � @ ú � =®� 2 ;�¼ , then2 =J�$}»,�ík�`� é � 6 =��$}$ê 2�é 7m=®�$}$ê z
This result is consistent with the convergence result in [3, 26].

Note that in the case where the boundary fA�m
 is empty, we impose to the loading
forces and to the displacement solution to be orthogonal to the rigid displacements in

� �
.

We can expand the six rigid displacements of
� �

in normal coordinates and hence to each
rigid displacement e Á is associated a formal series e Á { �}| in powers of � �*æ 2 tb� zvzvz �$��� .
Thus the solution =�{ �}| has to fulfill a new condition due to the fact that the reconstructed
displacement i�{ �}| is orthogonal to the formal series e Á { �}| for the � 6 scalar product in� .
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5 BOUNDARY LAYERS

We consider the formal series �1��{ ��|*�H��{ �}|*�R�\{ �}| �]�!{ �}|1� of Theorem 4.1. If =T{ �}| is a
formal series with coefficients in �����`
Y� , and if this formal series satisfies the equation
(4.26), then the formal series i�{ ��| defined by the equation (4.27) is a solution of the
problem (4.28). However, we can show that for all formal series =�{ �}| 2 ~ w]� 
 ��w]=`w , the
trace i�{ �}| �� �   2 P ��{ �}|±=�{ �}|�&���{ �}|1kW{ ��| ZT�� �  
does not vanish in general and thus the problem (4.1) does not have a solution in general.
In the following, £ denotes the geodesic distance to the boundary fA�h
 , and ¤ denotes
the arc-length along fA�`
 . We can show that in this coordinate system, the metric ÿM@ ú
satisfies ÿ�³r´ 2 ; and ÿb³�³ 2 t in a neighborhood of fL�`
 , while ÿ�´ ´ 2 t on fA�`
 .

The goal of this section is to show that under certain conditions there exist a formal
series ¨©{ �}| 2 x w�� 
 � w ¨ w � §��H¤b��" � �
with boundary layer coefficients ¨ w �*§��H¤b��" � � exponentially decreasing with § 2 £���� ,
such that the equations<��= ��> ª { �}|�¨²{ �}| 2 ;D�«{ �}|�¨©{ �}| 2 ;D�¨©{ �}| ��É¬ y 
 & P ��{ �}|�=¦{ ��|?&s��{ �}|>k\{ �}| Z$��É�v  2 ;D� (5.1)

are satisfied for given formal series =�{ �}| and k�{ ��| , where the formal series ª { ��| and «¸{ �}|
are obtained by doing the change of variables �1£��)¤���" � ��#% �*§��H¤b�Rn � � in the operatorscM�1��� et

g �>�?� .

We then show that the existence of a formal series ¨©{ �}| with exponentially decreasing
coefficients satisfying the equations (5.1) relies upon the fact that the formal series =�{ ��|
satisfies a condition written ¯F{ �}|�=�{ �}| 2 °B{ �}|1k\{ �}|*� (5.2)

where ¯F{ �}| is a formal series with coefficients operator taking values in NJO+�*fL�F
v� f , and
such that ¯ 
 = 2 �*¡Y³8�)¡8´)�)¡ � �)fb³)¡ � �q��Éµ�¶   z
Thus, if =�{ �}| satisfies the equations5 �\{ �}|�=�{ �}| 2 �!{ ��|>kW{ �}|*�¯F{ �}|�=�{ �}| 2 °B{ ��|>kW{ �}|*� (5.3)
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then there exists a formal series ¨²{ �}| of boundary layer coefficients satisfying the equa-
tions (5.1), and moreover, the formal series i�{ �}| defined by (4.27) satisfies the system
(4.28).

However, the problem (5.3) does not admit a solution in general. When it is possible,
as in the case of plates, is gives an asymptotic expansion.

5.A THREE-DIMENSIONAL BOUNDARY LAYER OPERATORS

Consider the coordinate system �*£}�H¤b�Rn � � in a neighborhood of Sh
 in � . We set§ 2 £ � and thus f�³ 2 t� f ¬ z (5.4)

The coordinate system � §��Rn � �H¤�� is defined on the manifold � ¿ ��fA�F
 where � ¿ �32� ¿ ��'�� � §��Rn � � is a semi-strip. The boundary of � ¿ decomposes into a lateral
boundary � 
 �I2 º�§ 2 ;M¼���' and the two half-lines � �� �I2 � ¿ �'º}n � 2 �& tâ¼ . In
coordinates �*£}�H¤b��" � � , we write ��cM� g �H�1£}�H¤b��" �]d fb³v�)f?´H�)f � � the 3D operators. For ���'�â
 ,
we define the operators P ª �>���)�)«È�>���[Z on � ¿ �ôfA�F
 by the formulas<=?> ª �1���)� §��H¤b�Rn �Yd f ¬ �)f?´��Rf � G]� �32 cD�>�â§��)¤�����n �]d � oqp f ¬ �)f?´H��� oqp f � GY� and«��1���H�*§��H¤b�Rn �Yd f ¬ �)f?´��)f � G]� �I2 g �>�â§��)¤�����n �]d � oqp f ¬ �)f?´H��� oqp f � G]� z (5.5)

The formal series P ª { ��|*�)«{ �}|�Z are then the formal series associated with these operators
using the Taylor expansion in § 2 ; and n � 2 ; of the coefficients.

We then write ª { �}| 2 � o 6 x w]� 
 � w ª w and «{ ��| 2 � oqp x w]� 
 � w « w �
whereª w � N O P[� ¿ �¦fA�F
�Z � % N O P[� ¿ �¦fA�F
]Z � and « w � N O Pr� ¿ ��fL�F
]Z � % N O P � �� �¦fA�F
�Z �
are operators of degree � polynomials in § and n � .

We compute that the first term of the formal series ª { �}| writes, using the fact that the
metric tensor is the identity on fA�m
 :ª 
 ¬ ���Ç� 2 ¾J� f 6¬ î ¬ &�f 6� G î ¬ �F&:��½�&�¾h�[f ¬ �*f ¬ î ¬ &�f � GRî � �R�ª 
 ´ �&� � 2 ¾��*f 6¬ î�´/&�f 6� G îJ´)�R�ª 
� �&� � 2 ¾��*f 6¬ î � &�f 6� G î � �F& � ½�&�¾/�[f � G8�*f ¬ î ¬ &�f � GRî � � z (5.6)
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Remark that this operator is independent on ¤ , and that it does not depend on the geome-
try of �F
 . In particular, it is the same as for plates. Similarly, the first term of the formal
series «{ �}| writes « 
¬ �&� � 2 ¾��*f � GRî ¬ &�f ¬ î � �R�« 
´ �&� � 2 ¾`f � GRî�´��« 
� �&� � 2 � ½�&s�â¾/�[f � GRî � &�½Af ¬ î ¬ z (5.7)

