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Abstract

The time dependent linear Schrodinger equation for naeiehe whole space
is semi-discretised using Hermite and Gauss-Hermite as@ions. These are
well suited on the one hand for the conservation properfitiseonumerical solu-
tion and, on the other hand, for their remarkable approxonairoperties. We in-
vestigate theoretically and numerically the convergeffitesospectral and pseudo-
spectral Gauss-Hermite semi-discretisation schemesodidger equation, Gauss-
Hermite approximation, spectral and pseudo-spectral odsth

1 Introduction

The numerical approximation of the Schrodinger equatinrthe whole space using
Gauss-Hermite basis functions is the subject of our papée articularity of this

method is that the basis functions of the finite dimensioparaximation space are
defined on an unbounded domain, while standard numericahses are classically
best developed for bounded domains. In the last years, ncaherethods based on
orthogonal basis functions that live on unbounded domaaisegl increasing atten-
tion, see Boyd (2000) and Bernardi & Maday (1997). Hermitections are a natural
choice for many fields, as testify the citations in Tang (3881 Boyd (2000). Weide-
man (1992) showed that in the case of the first and second kedifferentiation, we

need rather weak stability restrictions for the time stefhédiscretisation of parabolic
differential equations. Funaro & Kavian (1990) studied $tebility and convergence
properties of the Hermite method for the heat equation.Heuyfang (1993) evidenced
the need to choose a scaling factor in the basis functionsderdo get accurate ap-
proximation results using only a reasonable number of Herfoinctions. Maet al.
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(2005) employed a time dependent scaling factor in the Hermipansions for the
viscous Burgers’ equation in unbounded domains.

As quantum dynamics concerns, Billing (1999) used a timgeddent Gauss-Hermite
basis in order to formulate approximations in which thegilzed limit arises in a natu-
ral fashion and that scale moderately with the number oiglast Vijay et al. (1999)
compared the Hermite approach to quantum dynamics with tlebgshev method.
They evidenced that it may be possible to achieve a fastarecgance with Hermite
based method for finite time propagation, by a proper chdisealing parameter.

In the spirit of these ideas, we are interested in a matheaiatistification of the
spectral and pseudo-spectral method in the context of aditaptive Gauss-Hermite
basis. Regarding the time discretisation, we introducesiouet al. (2007) an algo-
rithm to compute the solution of the time-dependent Scimget equation using Hage-
dorn wavepackets approximations, see Hagedorn (1998)Habedorn wavepackets
are better suited for the dynamics in higher dimensionatespas the tensor product
of Gauss-Hermite functions. The Hagedorn wavepackets eanrltiten in terms of
Gauss-Hermite functions and hence the approximation ptiepeare equivalent, see
Hagedorn (1998) .

Here, we stick to the investigation of the convergence ofsphectral and pseudo-
spectral method in the context of the parameter dependargs=dermite basis. We
start from the basic approximation results using Hermitefions onR of Guoet al.
(2003). In comparison to earlier papers Guo (1999), Guo & 2000), they insist on
the importance of avoiding non-uniform weighted Sobolevmm As for the Dirac
equation, this fact is important for us, too, since we arg wencerned about the con-
servation properties of the numerical solution.

We consider the reduced Schrodinger equation for the nusde for instance
Teufel (2003), Hagedorn & Joye (2006) on the whole sface

. £?
=——Au+V 1.1
iedu o u+Vu (1.2)

with initial valueu®, wherem denotes the mass of the particles= dy is the Laplace
operator orR, V =V (x) € R is the potential function, ane denotes the Planck con-
stant. This equation is a hamiltonian partial differengigliation, and it is well known
that theL2-norm of its solution remain constant in time.

Assume given a finite dimensional linear approximation riwdai#yy C L2. The
corresponding variational approximation problem (seeitlul§2004, 2005)) can be
stated as follows: Findn(t,-) € #n such that for all time > 0,

ie— (un(t),vn) = (Hun(t),wn) forall vy € ", (1.2)

whereu{ € 7. Here,H = —S—rznA+V and(u,v) = [ u(x)v(x)dx denotes th&.2 her-
mitian product orR. It can be easily shown that iy is a complex subspace bf in
the sense where for ally € i, we havavy € %, then theL2-norm of the solution is
preservediun(t)| = [|u$] forallt > 0.
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The goal of this paper is to give error estimates betweendhgisn u(t) of the
Schradinger equation (1.1) and the solution of (1.2) incdwee wherey is the complex
space spanned by Gauss-Hermite funcippx), n=0,...,N, of the form

Pn(X) = m(x)exp(é(a|x—q|2+ p(x—q))), (1.3)

wherea= a +if3 is a complex parameter (wiff > 0 denoting the width of the Gaus-
sian),q € R andp € R the position and momentum parameter of the Gaussian. The
termsm,(X) are polynomials of degreedepending on the parametexsp, g, and of

the classical Hermite polynomials. We also address the sarastion when (1.2) is
approximated by using a pseudo-spectral discretisatien,when the_? product is
replaced by a discrete product involving collocation peasociated with the Gauss-
Hermite polynomials.

The convergence results obtained below give bounds for tineerical approxi-
mation of (1.1) using Gauss-Hermite functions, with estesalepending explicitly of
the parameters, g, p, € andm. Allowing the parametera, p andp to evolve with
time would give the approximation of (1.1) by Gauss-Hermitesepacket for which
we give a numerical algorithm in Fa@t al. (2007). Our result can hence been under-
stood as a first step to show the convergence of the fully elis@gorithm in Faoet
al. (2007). Note that the extension of these results to higheresgdimensions and the
approximation by Hagedorn polynomials (see Hagedorn ()9@8y be made using
the same techniques. However, the practical implememntatibigher dimensions uses
sparsedecompositions of the wave function, making the approaitteralifferent from
the one-dimensional case, see Fabal.(2007).