As in [7], we introduce the following spaces: Let �+� � ¿ � be the space of NhO functions¥ on the semi-strip � ¿ except in the non regular points � § 2 ;M�Rn � 2 �& t�� , and such
that ¥ is exponentially decreasing with § in the following sense:2 æ�� ù �H��,(3�� Ä � ¬ § w f Á¬ f Â� G ¥�,|� 6 ��� ¿ �R�
where Æ�9·; is a real strictly less than the smallest Papkovich-Fadle exponent (see [17]).
In the neighborhood of the two corners of the semi-strip, we impose the following: if �
denote the distance in � ¿ to a point �*§ 2 ;D�Rn � 2 �& t�� , we suppose that each ¥ in����� ¿ � satisfies 2 æ�� ù ,(3��\æL& ù��2 ;D� � Á ¿�Â oqp f Á¬ f Â� G ¥�,(� 6 � � ¿ � z
We then define the corresponding displacement space� ��� ¿ � �32�� ¨ 2 ��¥ ¬ �H¥®´��H¥ � ��,������ ¿ � �m� z
As the arc-length appears as a parameter, the natural space in which the equations will be
posed is hence N/OQPrfL�F
8� � ��� ¿ �rZ .

We now define the associated range spaces: We set ����� ¿ � the space of î',¸N/O+��� ¿ �
such that2 æ�� ù �H��,(3�� Ä � ¬ § w f Á¬ f Â� G î',|� 6 ��� ¿ � and

2 æ�� ù ,(3�� � Á ¿�Â�¿ p f Á¬ f Â� G î',|� 6 � � ¿ �
with the same notations. Similarly, we introduce the same space corresponding to the
trace operators on � �� : let ��� � �� � the space of couple of functions î �� ,�N/O+� � �� � such
that2 æ��H�Q,43W� Ä � ¬ § w f Á¬ î �� ,|� 6 � � �� � and

2 æ�� ù ,(3�� � Á ¿�Â�¿ p�� 6 f Á¬ î �� ,|� 6 � � �� � z
We then define the spaces� ��� ¿ � �32 � � 2 �*î ¬ �Rî�´H�Rî � ��,(��� � ¿ � � � �
and

� � � �� � �I2 � � �� 2 �*î ��¬ �Rî ��´ �Rî ��� ��,4��� � �� � � � z
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Thus the operators ª 
 et « 
 act on the space N OQP fA�F
8� � ��� ¿ � Z and take values inN OQP fL�F
8� � ��� ¿ � Z and N OQP fL�F
8� � � � �� � Z respectively.

The properties of the operators ª 
 and « 
 involve the rigid displacement space�
spanned by the four following displacements, written in coordinates � §��H¤b�Rn � � (see

[10]) : �
p 2 �� t;;(� 

�
6 2 �� ; t;¡� 

� � 2 �� ;; t*� 
� f 2 �� �Wn �;§ �  z (5.8)

These displacements are in the kernel of the operator � ª 
 �R« 
 � without boundary condi-
tion on the lateral boundary. The operators ª 
 and « 
 have the following property (see
for example [10, section 5]):

Proposition 5.1 Let � , � ��� ¿ � , � �� , � � � �� � and Î , N/O+� � 
 � � . There exist a
unique ¨ , � ��� ¿ � and a unique

�
, � such that<��= ��> ª 
 � ¨'�
�

� 2 � in � �� �« 
 � ¨'�
�

� 2 � ��
on � ¿�� � o �� ¨'�

�
�q�� ¬ y 
 &»Î²�� ý   2 ; z (5.9)

Remark that as

�
, �

the left-hand sides of the two first equations of (5.9) are equals
to ª 
 � ¨ñ� et « 
 ��¨ñ� . The following corollary is clear using the fact that the operator� ª 
 �)« 
 � does not depend on ¤ :

Corollary 5.2 If in the previous proposition we have � ,	N®OQP[fA�F
8� � ��� ¿ �rZ , � �� ,NmOQPrfL�F
8� � � � �� �[Z and Î�,¸N/O+� Sm
]� � then the functions solution of (5.9) are in the spaces¨ ,¸NmOQP[fA�F
8� � � � ¿ �[Z and

�
,¸N/OQPrfA�F
8� � Z .

5.B FORMAL SERIES SOLUTION

We now want to find a formal series ¨²{ �}| 2 ~ w]� 
 ��wY¨�wb�*§��H¤b�Rn � � with coefficients in
the space N O PrfA�F
8� � � � ¿ �[Z satisfying the equation (5.1) If we set i�{ �}| 2 ~ w]� 
 � w i w 2��{ �}|�=�{ �}|M&s��{ �}|>k�{ �}| , this formal series equation is equivalent to the following collection,
for �,)�; , <��= ��> ª 
 ¨\w 2 � ~ w� y p ª�� ¨\w ob� in fL�F
���� ¿ �« 
 ¨ w 2 � ~ w� y p «ñ�¹¨ w ob� on fA�F
�� � ¿ô� � o �¨�wJ��3¬ y 
 &�i�w��� �   2 ; z
Note that the sum ¨²{ �}|b��3¬ y 
 &�i�{ �}|â����   only make sense on the boundary. Using Proposi-
tion 5.1 we prove the following theorem:
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Theorem 5.3 Let �1��{ �}| �)��{ �}| �R�W{ �}|*�]�!{ �}|>� be the formal series of Theorem 4.1. For all�*)�; there exist: an operator ¢lw � ��� �F
Y��% NmOQP[fA�F
8� � ��� ¿ �[Z ,: an operator £lw � NmO P 'A�)�����F
]� Z % NmO P fA�F
�� � ��� ¿ � Z ,: an operator ¤?w � �����F
Y�J% NmO+� fA�F
8� � � ,: an operator ¥ w � N O PX'C�H��� �F
]�[Z�% N O � fA�F
8� � � ,

such that if =�{ ��| is a formal series with coefficients in ��� �/
�� satisfying the relation¤`{ �}|±=�{ �}| 2 ¥C{ �}|1kW{ �}|*�
where kW{ �}| is a formal series with coefficients in N®OQP;'C�H�����F
��[Z , then the formal series¨©{ �}| �I2 ¢Ç{ �}|�=T{ �}|�&#£Ç{ �}|1kW{ ��|
is a solution of the formal series problem<��= ��> ª { �}|�¨²{ �}| 2 ;D�«{ �}|�¨©{ �}| 2 ;D�¨©{ �}|b��É¬ y 
 &5P*��{ �}|�=¦{ ��|?&s��{ �}|>k\{ �}|�Z$��É�   2 ; z (5.10)

Moreover, ¢ 
 , £ 
 and £�p , ¥ 
 and ¥?p are the null operators and we have that¤ 
 = 2 P ¡Y³ �� µ�¶]  Z
�

p & P ¡8´ �� µ�¶]  Z
�

6 & P ¡ � �� µ�¶�  Z
� � � (5.11)

and ¤ p = 2 P � p � @@ � =h�q�� µ�¶   Z
�

p & P �Y³}�*=h�C�� µ]¶   Z
� f � (5.12)

where � p is a coefficients depending on ½ and ¾ , and ¢ p is defined by¢ p¬ = 2 P ^ � @@ �*=h� ���µ�¶   Z ¥ p¬ � ¢ p´ = 2 P �8´�� =®� ��Éµ�¶   Z ¥ p´ � and ¢ p� = 2 P ^ � @@ � =h� ��Éµ�¶   Z ¥ p� �
(5.13)

where ¨ p 2 � ¥ p¬ � ¥ p´ � ¥ p� � is an element of
� ��� ¿ � independent on � .

Proof. As for Theorems 4.1 and 4.3 we will show that the formal series satisfy in
fact formal series functional equations. We will show separately the existence of the
formal series ¢ { �}| and ¤`{ �}| acting on ��� �m
Y� and £ { �}| and ¥q{ ��| acting on the spaceNmO P 'A�)�����F
]� Z respectively. We conclude by summation.

1. We first show the existence of operator formal series ¢ { ��| 2 ~ w]� 
 ��w�¢�w and ¤`{ �}| 2~ w�� 
 ��w+¤?w satisfying the equations<��= ��> ª { �}|o¢Ç{ �}| 2 ;D�«¸{ �}|o¢Ç{ �}| 2 ;D�P�¢Ç{ �}|q�¦¤`{ �}|�ZT��3¬ y 
 &���{ �}|â��É�8  2 ;D� (5.14)
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in the space of formal series with operators coefficients acting on ��� �h
Y� . For � 2 ; and
for =�,���� �F
Y� , the equations for ¢ 
 and ¤ 
 write<��= ��> ª 
 ¢ 
 = 2 ; in fA�F
��ô� ¿ �« 
 ¢ 
 = 2 ; on fA�`
�� � ¿ô� � o ��/¢ 
 =��C¤ 
 =®�q��3¬ y 
 &�� 
 =���É�   2 ; z
As � 
 = 2 1ôðW= , we see that ¢ 
 2 ; and ¤ 
 given by (5.11) are solutions.

Suppose that ¢lw and ¤?w are constructed for ��� % , where % ,(3 , and let =�,������m
Y� .
We consider the equation in � :<��= ��> ª 
 � 2 � ~ � ¿ p� y p ª�� ¢ � ¿ prob� = in fL�F
\��� ¿ �« 
 � 2 � ~ � ¿ p� y p « � ¢ � ¿ prob� = on fA�F
�� � ¿�� � o ��'��É¬ y 
 &»� � ¿ p =+�� �8  2 ; z (5.15)

Using the properties of the operators ª � and « � , we see that the right-hand sides of the t-
wo first equations are in the spaces N OQP fA�F
8� � � � ¿ � Z and N OQP fA�F
8� � � � �� � Z respectively.
Corollary 5.2 then shows the existence of ¨ , N OQP fL�F
8� � ��� ¿ � Z and

�
,¸N OQP fA�F
8� � Z

such that � 2 ¨��
�

is solution of the system.

Setting ¢ � ¿ p = �32 ¨ and ¤ � ¿ p = �I2
�

, we obtain the existence of the operator at the
rank % &:t .

2. Similarly we show the existence of the formal series £ { �}| 2 ~ w]� 
 � w £ w and ¥q{ �}| 2~ w�� 
 ��wm¥�w satisfying the equations:<��= ��> ª { �}|o£ { �}| 2 ;M�«{ ��|o£ { �}| 2 ;M�P�£ { ��|�&	¥q{ �}|±ZT��3¬ y 
 &s��{ ��|â����   2 ;M� (5.16)

in the space of formal series with operator coefficients acting on NJOQP;'C�H�����F
��[Z . The fact
that � 
 2 � p 2 ; shows that taking £ 
 , £ p , ¥ 
 and ¥ p as the null operators is a
solution for � 2 ;D�vt .

Suppose that the operators £ñw and ¥�w are constructed for ��� % where % ,§3 . Letk�,N O P;'C�H�����F
]�rZ and consider the equation in � :<��= ��> ª 
 � 2 � ~ � ¿ p� y p ª�� £ � ¿ prob� k in fA�`
���� ¿ �« 
 � 2 � ~ � ¿ p� y p « � £ � ¿ prob� k on fA�F
�� � ¿ô� � o �� �� ¬ y 
 &s� � ¿ p k �� �   2 ; z
Using the properties of ª�� and « � , we see that the right-hand sides of the first two
equations are in the spaces N®O P fA�F
8� � � � ¿ � Z and N/O P fA�F
�� � � � �� � Z . Corollary 5.1 then
shows the existence of ¨ ,'NhO P fA�F
8� � ��� ¿ � Z and

�
,�N/O P fA�F
}� � Z such that � 2

35



¨ �
�

is solution of the system. Setting £ � ¿ p¹= �32 ¨ and ¥ � ¿ p�= �32 �
�

proves the
existence of the operators at the order % &�t .

3. Now let =�{ ��| is a formal series with coefficients in ��� �/
Y� and k�{ ��| a formal series
with coefficients in NhOQP/'C�H�����F
Y�rZ . By summing the equations (5.14) applied to =�{ �}| and
the equations (5.16) applied to k�{ �}| , we see that ¨©{ �}| �32 ¢ { ��|±=�{ �}|C&�£ { �}|>k�{ ��| satisfies
the equation P ª { �}|*�)«{ �}| Z ¨²{ �}| 2 ; with the boundary equation¨©{ �}|â�� ¬ y 
 & P ��{ �}|�=�{ �}|�&s��{ ��|>kW{ �}| Z �� �   & P �¦¤`{ �}|±=�{ ��|?&	¥q{ �}|>k�{ ��| Z �� ¬ y 
 2 ; z
We deduce the result from these equations.

4. The equations satisfied by ¢ p and ¤ p write, for =ç,���� �`
]� ,� ª 
 �)« 
 �M¢ p = 2 ; and �;¢ p =Q�C¤ p =h�C��É¬ y 
 &»� p =����µ]¶   2 ; z
In coordinates �*£}�H¤b��" � � the components of � p write � p³ � =/� 2 �\n � �Y³}�*=h� , � p´ �*=®� 2�Wn � �8´]�*=®� and ��p� � =®� 2 �Wn � ^ � @@ � =®� . Note that the operator � ª 
 �R« 
 � does not depend
on ¤ and does not contain derivatives of ¤ . As only ��pL�� µ�¶   is involved in the equations
and thanks to the linearity of the operator we only have to look for the solution of the
similar problem with right-hand sides �\n � in each component.