The paper is organised as follows: In Section 2, we considenglified situation,
wheres =m=1anda=i/2, p=q=0. This allows us to introduce the basic concepts
of the approximation results. We then deal with the geneealss-Hermite functions
(1.3) and give estimates depending explicitly on the variparameters. Note that one
of the difficulties comes from the oscillatory part in the Gsian (1.3). In both cases,
the convergence estimates rely on a regularity assumptitimesoexact solution of (1.1).

In Section 3, we consider the pseudo-spectral approximafi¢l.2) using quadrature
collocation points, and show similar estimates. Finallg give numerical examples
for fixed parameters, p andg and we compare them with the simulations obtained by
the algorithm in Faoet al. (2007).

2 Decomposition and spectral method

We start with a general approximation estimate. t¥gtbe a finite dimensional sub-
space o2, and letPy : L> — 74 be thel.?-orthogonal projector ontdy defined by
the relation

(ANU,VN) = (U, W), VYVN E A,

and letRy be the approximation error operator definedRapu = u— Pyu.
Let u(t) anduy(t) be solutions of (1.1) and (1.2) respectively, anddgft) =
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Puu(t) — un(t). If u9 is smooth enough, the solutiaiit) satisfies in particular

ig% (u(t),vn) = (Hu(t),w) forall vy € 4. (2.1)

Substracting this equality from (1.2), we get

ig<%eN(t)’VN> = (Hen(t),vn) + (HRyuU(t),vn) forall vy € .
This shows that

ed 2 d

satlenol? = en{Gevv.e)

= O(—iHen(t),en(t)) + 0 (—iHRyu(t),en(t)) .

As the left hand side is real as well @dey(t),en(t)) for real potentiaV, it must hold

ed 2 .
>t len()]” = 0 (—iHRwu(t), en(t)) -
If we are able to write nowd = L +W such that for alt,
(LRnu(t),en(t)) =0, (2.2)
then the problem is reduced to the estimatiofj\wfRyu(t)||, because
ed .
= 5t len(OI = 0 (—WRu(t) en(t) < [WRWO)] len(®)]] . (23)

As it will be of constant use throughout the rest of this wavk,recall here the follow-
ing comparison result:

LEMMA 2.1 letf : R — R, a continuous function, ang: R — R, a differentiable
function satisfying the inequality

dyt) <26 (0) VY.

VteR
€& T

Then we have the estimate
1
VEER, VYO < VY0) +/ f(s)ds
0

Proof. For alln > 0, we easily show (see e.g. Haiedral. (2006), Sec. 1.10)

VeR, VYO < VOO T+ [ f(9ds

which yields the result by letting — 0. [ |
Using this lemma, Eqgn. (2.3) with a bounded functiiryields

Jutt) - (O] < ()] + [Ru)|+ 16w [ [Ruus)ds, (2.4
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with Gy = [W]| .. Hence, we see that the error due to the space discretisatiba
Schradinger equation is controlled by the oper&gr Let us note that the condition of
a bounde® may be relaxed to the integrability %V Ryu(s)|| with the corresponding
change in the constants.

Note that the condition (2.2) will be satisfiedLisend?{- to itself. This will be the
case in the simplified situation studied in the next sectrdmereL will be the hamil-
tonian associated with the harmonic oscillator. For gdn@eassian wave packets
with arbitrary parameters, the orthogonality conditior2§2vill not be exactly fulfilled
for the natural splitting between the kinetic and poterdja¢rators. Nevertheless, the
induced error will be small allowing us to obtain an erroiraste.

2.1 Spectral Hermite Method

In this subsection, we consider the simplified situationrglse= m= 1 in the equation
(1.1). We consider thelermite functions:

Xn(X) = € X/2H,(x) | (2.5)

where for alln > 0, H, denotes thath Hermite polynomial defined recursively by the
formula

Hnt1—2XHh+2nH,-1 =0, Hop=1 and H;=2x (2.6)
The functions (2.5) are the eigenfunctions of the problem
exz/zax(eixz/zaxXn + Xeixz/ZXn) +AnXn=0

associated with the eigenvaldg= 2n. The derivative of the Hermite function may be
written in terms of other Hermite functions:

1
Xn=2NXn_1—XXn=XXn— Xn+1=NXn_1— zxnﬂ, forn>1. (2.7)
Clearly, the Hermite functions are orthogonal#(R):

| X pm(x)dx = 2l T, (2.8)
R
Moreover, a careful computation shows that

(- 5%+ ) X0 = (0+ 30 29)

that is, the Hermite basis diagonalises the problem of thebiic oscillator.
We consider/iy = sparf{xo, ..., Xn} and see any € L? as

u(x) = k% G Xk (X) + k2%+10k)(k(x) = RAvu(x) + Rnu(x), (2.10)
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where for allk > 0,

0—#“} >
k—zkk!\/ﬁ ) Xk -

Let us denote the differential operator related to the Herfuinctions byAu= U’ + xu.
Guoet al.(2003) proved that the approximation error is of ortlef/2 with r depend-
ing on smoothness assumptionswrsince it is a result of fundamental importance for
our paper we give here the proof, together with a previousbxposed estimation of
the optimal constant:

LEMMA 2.2 Assume that far > 1, we haved'u € L2. Then forN > r — 1 we have the
estimate
[Rnul| <G N2|AT

with the constan(C;)? < 0.5, (C;)? < 0.25 and

_o(p+1)Pt2
(CZer)Z - 0252 pﬁ 5 |f pZ 1

Proof. The orthogonality of the Hermite functions gives

IReul?="Y adaul?,
k>N-+1
with ¢, = 2%k!\/7T. By the orthogonality of the Hermite functions and the eiggne
property we have fok > 1:
1 11 2 2
O = — =__ - /2 —X*/2
Ok CkH{u(x))(k(x)dx ZkaH{u(x)e?‘ Ox (e AXk(x)) dx.