(a) We first consider the solution ��¨��
�

� for the problem� ª 
 �)« 
 �[¨ 2 ; and � ¨'�
�

�C�� ¬ y 
 & �¹�\n � �R;D�);��q�� µ�¶   2 ; z
Recall that

� f 2 ���Wn � �);D�)§ � and that this element is in the kernel of � ª 
 �)« 
 � . Hence
the solution of the previous problem is simply ¨ 2 ; and

�
2
� f . But as� ª 
 �)« 
 � P �Y³8� =h� ��Éµ�¶]  Z

� f 2 P �Y³8�*=®� ��Éµ�¶�  Z � ª 
 �)« 
 �
� f 2 ;

we deduce that the couple ¨ 2 ; and

�
2 PX�Y³v� =®�C���µ�¶   Z

� f satisfies the equations� ª 
 �)« 
 �[¨ 2 ; and ��¨'�
�

�C��3¬ y 
 &:�1� p³ �*=®�)�);D�R;��C�� µ�¶   2 ; z
(b) Consider now the equation� ª 
 �)« 
 �[¨ 2 ; and � ¨'�

�
� ��3¬ y 
 & �*;D�v�Wn � �);�� ���µ�¶   2 ; z (5.17)

We note that the operators ª 
 and « 
 decouples into two parts: the operators ª 
 ´ and« 
´ acting on ¥J´ and the operators � ª 
 ¬ � ª 
� � and � « 
¬ �R« 
� � acting on ��¥ ¬ �H¥ � � respec-
tively. In particular, the components ¥ ¬ and ¥ � of ¨ equal to zero, and the components
of

�
on the vectors

�
p ,

� �
and

� f are zero.

Moreover, Proposition 5.4 and Lemma 5.5 of [10] yield that there exists a unique non zero
function ¥ p´ of the space �+� � ¿ � such that� ª 
 ´ �R« 
´ � ¥ p´ 2 ; and ¥ p´ ��É¬ y 
 2 n � z
The terms ¨ 2 �*;D� ¥ p´ �);?� and

�
2 ; are solution of (5.17). We hence verify that for=�,���� �F
Y� the elements

�
2 ; et ¨ 2 PX�8´]�*=®�C���µ]¶   Z?� ;D� ¥ p´ �);��
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are solution of the equations� ª 
 �)« 
 �[¨ 2 ; and ��¨'�
�

�C�� ¬ y 
 &:� ;D��� p´ � =h�R�);��C�� µ�¶   2 ; z (5.18)

(c) Finally we consider the equations� ª 
 �)« 
 �[¨ 2 ; and � ¨'�
�

� �� ¬ y 
 & �*;D�);D�Y�\n � � �� µ�¶   2 ; z (5.19)

The splitting of the operator � ª 
 �)« 
 � in components ¤ and � §��Rn � � shows that the
components ¤ of the elements

�
and ¨ solutions of (5.19) are zero.

Moreover the equations (6.4) and (6.5) of [10], using the parities of the operators ª 
 and« 
 , show that there exists a unique element � ¥ p¬ � ¥ p� � of the space ����� ¿ � 6 and a unique
constant � p depending only on ½ and ¾ , such that<����= ����> � ª 
 ¬ � ª 
� �)� ¥ p¬ � ¥ p� � 2 ; in � ¿ ��*« 
¬ �)« 
� �)� ¥Tp¬ � ¥Tp� � 2 ; on � ¿�� � o �¥ p¬ ��3¬ y 
 � � p 2 ;D�¥ p� ��É¬ y 
 2 n � z
The couple ¨ 2 � ¥ p¬ �);D� ¥ p� � and

�
2 � p � p is then a solution of (5.19). Thus the

elements

�
2 P � p ^ � @@ � =/�C��Éµ�¶   Z

�
p and ¨ 2 P�^ � @@ � =®�q��Éµ�¶   Z?� ¥ p¬ �);D� ¥ p� �

are solution of the system� ª 
 �)« 
 �[¨ 2 ; and ��¨'�
�

�C��3¬ y 
 &:� ;D�R;D��� p� �*=®���C���µ�¶   2 ; z (5.20)

The previous equations show the theorem.

For all � , the operators ¤Mw decompose into ¢ operators ¤MwÁ � ��� �F
Y� % N/O+�*fL�F
Y�
where ¤?wÁ = is the component of ¤�wY= along

�
Á . We define also similarly the operators¥ wÁ � N O PX'C�H��� �F
]�[ZQ% N O � fA�F
v� . Theorem 5.3 then shows that ¤ 
 p = 2 ¡Y³`��Éµ�¶   , ¤ 
6 = 2¡8´A�� µ�¶   , ¤ 
� = 2 ¡ � �� µ�¶   , ¤ 
f = 2 ; and moreover ¤qpf = 2 � fb³)¡ � & � ³³ ¡Y³T& � ´³ ¡8´R�C�� µ�¶   . More

generally, we can prove the following result (see [14]):

Proposition 5.4 Let ¢ { �}| and ¤`{ �}| be the formal series of Theorem 5.3. For all � there
exist a finite subset ä w of 3 such that: for all ù ,�ä w , there exist functions ¨ wE¨ Â of N O P fA�F
8� � ��� ¿ � Z , depending only
on �F
 , ½ and ¾ ,: for all ù , ä w , there exist 2D operators � wÂ with scalar values, with degree of
derivative at most � ,: for all æ 2 tb�H�M�).M�R¢ , there exist 2D operators ©�wÁ with scalar values with degree
of derivative at most � ,
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such that for �*)�; and for =�,���� �`
Y� , we have¢ w = 2 xÂ Ô á � � � wÂ =®� �� µ�¶   ¨ wE¨ Â and ¤ w = 2 fx Á y p �&© wÁ =h� �� µ�¶  
�

Á z (5.21)

6 CONCLUSION

In order to obtain an equation of the form (5.2), we transform the equation ¤`{ �}|±=�{ �}| 2¥q{ ��|>kW{ �}| : We define the formal series ¯F{ ��| and °B{ �}| with coefficients ¯Mw � ��� �F
Y�È%NmO+� fA�F
Y� f , and °�w � NmOQPX'C�H��� �F
]�[Z�% NmO+� fA�F
Y� f , as¯F{ ��| 2 P ¤ p { �}|*�¤ 6 { �}| �z¤ � { �}|*��� oqp ¤ f { �}|q� � ³³ ¤ p { �}|q� � ´³ ¤ 6 { �}| Z (6.1)

and °B{ �}| 2 P ¥ p { �}| ��¥ 6 { �}| ��¥ � { �}| ��� oqp ¥ f { �}|q� � ³³ ¥ p { �}|q� � ´³ ¥ 6 { �}| Z � (6.2)

where
� ³³ and

� ´³ are the components
� ³³ �*£}�H¤�� and

� ´³ �*£}�H¤�� evaluated on fA�`
 We see that° 
 is the null operator and ¯ 
 = 2 � ¡Y³Y�)¡8´��R¡ � �)fb³)¡ � �q��3µ�¶   � (6.3)

and it is clear that the formal series equations ¤`{ �}|±=�{ ��| 2 ¥C{ �}|1kW{ ��| and ¯F{ �}|±=�{ ��| 2 °B{ �}|>k�{ �}|
are equivalent. The final result then states:

Theorem 6.1 Let �1��{ �}| �)��{ �}| �R�W{ �}|*�]�!{ �}|>� the formal series given by Theorem 4.1 and�/¢ { �}|*�+£ { �}|*�R¯F{ �}|*�Y°B{ ��|>� the formal series of Theorem 5.3 and the equations (6.1),(6.2). Ifk\{ �}| is a formal series with coefficient in N O P 'A�)�����F
Y� Z and if =�{ �}| is a formal series
with coefficients in �����`
Y� , such that the equation5 �\{ �}|�=�{ �}| 2 �!{ ��|>kW{ �}|*�¯F{ �}|�=�{ �}| 2 °B{ ��|>kW{ �}|*� (6.4)

are satisfied, then the formal series i�{ �}| �32 ��{ �}|�=�{ �}|}&���{ ��|>kW{ �}| and ¨©{ �}| �I2 ¢Ç{ �}|�=T{ �}|�&£ { �}|1kW{ �}| are solutions of the equations5 cq{ �}|�i�{ �}| 2 �ñk�{ �}| �g { �}|�i�{ �}| 2 ;D� and

5 ª { �}| ¨²{ �}| 2 ;D�«{ �}| ¨²{ �}| 2 ;D�
with the boundary condition i�{ �}| �� �8  &s¨©{ �}| ��É¬ y 
 2 ; z
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APPENDIX A: PROOF OF THEOREM 3.3

(a) We first consider the surfacic components of the operator. Using the equation
(3.12) and the fact that �Ä �� �*i � is a function, we have in normal coordinates on the mani-
fold �  that c��M�*i � 2 ½ e �`P �Ä @@ �1ió�F& �Ä �� �1iô�rZ�&��â¾!Prì©@ �Ä @� �*i �`&sì � �Ä �� �1ió�[Z z
In this expression, we haveì©@ �Ä @� �1ió� 2 f�@ �Ä @� �*i �F&�S @@ ú �1" � � �Ä ú � �*i �&�S @@ � �>" � � �Ä �� �*ió�h��S �@�� �>" � � �Ä @� �1ió�h��S ú@�� �>" � � �Ä @ú �*i � z
As the terms S ú @�� �>" � � are the Christoffel symbols of the connexion e EHG� on �LE G , and
using the equation (3.4) we haveì©@ �Ä @� �1ió� 2 e EHG@ �Ä @� �1i �h� � �@ �*¾ oqp � @� �1" � � �Ä �� �1iô�h� � �@ ¾ � �B�>" � � �Ä @� �1ió�)� (6.5)

where we have using (3.6)e EHG@ �Ä @� �*ió� 2 f�@ �Ä @� �*ió�F&�S @@ ú �1" � � �Ä ú � �1iô�h�»S ú@�� �1" � � �Ä @ú �*ió�2 e @ �Ä @� �1iô�h�ç" � � ¾ oqp � @� �1" � � �Ä ú � �1i � e @ � �ú &»" � �*¾ oqp � ú � �>" � � �Ä @ú �1iô� e @ � �� z
(6.6)

Moreover, we have using (3.4)ì � �Ä �� �*ió� 2 f � �Ä �� �1ió�h��S ú� � �>" � � �Ä �ú �*ió� 2 f � �Ä �� �1ió�F& � �� �*¾ oqp � ú � �>" � � �Ä �ú �*ió� z (6.7)

But we have �Ä @� �1i � 2 è @ ú �1" � � è �r� �1" � � �Ä �ú �1i � . As è @ ú �1" � � 2 � ¾ oqp � @� �>" � �H�*¾ oqp � ú � �1" � �rÿ � � ,
we see that � �@ ¾ � �D�>" � � �Ä @� �*i � 2 � �@ ¾ � �M�1" � �H�*¾ oqp � @� �1" � �)� ¾ oqp � ú ª �>" � �[ÿ � ª �Ä �ú �*ió� z
As we have

� �@ ¾ � �D�>" � � 2 � �� ¾ � @C�1" � � we thus have� �� � ¾ oqp � ú � �1" � � �Ä �ú �*ió� 2 � �@ ¾ � �D�>" � � �Ä @� �1ió� z
Hence, by summing the equations (6.5) and (6.7) we getì©@ �Ä @� �1iô�F&�ì � �Ä �� �*i � 2 f � �Ä �� �*ió�F& e E G@ �Ä @� �*i �h� � �@ � ¾ oqp � @� �>" � � �Ä �� �*i �
and as �Ä �� �1ió� 2 f ��"!� we getc��M�*i � 2 ½ e � �Ä @@ �*ió�F&s½Cf �He � "!� &��â¾`f � �Ä �� �*i �&��â¾ e EHG@ �Ä @� �*ió�h�»�â¾ � �@ �*¾ oqp � @� �1" � � �Ä �� �1i � z (6.8)
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We denote by e @q�1��� the connexion e EHG@ after the scaling, viewed as an operator on �/
 .
After the scaling, the previous equation then writesc��M�1���H�1i � 2 ½ e � �Ä @@ �>���ri5&s½B� oqp f � G e � "!� &��â¾ e @D�1��� �Ä @� �>�?��i&��â¾L� oqp f � G �Ä �� �>�?��i ����¾ � �@ � ¾ oqp � @� �>��n � � �Ä �� �>���ri z (6.9)

We compute successively the expansions of the terms in this equation. Using the equation
(3.14) and the fact that � � w � ú @ � @n  ú 2 ; for �,)�; we find that

½ e � �Ä @@ �1����i 2 ½ e � � @@ �*ió�F& Ox � y p � � e �D� � � � ú @ � @ú �1n �� i � z
Using (6.6), we compute that

�â¾ e @B�1��� �Ä @� �1���ri 2 Ox � y 
 � � ��¾!P e @q�1��� �Ä @� �1���riQZ �
with P e @B�1��� �Ä @� �>���riQZ � 2 e @/P �Ä @� �>���riQZ � � ~ � w)y p " w� � � w oqpR� @� P �Ä �� �1����iQZ � o w e @ �+��& ~ � w)y p "Cw� � � w oqp � �� P �Ä @� �1����i Z � o w e @ � �� z (6.10)

Using the equation (3.10) and the fact that è @ � 2 ; , we see that we have�â¾ �Ä �� �>�?��i 2 � oqp ¾`f � G " ��&�¾!���M�*ió�h��¾Fn � � @� f � G " @ z (6.11)

We thus have that��¾L� oqp f � G �Ä �� �1���ri 2 � o 6 ¾`f 6� G " ��&�¾A� oqp f � G+���M�*ió�h��¾L� oqp f � Gv�*n � � @� f ��" @D�)�
and�â¾ � �@ � ¾ oqp � @� �1��n � � �Ä �� �>�?��i 2� oqp ¾ � úú f � G " �!&�¾Ln � � úú f � G " ����¾ � úú n � � ú � f � G " ú &�¾ � úú ���B�*i �& ~ O� y p � � � ¾Fn � ¿ p� � � � ¿ 6 � @@ f � G " ��&�¾Fn �� � � � ¿ p � @@ ���M�*ió�h��¾Ln � ¿ p� � � � ¿ p � @@ � ú � f � G " ú � z

(6.12)

By using (6.9) and summing the previous equations, we get the expressions claimed in
Theorem 3.3 after identifying the powers of � .

(b) In normal coordinates on �  , the transverse component of c writesc � �1ió� 2 ½Lì � P �Ä @@ �*i �F& �Ä �� �*i �[Z¦&s�â¾�Prì©@ �Ä @� �*i �F&�ì � �Ä �� �1ió�[Z2 ��½�&��â¾h�[f �r��"!� &s½Cf � �Ä @@ �*i �F&��â¾ P e E G@ �Ä @� �1ió�F&�S @@ � �1" � �rf ��"!� �»S ú@ � �>" � � �Ä @ú �1iô� Z z
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Thus after the scaling we havec � �>���ri 2 � o 6 ��½�&��â¾h�[f 6� G "!� &»� oqp ½Cf � G �Ä @@ �>�?��i&��â¾ e @q�>�?� �Ä @� �1����i�&��â¾L� oqp S @@ � �1��n � �rf � G "!� �»�â¾`S ú@ � �1��n � � �Ä @ú �1���ri
But using (3.4) we compute thatS @@ � �1��n � �rf � G "!� 2 � Ox � y 
 � � n �� � � � ¿ p � @@ f � G "!� (6.13)

and similarly by (3.14) f � G �Ä @@ �1����i 2 Ox � y 
 � � � � � � @ú � ú@ P f � Gv�*n �� ió� Z z (6.14)

Moreover, we haveS ú @ � �1��n � � �Ä @ú �>�?��i 2 � Ox � y 
 � � �x w)y 
 n w� � � w ¿ p � @ú P �Ä ú @ �>���riQZ � o w z
Again using the fact that � � w � ú @ � @p  ú 2 ; for �*)�; we find by the equation (3.14) that

S ú @ � �1��n � � �Ä @ú �1���ri 2 Ox � y 
 � % &:t�� � � n �� � � � ¿ p � @ú � ú@ �*ió� z (6.15)

To show the result, it remains to find the expansion of e @q�>��� �Ä @� �1����i . As è @ ú �1��n � � is the
metric on the surface �  � G , this tensor commutes with the covariant derivative e @q�1��� .
Hence we have e @q�>��� �Ä @� �1����i 2 è @ ú �1��n � � e @B�1��� �Ä ú � �1���ri z
But we have using (3.6)e @q�1��� �Ä ú � �1����i 2 e @ �Ä ú � �1����i	&»��n � �*¾ oqp � �� �1��n � � �Ä � �B�>�?��i e @ � �ú z
As the equation (6.11) can be written � �Ä ú � �1����i 2 � oqp ¾ @ú �1��n � �[f � G " @�&«� ú �*i � , we find:� e @q�>�?� �Ä ú � �>���ri 2 � oqp e @�¾ �ú �1��n � �[f � G " ��& e @u� ú �*i �&�n � � f � G " � � e @ � �ú &»��n � � ¾ oqp � �� �1��n � �����D�*i � e @ � �ú �
and thus� e @q�>�?� �Ä ú � �>���ri 2 � oqp e @�f � G " ú ��n � � �ú e @ " �& e @�� ú �1ió�F& Ox � y p � � n �� � � � oqp � �� ���M�*ió� e @ � �ú z
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Using the expansion (3.3) of the inverse of the metric tensor we obtain the expansion of
the term e @q�1��� �Ä @� �1���ri . Grouping these expansions, we get the expressions in Theorem
3.3 after tedious computations (see [14] for details).

(c) The equation (3.19) and (3.20) are consequences of the formulas for the expan-
sions of the tensors �Ä Â Á �*ió� and the fact thatg ���*ió� 2 ��¾ �Ä �� �1i � and

g � �1ió� 2 ½ �Ä @@ �*ió�F& � ½�&s�â¾/� �Ä �� �1iô� z
The expressions (3.10) and (3.11) yield the result after the scaling.

APPENDIX B: PROOF OF PROPOSITION 4.5

Using the equation (4.40) and the expressions (4.31), (4.32) for the operator � 6 we
compute that we haveÃ�6� � Q � 2 6� ¾D^ � @� e @ � �� & 6 � ¾D^ e @ � @� � �� & 6� ¾ � @� e � � �@ & 6 � ¾ e � � @� � �@� 6� ¾ � �� e @ � @� � 6 � ¾D^ � úú e � � �� &�¾M^ 6 e �M� � @@ � �� �F& f � ¾D^ e � � @ú � ú @& p� ¾D^ e @ � @� � �� & 6 � ¾ � @ú e @ � ú � & 6 � ¾ � @ú e @ � ú � � p� ¾ e @ � ú � e @ � ú& p� ¾ e @ � @ú e ú ����� 6� ¾ e @ � @� � �   h� � p� ¾D^ 6 e � e @ e @ � �� � p� ¾D^ e @ e @ e � � ������¾D^ 6 e ��� � @@ � �� �F& 6� ¾D^ � úú e @ � @� � �� � 6� ¾D^ � @ú e @ � ú � � �� � 6� ¾D^ � @ú � �� e @ � ú �& 6 � ¾ ���� e @ � @ú � ú� & 6� ¾M^ � úú e � � @� � �@ �»¾D^ 6 e ��� � @@ � ú � � �ú �h� p 
� ¾D^ e �M� � @ú � ú@ �� p� ¾M^ e @ � @� � ú � � �ú � 6� ¾ � @ú e @ � ú � � �� � 6� ¾ � �ú � @� e @ � ú � � 6� ¾ � @ú e @ � ú � � ���sf � ¾ � �� � @� e @ � �� & 6 � ¾ � @� � �� e @ � �� & 6 � ¾ � úú � @� e @ � �� & 6� ¾ � �� � @ú e @ � ú�& p6 ^ 6 e ��� � @@ a � �h� p� ^ ���� e � a � & pi ^ e @ � @� a � z
and Ã�6� � Q � 2 q � ¾D^ � @@ � �� &s�â¾ � @ú � ú @ & p� ¾M^m� .Y^²�»��� � @@ � úú � ��& 6� ¾�� �]^+�'t�� � @@ � �ú � ú � � 6� ¾D^ e @ e @ � �ú � ú� � p� ¾ e � e @ � �� � @� � p� ¾ e � e @ � @� � ��� p� ¾D^ 6 � úú e @ e @ � �� � 6 � ¾D^ e � e @ � @� � �� � p� ¾D^ � @ú e ú e @ � �� � 6 � ¾ e � � @� e @ � ��� 6 � ¾ e � � @� e @ � �� ���â¾D^kj @@ � �� � p 
� ¾!j @ú � ú@ � p� ¾D^m�*.Y^+���?� � @@ � úú � �� � ����¾D^ � @@ � ú � � �ú � 6 � ¾D^m�*.Y^²�»�?� � �� � @@ � úú � 6� ¾J���]^²�·t�� � @@ � �ú � ú� � 6� ¾�� .]^©����� � @@ � �ú � ú�& p� ^ e @ e @ a � & pi ^m� .]^©���?� � �� � @@ a � & p6 ^ � @@ a � z
Now let } satisfying } �� µ�¶   2 ; . Then when evaluating the scalar product~ �1� 6 ��7®�[=J�$} � � � × ¶   Ù
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it is possible to integrate by parts one time. We have~ �1� 6 ��7®�[=J�$}A�Z� � × ¶   Ù 2 Ï ¶  k¬ Á �1Ã 6Á � Q\Á �)� =h� Ê �F
v�
and after integration by part, we see that :�� ~ �1��6���7®�[=J�$}A�Z� � × ¶   Ù �� � Ï ¶   �®ô� =J�$}T��� Ê �F
®&K� � �W�*=h� �Z� Ú × ¶   Ù � } ��� Ú Ü�� Ú × ¶   Ù z (6.16)