Integration by parts and the decay conditionsdbr u give
0= gy o [ AUXAX(Id= = [ AU g1
R R
using the first relation (2.7) which can be writtAiy = 2kxx_1 for k > 1. This argu-
ment repeats giving

Clx = /Aru(x)xk,r(x)dx with r > 1.
R

We substitute this expression|iRyul|® in order to get
2

[ AuO0xi < (9dx
iy

Cy_ 1
|Rnu[l? = oy
ki G Ck

Hence, we have

2 Ck—r U 2
[|Rnul” = Z C—k~ck,,|(Aru)k,,| .
k>N+1

As A'uis in L2, we obtain

2 Ck—r ron2
U/l < max — - ||A'u||<.
IRaul® < max = |47
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We then get|Ryu||2 < g(N, 1) |A'ul|?, where
Ck,r 27I’
N, r):= — = f >1. 2.11
9(N.1) kzNa+X1 ek (N+IN...(N—r+2) orr= (2.11)

In the cases = 1 andr = 2 we easily get the announced bounds for the cons@nts
If r =2+ p, with p> 1, one can show that

1 N P N
g(N,r)-N" == .
(N.r) 4N+1JI:L2(N—1)

is decreasing ilN > p+ 1. This yields the general expressiorf_,. Let us note that
for reasonable moderagee {1,2,...,14} we have really small constants, such that
C2+p < 0.5. |

Assume now that the potential can be writtes- %xz +W with a bounded function

_ 1 1 I o
W. DenotingL = —ZA+ =x?, the hamiltoniarH splits intoH = L +W, and we have
using (2.9), for allu sufficiently smooth,

LRyu=L z G xk(X) = z Ok(k+%)xk(x)

k>N+1 k>N+1

that is orthogonal orfy.
Using the previous lemma and (2.4), we easily get the folhgwesult:

THEOREM 2.1 Letu(t) be a solution of (1.1) witte = m= 1, and with a potential
V(x) = 1x2+W(x) whereW is bounded. Letiy(t) be the solution of (1.2) associated
with the manifold#y = sparf{Xo, ..., Xn}, and with initial valueu}, = Pyu(0). Let

r > 1, and assume that the functibr- A'u(t) is continuous fronR to L2, then we
have the following bound, for atl> 0,

Jutt) - (o)) < GN -2 |Au) + [Au®)| +Cu [ A7) s).

provided the right-hand side makes sense, wire= [W| ., < c and whereC; is
the constant appearing in Lemma 2.2.

2.2 Gauss-Hermite Wave-packet

For fixed numbera=a +i € C with 3 >0, p€ R andqg € R, let ¢(x) be the
Gaussian function

000 = exp( 3 (alx— %+ pix-0)) ). (2.12)

In Faouet al. (2006), such functions are used to approximate the Schgédiequation
(1.1) using Gaussian-wave packets dynamics. A naturahside is to consider the
natural Hermite basis associated with (2.12): ForN\alb 0, we consider the linear
subspacé/q spanned by

$n(X) = $(x) - v/ZdHn ((x—1)), n=0,1...,N, (2.13)
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with { = 2B \whereH, are the hermite polynomials defined by (2.6), and where
&

d, =1/4/2"n!y/mis a normalising constant. The functions (2.13) are geisat@ns
of the Hermite functions (2.5). Note that the shift in thedtions (2.13) corresponds
to the shift made in the Gaussian (2.12), whose real partpé-eX(x — q)?/g). We
then expect the previous functions to satisfy orthogopgibperties inherited from
the structure of Hermite functions.

Denotingy = 4/ %(x— g) = {(x—q), we write the basis function

Pn(x) = V/TdnHn(Y)e 2 w(y) = v/ZdnXn(Y) (Y), (2.14)

wherew(y) is the oscillatory part of the Gaussian wave packet, namely

_ T(ape, P
w(y) = e><|0(‘€ (Zzszr Zy)) :
In this situation, the basis functiogg are no longer the eigenfunctions of an obvi-
ous operator as in the previous case. Howevewas- 1, we see that for ath,m > 0,
{¢n, dm) = dm using the change of variable— y and the properties of the Hermite

functionsyy.
For anyu € L2, we decompose

ux) =y G+ Y TGed(x) = Fwu(x) +Ruu(x),

k<N k>N+1

with the coefficientsig = (¢, u), wherePy andRy are the corresponding projection
and error operators.
Let us consider the transformatidm defined by

Tuly) = (@(y)v/2) (g + %yy (2.15)

As |w|? = 1 anddy = {dx, we see thaT is an isometry of.: for functionsf andg,
(Tf,Tg =(f.9).
Moreover, from (2.14), we have
T¢n = dn)n.
This implies that
{n = (@n,U) = (TP, TU) = dn (Xn,V) = dy M0n, (2.16)

wherev = Tu and wherev, denotes as before the coefficients in the decomposition
V=Y >0%Xk See (2.10).
With these notations, we have for &li> 0, G T ¢k = Vi xk, and hence

Bv=T AT and Ry=T R\T. (2.17)
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Using Lemma 2.2, the approximation error reads then in tharpater dependent set-
ting, forN>r—1,

||Ruul| = || TR = [RuTul| <CN"72|[ATy| . (2.18)