whereô�*=J�$}�� 2 � 6� ¾D^m� e @ ¬ � � @� � � �� � =h�h� 6� ¾M^m� e @ ¬ � � � @� � �� �*=h�h� 6� ¾�� e � ¬ � � @� � � �@ �*=h�� 6� ¾�� e � ¬ � � � @� � �@ � =®�F& 6� ¾�� e @ ¬ � � �� � � @� � =®�F& 6� ¾M^m� e � ¬ � � úú � � �� �*=h���¾M^ 6 � e � ¬ � � � @@ � �� � =h�h� f � ¾M^m� e � ¬ � � � @ú � ú @ � =®�h� p� ¾D^m� e @ ¬ � � � @� � �� � =/�� 6� ¾�� e @ ¬ � � @ú � � ú � �*=h�`& 6� ¾ ¬ � � @ú � =h� e @ � ú � & p� ¾�� e @ ¬ � � � ú � e @ � ú �*=h�� p� ¾�� e @ ¬ � � � @ú e ú ���D� =h�F& 6� ¾�� e @ ¬ � � � @� � �   h� � =h�`& p� ¾M^ 6 � e � ¬ � � e @ e @ � �� �*=h�& p� ¾D^m� e @ ¬ � � e @ e � � �� �*=h�F& q � ¾M^ ¬ � � @@ � �� � =h�`&s��¾ ¬ � � @ú � ú @ � =®�& p� ¾D^m� .]^+���?� � @@ ¬ � � úú � �� �*=h�F& 6� ¾�� �]^+�'t�� � @@ �+�ú ¬ � � ú � � =/�h� p� ¾D^ 6 � úú ¬ � e @ e @ � �� � =®�� p� ¾D^ � @ú ¬ � e ú e @ � �� �*=®� z
Hence we have :ô�*=J�$}�� 2 � �� � =®��7�� 6� ¾D^ e @ ¬ � � @� � 6� ¾M^ � @� e @ ¬ � & 6 � ¾D^ e � ¬ � � úú��¾M^ 6 � @@ e � ¬ � � p� ¾M^ � @� e @ ¬ � & q � ¾D^ ¬ � � @@ & p� ¾D^m�*.Y^²�»�?� � @@ ¬ � � úú 8& � �@ � =®� 7 � 6� ¾ e � ¬ � � @� � 6� ¾ � @� e � ¬ � & 6� ¾ e � ¬ @ � úú��f � ¾M^ � @� e � ¬ � � 6� ¾ e ú ¬ @ � ú � & 6� ¾ ¬ � e � � @� &s�â¾ ¬ � � @� & 6� ¾�����^+�'t�� � �� � @� ¬ � 8& p� ¾�� e @ ¬ � � � ú � e @ � ú �*=®�h� p� ¾�� e @ ¬ � � � @ú e ú ���D�*=®�F& 6� ¾�� e @ ¬ � � � @� � �   ¯� � =/�& p� ¾D^ 6 � úú ��}�� e @ e @ � �� �*=®�F& p� ¾D^ � @ú ��}�� e ú e @ � �� � =h� z

(6.17)

The term multiplied by � �� � =h� writes� 6� ¾D^ e @ ¬ � � @� � 6 � ¾D^ � @� e @ ¬ � & 6� ¾M^ e � ¬ � � úú ��¾D^ 6 � @@ e � ¬ �� p� ¾D^ � @� e @ ¬ � &gq� ¾D^ ¬ � � @@ & p� ¾D^m� .]^+���?� � @@ ¬ � � úú2 � 6 � ¾D^ � @� e @ ¬ � � 6 � ¾D^ ¬ � e @ � @� � 6� ¾D^ � @� e @ ¬ � & 6 � ¾M^ ¬ � e � � úú& 6� ¾M^ � úú e � ¬ � ��¾D^ 6 � @@ e � ¬ � � p� ¾D^ � @� e @ ¬ � & q� ¾M^ ¬ � � @@ & p� ¾M^m� .Y^²�»��� � @@ ¬ � � úú z
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This terms writes also�°f � ¾D^ � @� e @ ¬ � & 6� ¾D^ � úú � �� �&}��h� p� ¾D^ � @� e @ ¬ � &tq � ¾D^ � @@ ¬ � �»¾M^ 6 � úú � @@ �&}��)�
or � p� ¾D^m�*.Y^+���?� � úú � @@ ��}��h�0q� ¾M^ � @� � �@ ��}T� z
In the same way, the term multiplied by � �@ �*=h� in the equation (6.17) writes� 6� ¾ e � ¬ � � @� � 6� ¾ � @� e � ¬ � & 6� ¾ e � ¬ @ � úú �sf � ¾D^ � @� e � ¬ �� 6� ¾ e ú ¬ @ � ú � & 6� ¾ ¬ � e � � @� &s�â¾ ¬ � � @� & 6� ¾�����^+�'t�� � �� � @� ¬ �2 � 6 � ¾ � @� e � ¬ � � 6� ¾ ¬ � e � � @� � 6� ¾ � @� e � ¬ � & 6� ¾ � úú e � ¬ @ & 6� ¾ ¬ @ e � � úú� f � ¾D^ � @� e � ¬ � � 6 � ¾ � ú � e ú ¬ @ � 6� ¾ ¬ @ e ú � ú � & 6� ¾ ¬ � e � � @� &s��¾ � @� ¬ �& f � ¾D^ � �� � @� ¬ � � 6� ¾ � �� � @� ¬ � z
This last term also writes6� ¾ � úú � @� ��}��h��f � ¾D^ � @� � �� �&}��h� 6� ¾ � @� e � ¬ � � 6� ¾ � @� e � ¬ � � 6� ¾ � ú � e ú ¬ @ &s�â¾ � @� ¬ � z
Thus we haveô� =J�}�� 2 � p� ¾D^m� .]^©���?� � �� �*=h� � úú � @@ ��}��®�sq� ¾M^ � �� � =/� � @� � �@ �&}�� z & 6� ¾ � �@ �*=h� � úú � @� �&}��� f � ¾D^ � �@ �*=h� � @� � �� ��}��h� 6� ¾ � �@ � =h� � @� e � ¬ � � 6� ¾ � �@ � =/� � @� e � ¬ � � 6� ¾ � �@ �*=h� � ú � e ú ¬ @&s��¾ � �@ � =h� ¬ � � @� z & p� ¾�� e @ ¬ � � � ú � e @ � ú �*=h�h� p� ¾�� e @ ¬ � � � @ú e ú ���D�*=h�& 6� ¾�� e @ ¬ � � � @� � �   o� �*=®�F& p� ¾D^ 6 � úú ��}�� e @ e @ � �� � =h�F& p� ¾M^ � @ú ��}T� e ú e @ � �� � =/� z