We require now some regularity on the solution of the comirsuSchrodinger equa-
tion:
U =5 2'n(n=1)...(n=r+1)[tn|? < . (2.19)
n>r
This condition is linked to the Hermite decomposition anel tegularity of the related
functionv = Tu. Remember the differential operator related to the Herfoitetions
Au= U +xu. By the recursion formula (2.6) we have thgt, = 2nxn_1 and hence
Av= S UnAxn= Y 2nUnxn_1. Using this iteratively, we get using (2.8) and (2.16),
n>1

n>0
IAVI? =S (2n(n—1)...(n—r+1))%cq 0|
n>r
— z(Zrn(n—1)...(n—r+1))2cn,rc;1|ﬁn|2
n>r
= Y 2n(n—1)...(n—r+1)[Gf?,
n>r

where as beforeg, = 2%kl /= d;z. Shortly, this means that
AT Ul = [u]r. (2.20)

Hence, the nornfu; is just equivalent to the norffA'v|| applied to the scaled function
v = Tu (note that the regularity assumptions vmandv = Tu are equivalent). This
observation brings the approximation error in the paranuetpendent case from (2.18)
to the form

[|Rul| < eN"72ul;. (2.21)

Here, and in the following; denote a generic constant independeri of
We now want to derive an estimate similar to (2.4).We begithhe following
result:

LEMMA 2.3 The kinetic part of the basis functigq may be split:
£ () = o (280X )+ P 9n) L (B i i)

SmEPnX) = 5 d)+ P ¢n ns @n+1, Pny2)
where Z (¢n, Pni1, Pni2) is @ linear combination oy, ¢ni1 and ¢n, 2 with coeffi-
cients depending oa, p, g, nande.

Proof. Using (2.14), we have

A = 7°/%dy [Axn(Y)@(Y) + 20xXn(Y) - Hxw(y) + Xn(y)Aw(Y)] -
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The second derivative of the Hermite function may be congputeng the recurrence
relations (2.7) and (2.6) as

Axn(y) = K(YXn(Y) = Xn+1(Y))
Xn(Y) +YhXn(Y) — OxXn+1(Y)

X0) + YY) ~ Xnra(9)) — (- )Xnly) — 3n2(9)).

We focus only on the terms that contain the factonsy?, since the other are just linear
combinations of Hermite functiong, with m> n. Remark that

1
YXnt1(Y) = (n+1)xn(y) + §Xn+2(Y) )
and consequently, the first termAg,, is

dnAXn(Y)w(y)ZS/Z = ¢n(X)ZZY2 +lineal¢n, dny1, Pny2),

where the last term will enter into the definition of the ogera&Z. The second term in
App is

20n0xXn(Y) - (¥){%? = 2dn(YXn(Y) — Xnsa(Y))@(y) (2ay + pZ>ig\/?
= 200(x)-2y(2ay+ pq) + lineargn, dn1,91s2).

The last term iMA@, is

2 LN 2 .
dnxn(ymw(y)zS/Z:d»n(x)(27“y+ p) ('E) +onl)- 20

Altogether, we obtain

20 i i .
80 = 8000 | (¢ 25 )y pe |+ e, e, dnco)
that gives the result of the lemma. [ |

In comparison with the previous subsection, we cannot decsmthe hamiltonian
H, which is independent op andg, into L +W with L acting on’y-. However, we

can always split the operatbrasH = K +V whereV is the potential an& = —%A.
In the following, we assume that the potentalis bounded. In this situation, the
orthogonal condition (2.2) is no longer exactly fulfilled:

N
LEMMA 2.4 Letcy,, n=0,...,N be given complex numbers, and&§ = 5 cnh¢n €
n=0

"/7N.Then we have
(KRyu,wn) = s1v/N+ Llins 100+

9 («/N(N F1)0ns16n-1+ /(N+ 1) (N+ 2)0ns 260 )

with s = %ﬂ ands, = %
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Proof. The previous Lemma gives
2

<K§NU,WN> = Z;rip <n>%+l(X—Q)Gn¢n7WN> + 2% <n>%+l(X—Q)20n¢n,WN> .

Using standard Gaussian calculus, we compute the follomiagenta integrals:

1 /n+1

=/ —— if m=n+1,
(9nl(x—a)|gm =3 TV 2 * (2.22)
0 otherwise
1 .
2Z2(2n+ 1) if m=n,
2 _
(fn] (x= @)% fm) = ;2 (n+1)(n+2) if m=n+2, (2.23)
0 otherwise
and the result follows. [ |

We make the smoothness assumptigp,, < o, withr > 1. Even if the first part
of the splitting is no longer zero, the previous lemma giveshe upper bound, for
N>r,

~ St
(KRt w) 2 < F(N,r) [' i +|§|} uBs - w2

with f(N,0) =2~ and (see (2.11))

2—(r+1)

TN =R N=D

= %g(N—Z,r) forr > 1.

This justify again the use of the regularity condition (2.IBhe upper bound fag(N —
2,r) yields finally

~ rl1st
(KRuuwy) 2 <CNT [' i +|sZ|2] NI (2.24)

whereC is a constant depending orandC < 1 forr € {1,...,14}.

Now, letu(t) be a solution of (1.1) anu(t) be the solution of (1.2) associated
with the manifold#y and initial valuevy (0) = Byu(0), and lete (t) = Pyu(t) — wn(t).
We obtain

O (—i(K+V)Rnu(t),en(t))
[{((K+V)Ru(t),en(t)) |

Va2 B 2. ut e e )]

+Cv ||Ruu(t)]| [len(t)

d 2
gilev®l

IN

IN
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with the upper boun@y = ||V|| Lo and the regularity > 1. We now use the upper
bound for the spectral approximation (2.18) with 2 in order to get, using Lemma

2.1,
& len(t)]| < & len(0)] +oN- ”Z(N w5 +|32|2) [ 1€z te

The conclusion is that under tifie+ 2)-regularity assumption on the exact solution
u(t) for a bounded potentidl, the error in the Gauss-Hermite spectral discretisation of
the Schrodinger equation stay of order’/2. Note that there is a lose of accuracy when
compared to (2.18), where less regularity is required taiolihis rate of convergence.

THEOREM2.2 Letu(t) be a solution of (1.1) such that], is continuous, an¢l;» €
L1(0,t), for r > 1 andt > 0. Letw(t) be the solution of (1.2) associated with the
manifold ¥y and initial valuevy (0) = I5Nu(0). Then fort > 0 andN > r, the estimate
of the error reads

lu®) —ww(®)] < eNTZ(ut)lr +u(0)lr) +

2 2
oN- f/2< +'21,/N8'Z B2>/'” o rdE

with global constant independent oN andt, and upper boun@y for the potentiaV.

3 Pseudo-spectral method

In concrete applications, we cannot in general computetlyxée right hand side of
(1.2), and we use a quadrature rule for the part involvingthtential.

3.1 Pseudo-spectral Hermite Method for the simplified Schidinger
equation

Consider again the case of the simplified Schrodinger émuét = 1 andm = 1) with
the potentiaV (x) = %x2+W(x) with a bounded functiolV. Note that the Hermite
basis diagonalises the operator — A+ 1x2, but the integralWuy, v ) has to be ap-
proximated by the Gauss quadrature Th|s involves thelgyig- {yM W formed
by the(M + 1)-zeros of the Hermite polynomiddy 1 and the Hermite-Gauss weights
wy = per2 with the Christoffel-numbergpy)t, with y € M'y. (see Tang (1993) and
Section 3.3 below).

Let f be a polynomial of degree less or equal witd 2 1 andg(x) = f(x)e*xz.
The Gauss-Hermite quadrature is then exact:

[ 9todx= [ f0geax= 3 1Ry = Cu(a).
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Denote by - ||, the discrete norm induced by the Gauss-Hermite quadraturada
Wow= 3 uyvIey. = G (3.1)
yelm

and by.% the Hermite interpolant on the pointg:

MV € Y i=spad Xo,---, XM}
Imv(y) = v(y), foryerln.

Clearly||AwV|| = || 2wVl , = [IVI[ ,,- We need the following two results for the Hermite-
interpolation from Gueet al. (2003):

[ Av=Vl[,, < cMYVBTEDZ)AY| forO<pu<r, andr>1; (3.2)
IV < clivi+M o). (3.3)
with Sobolev semi-norny- |1 and normy[ - || ,,. The derivation of the constants is
less obvious here that in the previous section. This is wmfnow on we denote by
c a generic constant. However, it is not difficult to see fromo@ual. (2003) that for
¢ =0and moderatee {1,...,14} the constant in (3.2) is strictly less than 1, while it
rapidly deteriorates fou > 2.
We consider now again a solutiaft) of (1.1) withe = m=1. Let us now carry out

the error analysis of the collocation on the points fiognof the simplified Schrédinger
equation. LetM > N be fixed. We consider the problem :

find uf(t) € a such that
.d
P (UK (8), N = (LUg(8), vn)y + (WK (1), )y, forall vy € YA, (3.4)
ux (0) = Pv-Amu(0),
wherePR is the projection operator defined in (2.10). Note that duthéoexactness
property of the Gauss quadrature, we have for all funation

N N

1 1
Avsmu= % C—k<fMU,Xk>Xk: >

o (U, Xic)m Xk
k=0 k=0 “k

with ¢, = 2¢k!\/71. Similarly, we rewrite the previous collocation equatian a
find ug (t) € & such that
.d
|a< K1), V) = (LUK (1), W) + (AWK (1)), wn) forall vy € ", (3.5)
uy (0) = Py Awu(0).

Remember from the decomposition method that we have fonthet solutionu(t) =
Pyu(t) + Ryu(t) with bothRyu(t) andLRyu(t) being orthogonal on the approximation
spaceyy. Hence

i% (Anu(t),vn) = (LRAvu(t),ww) + (Wu(t),w) forall vy € .
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Subtracting the last two equations, we obtain the equatiotiné erroef;(t) = Pyu(t) —
ug (t):

. d

[ (e (1), vn) = (Leg(t),vn) + (Wut) — Zm(W (1)), w) forallvy € . (3.6)
We derive now an upper bound for the error, as in the previecisa.
LEmMMA 3.1 With the previous notations, the following inequalitids

t t

IO < 1ek() +eN7/2 | (A (Wu(s)) ||+ [ A'u(s)]) ds+Ow [ ei(s)]ds.
whereGy = W[ ..
Proof. The decomposition (3.6) implies

d
GlI&I7 < Iwu= A W) 3.7)

< (IWu—AmWRW)| + [ Am (W) ) [kl - (3.8)
We deal now with the first term in this sum, that is
[Wu—2m(WRU)[| < [[Wu— Im(WU)[ + || Am(WRU) || -

Using (3.2) withu = 0 for the first term, and (3.3) for the second term, we obtain fo
r>1,

IWu— AW RU)|| < M2 AT (WU)| +c([W Ryul| + M~ IW Ryulye)

If W and its derivative are bounded, we use again the resultseaumpiber bound of the
spectral approximation from Guet al. (2003):

[RuUlp < [[Raul o < eNY272 ATy, (3.9)
and hence, al§! > N andr > 1,
IWu— (W Ru) || < cNY3 /2 (|| A" (W) ||+ |A"ul]) .

It remains to look at the second term in (3.8), for which we theefact that the Gauss
quadrature rule ofiy is exact forM > N:

| W) = [ 150 = G (|50 (We) ) = G (WeR?)