(6.18)

Now we focus our attention to the terms that are not multiplied by the tensor in � @ ú ��}��
in the equation (6.18). These terms write :± � =��$}T� �32 � 6� ¾ � �@ �*=®� � @� e � ¬ � � 6� ¾ � �@ � =®� � @� e � ¬ � � 6 � ¾ � �@ � =h� � ú � e ú ¬ @ &s��¾ � �@ � =/� � @� ¬ � z& p� ¾J� e @ ¬ � � � ú � e @ � ú � =/�J� p� ¾�� e @ ¬ � � � @ú e ú ���D�*=®�F& 6� ¾�� e @ ¬ � � � @� � �   h� � =h� z
Using the fact that : � @ ú 2 p6 � e @u� ú & e ú �v@D�h� � @ ú & � �@ � ú �
we have± �*=��$}�� 2 �°f � ¾ � �@ � =/� � @� e � ¬ � � 6� ¾ � �@ �*=h� � ú � e ú ¬ @ &s�â¾ � �@ � =h� � @� ¬ �& p� ¾ � ú � e @ � ú � =®�)� e @ ¬ � �h� p� ¾ � @ú e ú ���M� =h�)� e @ ¬ � �F& p� ¾�� e @ ¬ � � � @� e �m� � � =h�& p� ¾J� e @ ¬ � � � @� e � ���D� =h�h� 6� ¾J� e @ ¬ � � � @� � �� �*=®�F& 6� ¾�� e @ ¬ � � � @� � �� � =h� z
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Thus ± � =��$}T� 2 �²f � ¾ � �@ � =®� � @� e � ¬ � �sf � ¾ � �@ � =®� � ú � e ú ¬ @ &��â¾ � �@ � =/� � @� ¬ �& 6� ¾ � ú � e @ � ú �*=®� p6 � e @ ¬ � & e � ¬ @M�`& 6� ¾J� e @ ¬ � � � @� � �� � =h� z
But we have6� ¾ � ú � e @ � ú �*=h� p6 � e @ ¬ � & e � ¬ @M� 2 6� ¾ � ú � e @ � ú � =®� � �@ ��}T�F& 6� ¾ � ú @ e @ � ú � =®� ¬ �2 6� ¾ � ú � e @ � ú � =®� � �@ ��}T�F& 6� ¾ � ú @ � @ú �*=®� ¬ � � 6� ¾-j ú @ � @ú � =®� ¬ � z
Hence we have± � =��}�� 2 �°f � ¾ � �@ � =/� � @� e � ¬ � ��f � ¾ � �@ �*=h� � ú � e ú ¬ @ &t³� ¾ � ú @ � @ú � =®� ¬ �& 6� ¾ � ú � e @ � ú � =h� � �@ ��}��h� 6� ¾!j ú @ � @ú � =h� ¬ � z & 6� ¾ � @� � �� �*=®�H� e @ ¬ � � z
or± �*=��$}�� 2 �²³� ¾ � �@ �*=®� � @� � �� �&}��¹& 6� ¾ � ú � e @ � ú �*=h� � �@ ��}��R� 6� ¾-j ú @ � @ú �*=h� ¬ � & 6 � ¾ � @� � �� �*=®�H� e @ ¬ � � z
The equation (6.18) then writes :1\� =��$}�� 2 � p� ¾D^`� .Y^+���?� � �� �*=h� � úú � @@ �&}��h� q� ¾D^ � �� � =h� � @� � �@ ��}T� z & 6� ¾ � �@ � =®� � úú � @� ��}T�� f � ¾D^ � �@ �*=h� � @� � �� �&}��h� ³� ¾ � �@ �*=h� � @� � �� ��}��F& 6� ¾ � ú � e @ � ú � =h� � �@ �&}��� 6� ¾!j ú @ � @ú � =h� ¬ � & 6� ¾ � @� � �� � =®�H� e @ ¬ � �F& p� ¾D^ 6 P e @ e @ � �� � =®� Z � úú ��}��& p� ¾D^TP e ú e @ � �� �*=®�[Z � @ú ��}T� z
This result and the equation (6.16) then yield the result.
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[19] G. KIRCHHOFF. Über das Gleichgewicht und die Bewegung einer elastischen
Scheibe. Journ. Reine Angew. Math. 40 (1850) 51–58.

[20] W. T. KOITER. A consistent first approximation in the general theory of thin elastic
shells. Proc. IUTAM Symposium on the Theory on Thin Elastic Shells, August 1959
(1960) 12–32.

46



[21] W. T. KOITER. On the foundations of the linear theory of thin elastic shells: I.
Proc. Kon. Ned. Akad. Wetensch., Ser.B 73 (1970) 169–182.

[22] W. T. KOITER. On the foundations of the linear theory of thin elastic shells: II.
Proc. Kon. Ned. Akad. Wetensch., Ser.B 73 (1970) 183–195.

[23] P. M. NAGHDI. Foundations of elastic shell theory. In Progress in Solid Mechanics,
volume 4, pages 1–90. North-Holland, Amsterdam 1963.

[24] S. A. NAZAROV, I. S. ZORIN. Edge effect in the bending of a thin three-
dimensional plate. Prikl. Matem. Mekhan. 53 (4) (1989) 642–650. English transla-
tion J. Appl. Maths. Mechs. (1989) 500–507.

[25] V. V. NOVOZHILOV. Thin Shell Theory. Walters-Noordhoff Publishing, Groningen
1959.
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