C&Gw (IefI®) =iy ekl (3.10)
with the upper boun@y for the potentialV.
The two terms give then for the collocation error:

% e ()11 < NV (JJA (W ut)) || + A u(t) ) [lef (1) + Cw [[efi (t)

that brings us to the whished inequality using Lemma 2.1. [ |

IN

2
1~

THEOREM 3.1 Letu(t) be a solution of (1.1) with potentia(x) = 1x? +W(x) and
e =m=1. Letu§(t) be the solution of the collocation problem (3.4) wikh> N.
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Assume that for > 1, the functiort — A"u(t) is continuous fronR to L2, ||A" (Wu)|| €

L1(0,t) and||A'u|| € L1(0,t) for all t > 0. Then the following bound for the error in
the pseudo-spectral Hermite method for the simplified &timger equation holds

Ju®) — WO < N2 (N AU+ A U)]]) +
t
CNL/3-7/2 / &SW () (||AT(WU(S))| + |A"u(s)])) ds
0

for a boundedV with Gy = [[W[| , andN >r —1.

Proof. The Gronwall lemma and integration by parts gives then theeupound for
the collocation error at the tinte

ek (t)]] < €% (|5 (0) ] +CN1/3’”2/ 9 (JAT (Wu(s))[|+ |Au(s) ) ds
We bound the first term using (3.2) with= 0 and we find for > 1,

€% (0) ]| < [IPvu(0) = An-Amu(0)|| < [[u(0) — Awu(0)|| < MM "/Z|ATu(0)]| .
The conclusion follows from the triangle inequality and Lrem?2.2. [ |

3.2 Gauss-Hermite Collocation in the general case

We consider now the case of Gauss-Hermite wave-packetsiloegén Section 2.2.
The space approximation space is now made of the functioh8)2\Ve use the set of
pointsl'y = g+ %FM, that are the zeros of the Hermite polynontial1({(x—q)).
We then define the corresponding interpolation operator

jM = TilfMT

whereT is defined in (2.15) and?y the interpolation operator of the previous section.
We clearly have B
[w—2mw|| = [Tw— AuTwW| .

The inequality (3.2) and the relation (2.20) give then tteripolation error:
[w— Aww] < cMYET2 A Tw]| = cMY3 2w, . (3.11)

We define the bilinear form

(f.om=(TfTgy = Z (THY)TAY)py = Z 1f(f/)@(f/)l)ya (3.12)
ye

yYelm MZ

with y =q+ %y. As in Section 2.2, we split the Schrodinger operatoHas K +V
with the potential functiotv andK = —%@ZA. Analogously to the previous section,
we consider the problem:

find u,(t) € ¥ such that

.(;jt (U (1), W)y = (KUS (1), V) + (VUK (1), vy, forall vy € A, (3.13)

ux(0) = FuAmu(0),
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V\Lherel5N =T IR\T is the orthogonal projection operator associated with fees
M, (-, ) IS the bilinear form defined in (3.12), and0) is the initial value of an exact
solutionu(t) of (1.1).

We investigate now in which conditions the sums are exaatliguare rules.

LEMMA 3.2 IfM > N+ 1, the problem (3.13) is equivalent to the problem
find ug(t) € ¥y such that
ie% (UR (1), vn) = (KU (0), v + (AVE (), w) forallw € %,  (3.14)
ug (0) = Py-2mu(0).
Proof. Asthe Gauss quadrature rule is exacti&n it holds
(UR (1), W)y = (UR (1), W) -

Owing to Lemma 2.3, we know that the operato= —%A yields linear and quadrat-

ical terms:
N
K <Z Gnd’n(x))
n=0

N

- n;ﬁn (%n [2a(x— @) + p* $n(X) + Z(Pn, Pn 1, ¢n+2)) _

KUg (%)

Written in the variabley, the last expression is a polynomial of degh¢e- 2 times
the exponential weight. This makes the difference betwkepseudo-spectral Gauss-
Hermite method and the previous case. We are forced henegtire the condition
M>N+1:

KROWW = T ZKEEHTD = 3 TRROTRO),
yerm yeTm
= [ TG OITW)dy= (T (KU, Tw) = (K w)
As the potential part concerns, we have:
VEOMW = 3 VOREDIRDR= T TVRIWTRey
yerm yeTm
= /R AT (VG () Ty = (T[T (V)] W) = (Fun (V). W)
and this yields the result. [ |

We proceed analogously to the previous case (Hermite spetgcomposition)
with the only difference that we kedd > N+ 1. For the erroef = Pyu— g, it
holds

d ~ ~
ellefll 5 llefll < [[Vu— (V)| - llekll+ [ (KRnu, &) | (3.15)
We bound the last term using (2.24):

~ _ s |2
(KR &) < N2 B o2 g
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LEMMA 3.3 The potential terrfjVu— (V)| is bounded from above by

O [l + ¢ (Y3772l + N~"/2ul M 3/ONY/2/2)y) )

whereGy = [|V|| .., and wheret is a constant depending ¢N'|| ., and||TV|[ .
Proof. We concentrate now on the evaluation of the potential term:
Vu— AV = [TV — AT (V)]

< TVW = AT VO + | An[T (V][ + |2 [T (VRau)] |-

The first term is related to the interpolation error:
[T(VU) — 2T (VU)]|| < cMY3T72|| AT (Vu)|| < cMY3"2 vy,
The second term is bounded like in (3.10):
1. . -
1T (V)] = ?IV(V)G&(V)IZPVS oI TeRI* = CG 1kl -

yelm
For the third term, we first notice that for two functiohgndg, we have

T(fo)(y) = f(q+%y> (TO(y).

Now we use (2.17) and (3.3) in order to obtain

JAVRWI = A+ F IRl = Va7 IRy )
< C<HV(q+%-)RN(Tu) +M’1/6V(q+%-)RN(Tu) )
y

ThelL? and theH -error estimates (2.18) and (3.9) yield
| A [T (VRaW]|| < eN-7/2Jufr +cM-YENY2-1/2|y),

wherec depends onfV|| ., and|0V| .. Altogether, we obtain the upper bound for
the potential term. [ |

Now, we turn back to the inequality (3.15). The previous Leanmithr + 2 yields

d _o/3— _ 19
e ROI° < OO +c (M3 2VUr 2+ M YNTY2T 21 o ) (1)

- 1 s1/?
LeN/2 <N+ %+|32|2> Jul2r €K O] -

Combining Lemma 2.1 and the Gronwall Lemma, we obtain tHeviohg upper bound



3 PSEUDO-SPECTRAL METHOD 18

for the collocation error:
.t 1
IR < et IO +om 02 (el I VU ads
0

t
chfl/GNfl/zfr/z /0 e -9y ()| s+
_ t ooy, 1 |a [2p2 1
r/2 F(t-s =~ 14 /<« F , =
cN /Oe <Ne+2m” Ne B +B2 [u(s)|r+20s.

t t
0 = [ IINUSods and ft) = [ ¥ Ius)ods, (3.16)
0 0

Denoting

we may rewrite the previous expression as

I&OI < ek (0)] +cM 32t )+

1 _ 1 Ja [2p2 1
rj2 [ Laa-16pg-1/2, L+ o1& e pr L
cN <£M N Ne  2m\/Ne B~ B2 fa(t).

Using (3.11) to bound the terfjeg (0)|| we finally obtain:

THEOREM 3.2 Letu(t) be a solution of (1.1) and leif(t) be the solution of the
problem (3.13) withiM > N + 1 associated with the Gauss-Hermite basis of parameters
a=a+if, pandg. Assume that for > 1, |Vu|r;» € L1(0,t) for all t > 0 and that

the applicatiort — |u(t)|;;2 is continuous orR, so that in particular, the functions
f1(t) and f,(t) in (3.16) are continuous. Then the following bound for the@ein the
pseudo-spectral Gauss-Hermite method holds:

Jut) — KO < ceFM 2P I2u(0)] o+ eMH3 T2 (t)

_ 1 1/6a_ 1 Ja [2p2 1

O e VL N N A . I B
+cN <€M N2+ et o\ e B +B2 fa(t)
+eNT ()2,

whereGy = |[V|| .., fi(t) and f;(t) are given by (3.16), and where the constant
depend on.” bounds on/ andV.

REMARK 3.1 ForM = N + 1 we have the convergence rgb¢+ 1)%/3-1/2,

3.3 Practical Approach

In the previous section, we started from the collocatiof grand we reformulated the
problem into the variational form. During this process, wenarked that we need at
leastM + 1 = N + 2 collocation points. From the algorithmical point of viétis most
advantageous to have the same number of quadrature polmsiafunctions. In this
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case, the Christoffel-Darboux formula gives an elegantqandk method to transform
from function values to Gauss-Hermite coefficients and baek Tang (1993). This
motivates us to use directly the variational formulationheff continuous problem and
to discretise it by a Galerkin method and Gauss-Hermite ipiack:

find uy(t,-) € ¥y such that
e (Un(t). i) = (Kuy, ) + (IN(Vuy),w) forall v € 7, (3.17)

Un(0,-) = A’().
This is exactly the formulation (3.14) with the only diffeiee that we now interpolate
on exactlyN + 1 points M = N instead ofM = N+ 1). Hence, the same estimate of
the error holds as in the collocation case with= N in the last Theorem. However,
the formulation (3.17) is not equivalent to any collocatiormulation. We work now
with N + 1 basis functions and we use the special fornjkaf§, vn) and the formulas
for the Gaussian integrals (2.22) and (2.23). The momertrisecto reveal the linear
combination term in the Lemma 2.3:

Lntnisbuz) = oo - "Fin4n- (1) 818)

01 2020 D)~ B2 i 0T D 2)

N
Considemun(x) = ¥ uﬁ‘]tpm(x) and test with all basis functiong := @n:
m=0

2 2ap1 /n+2
<Kqu¢n> = 2pmn+ p (\/; h T+ n+2>

22 1 (@n+ 1§+ =D o+ VinF D+ 2)us,)

‘m 222

20  4a
+<—?+?(n+1)—(2n+1>un+—\/ (n+1)ug,, +
4a

(N+1)(n+2)ug, .
Hence, the kinetic energy operator may be discretised byyesgarse Hermite matrix.
The potential energy operator is then obtained using gtagranly:
P+ diag w. xV(y)) xPT,

wherey and w are vectors of lengtiN 4+ 1 containing the points and the weights of
the Gauss quadraturB,is the (N + 1) x (N 4 1)-matrix of the Hermite polynomials
evaluated at the the quadrature points andlenotes pointwise multiplication. We
obtain a small linear system of ordinary differential edprad.

4 Numerical examples

In order to illustrate the previous results, we consideraggroximation of (1.1) in the
case wheren= 1 and where the potential function is givenW¥yx) = (1 — cogx))/2.
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We consider the space spanned by the functinig), n=0,...,N, given by (2.14)
associated with the parameters:-i/2,q=0andp=0in Egn. (2.12), i.e. the Gauss-
Hermite functions associated with the Gaussian exg/(2¢)).

The initial value is
2 1/4
Vo(X) = (%) exp(—%(x—qo)z)

whereflp > 0 andqp are real parameters. Note that in all case, we Hayg = 1.

4.1 Fixed basis intime

We consider the solution of (3.17) at tifie= 1, i.e. the exact solution of the Pseudo-
spectral Gauss-Hermite problem with+ 1 interpolation points, which means that
M = N as in the previous section. In this case, the system is arlgystem of ODE's,
and its solution is calculated using an approximation ofnttadrix exponential.

For eachN, we compare these solutions with the numerical solutiomsrgby the
Strang-splitting scheme in time with stepsigie= 10~%, combined with fast Fourier
transform with 26 = 65536 points on the intervék-rt, 7. This provides a very good
approximation of the exact solution, see Jahnke & Lubicltd@pand we take it for
the exact solution in our comparisons.

In Figure 1, we consider the case wh@ge= 0.5 andgp = 0.1. We plot the rel-
ative error and observe the convergence of the approximatith N. Note that the
convergence is relatively robust with

log10(relative e

14 16 18

10 20 30 40 5 60 70 80 90 02 04 06 08 1 12
N log10(N)

Figure 1: Relative approximation error withat T = 1 for ¢ = 0.1 (line), e = 0.01
(dashed) and = 0.001 (dash-dotted}jp = 0.1. Fixed approximation basis in time.

In Figure 2, we focus on the cagg = 0.3. We note that the convergence is slower
than in the previous case. In particular, it deteriorateth wmallere. This is due
to the fact that the definition of the badi$n(x)|n=0,...,N}, which is constructed
from Gaussian function centeredat= O, requires to take largd to approximate a
Gaussian-shaped function centered arogrdgy # 0, particularly where — 0.
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log10(Relative error)
T

10 20 30 40 s 60 70 8 9 0 02 04 06 O 2 14 16 18 2

g 1 1
N Loglo(N)

Figure 2: Relative approximation error Bt= 1 for € = 0.1 (line), € = 0.01 (dashed)
ande = 0.001 (dash-dotted)jp = 0.3. Fixed approximation basis in time.

In Figure 3, we turn to the casp = 0.7, and we oberve that the results are worse
(in particular, the convergence fer= 10~3 requires at leastl > 100).

Rel
log10(rel

10 20 30 40 s 60 70 8 9 o 0z 04 06 o 14 16 18 2
N

& 1 12
log10(N)

Figure 3: Relative approximation error&t= 1 for ¢ = 0.1 (line), 001 (dashed) and
0.001 (dash-dotted)yp = 0.7. Fixed approximation basis in time.

In Figure 4, we plot the evolution of the error with the timethe case wherd =
M = 10 is fixed, anct = 0.01. We display the results fop = 0.1 (left) andgy = 0.25
(right), both inL® andL? norm. As before, we observe a significant difference when
(o is away fromg = 0 or not.

%107 £=0.01, M=10 £=0.01, M=10
35 0.07
3 0.06
25
0.05
= 2 =
2 2 0.04
@ 15 @
0.03
1
05 * sup-norm 0.02 * sup-norm
: 2 2
—L"-norm —L-norm
0 0.01

time

6 8

10

2 4 6 8 10
time

Figure 4: Evolution of the error with timejy = 0.1 (left) andgy = 0.25 (right).
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4.2 Gauss-Hermite wave packets dynamics examples

We have seen in the previous section that the quality of thes&glermite approxi-
mation of (1.1) with fixed parameters in time heavily depeadghe choice of these
parameters with respect to the behaviour of the exact soluti

In Faouet al. (2007), we introduce an algorithm to approximate (1.1) byctions
of the form EE:Ockq)k(x) where thegy(x) are functions of the form (2.14) but where
all the parameters, p, gandcg (k= 0,...,N) evolve with time. The algorithm can be
quickly described as follows: Given the parame#sp” andq" andcy (k=0,...,N)
associated with an approximate solution at the tigne nAt, we determine the param-
eters at the timg, 1 using a symmetric combination of the following three pieces

1. Free Schrodinger equation: The exact solution of theggu (1.1) without po-
tential, with an initial value given as a Gauss-Hermite waaeket can be calcu-
late explicitly for any time.

2. Quadratic potential part: We split the potent&l) into its quadratic Taylor
expansion aroundp and the corresponding remainder term: We define the po-
tentials

Q) = V() + DV (") (< o) + S0V (e (x— o2

as the local quadratic approximationM@x). In this case, we can again calculate
explicitly the exact solution of the equatiegny = Q"y, for an initial value given
as a Gauss-Hermite wave packet.

3. Cubic potential part: With the previous notation, we defin
W(x) =V (x) — Q'(X).

The solution of the equatioizy = W" is then approximated by solving the
corresponding Galerkin problem over Gauss-Hermite fonstiwith fixed pa-
rametera", p" andq".

We can show that in this algorithm, the numerical trajectmyresponding to the
parameterp andq correspond to the Verlet algorithm applied to the Hamilkorsys-
tem with potentiaV. Moreover, wherN — oo, if converges towards the (abstract)
Strang splitting between the kinetic and potential energy.

In Figure 5, we show the convergence of this algorithm appiethe same case
as in the previous subsection. We see that we need much legsensN to obtain
correct approximation results. Note that we compute ther dretween the moduli of
the solutions (in this case the errorigAt?) while it is of orderd (At?/ ) for the phase
error, see Faoat al. (2006) for the case wheid = 1).

The step size used to calculate the solution associatedivathigorithm described
above isAt = 0.01, whileN ranges from 1 to 10.
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llog10(relative erros

06 07 08 09 1

7 B 9 10 S% o1 o0z 03 o

4 05
log10(N)

Figure 5: Relative approximation errorbt= 0.5 for € = 0.1 (line), e = 0.01 (dashed)
ande = 0.001 (dash-dottedyjp = 0.3. Adaptative parameters.

Note that for small epsilon, the convergence is better. Ehdue to the compat-
ibility of the algorithm with the semi-classical limit (s&@ouet al. (2006, 2007) for
further details).

Finally, we consider in Figure 6 the same situation as forRigeire 4, where is
fixed to Q01, By = 0.5, gp = 0.1 andgp = 0.25. We takeN = 5 andAt = 0.1 in the
adaptative Gauss-Hermite algorithm. We see that the betiais the same in both
cases, as opposed to the situation of the Fig. 4.

10° 10°

Figure 6: Time evolution of the error for the adaptative aidpon in L (points) and.?2
norms (lines)gy = 0.1 (left) andgy = 0.25 (right).
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