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Abstract

The time dependent linear Schrödinger equation for nucleion the whole space
is semi-discretised using Hermite and Gauss-Hermite basisfunctions. These are
well suited on the one hand for the conservation properties of the numerical solu-
tion and, on the other hand, for their remarkable approximation properties. We in-
vestigate theoretically and numerically the convergence of the spectral and pseudo-
spectral Gauss-Hermite semi-discretisation schemes. Schrödinger equation, Gauss-
Hermite approximation, spectral and pseudo-spectral methods

1 Introduction

The numerical approximation of the Schrödinger equation on the whole space using
Gauss-Hermite basis functions is the subject of our paper. The particularity of this
method is that the basis functions of the finite dimensional approximation space are
defined on an unbounded domain, while standard numerical schemes are classically
best developed for bounded domains. In the last years, numerical methods based on
orthogonal basis functions that live on unbounded domains gained increasing atten-
tion, see Boyd (2000) and Bernardi & Maday (1997). Hermite functions are a natural
choice for many fields, as testify the citations in Tang (1993) and Boyd (2000). Weide-
man (1992) showed that in the case of the first and second Hermite differentiation, we
need rather weak stability restrictions for the time step inthe discretisation of parabolic
differential equations. Funaro & Kavian (1990) studied thestability and convergence
properties of the Hermite method for the heat equation. Further, Tang (1993) evidenced
the need to choose a scaling factor in the basis functions in order to get accurate ap-
proximation results using only a reasonable number of Hermite functions. Maet al.
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(2005) employed a time dependent scaling factor in the Hermite expansions for the
viscous Burgers’ equation in unbounded domains.

As quantum dynamics concerns, Billing (1999) used a time-dependent Gauss-Hermite
basis in order to formulate approximations in which the classical limit arises in a natu-
ral fashion and that scale moderately with the number of particles. Vijay et al. (1999)
compared the Hermite approach to quantum dynamics with the Chebyshev method.
They evidenced that it may be possible to achieve a faster convergence with Hermite
based method for finite time propagation, by a proper choice of scaling parameter.

In the spirit of these ideas, we are interested in a mathematical justification of the
spectral and pseudo-spectral method in the context of a time-adaptive Gauss-Hermite
basis. Regarding the time discretisation, we introduce in Faouet al. (2007) an algo-
rithm to compute the solution of the time-dependent Schrödinger equation using Hage-
dorn wavepackets approximations, see Hagedorn (1998). TheHagedorn wavepackets
are better suited for the dynamics in higher dimensional spaces as the tensor product
of Gauss-Hermite functions. The Hagedorn wavepackets can be written in terms of
Gauss-Hermite functions and hence the approximation properties are equivalent, see
Hagedorn (1998) .

Here, we stick to the investigation of the convergence of thespectral and pseudo-
spectral method in the context of the parameter dependent Gauss-Hermite basis. We
start from the basic approximation results using Hermite functions onR of Guoet al.
(2003). In comparison to earlier papers Guo (1999), Guo & Xu (2000), they insist on
the importance of avoiding non-uniform weighted Sobolev norms. As for the Dirac
equation, this fact is important for us, too, since we are very concerned about the con-
servation properties of the numerical solution.

We consider the reduced Schrödinger equation for the nuclei, see for instance
Teufel (2003), Hagedorn & Joye (2006) on the whole spaceR

iε∂tu = − ε2

2m
∆u+Vu (1.1)

with initial valueu0, wherem denotes the mass of the particle,∆ = ∂xx is the Laplace
operator onR, V = V(x) ∈ R is the potential function, andε denotes the Planck con-
stant. This equation is a hamiltonian partial differentialequation, and it is well known
that theL2-norm of its solution remain constant in time.

Assume given a finite dimensional linear approximation manifold VN ⊂ L2. The
corresponding variational approximation problem (see Lubich (2004, 2005)) can be
stated as follows: FinduN(t, ·) ∈ VN such that for all timet ≥ 0,

iε
d
dt

〈uN(t),vN〉 = 〈HuN(t),vN〉 for all vN ∈ VN ,

uN(0, ·) = u0
N(·) ,

(1.2)

whereu0
N ∈ VN. Here,H = − ε2

2m∆ +V and〈u,v〉 =
∫

R u(x)v̄(x)dx denotes theL2 her-
mitian product onR. It can be easily shown that ifVN is a complex subspace ofL2 in
the sense where for allvN ∈ VN, we haveivN ∈ VN, then theL2-norm of the solution is
preserved:‖uN(t)‖ = ‖u0

N‖ for all t ≥ 0.



2 DECOMPOSITION AND SPECTRAL METHOD 3

The goal of this paper is to give error estimates between the solution u(t) of the
Schrödinger equation (1.1) and the solution of (1.2) in thecase whereVN is the complex
space spanned by Gauss-Hermite functionϕn(x), n = 0, . . . ,N, of the form

ϕn(x) = πn(x)exp

(

i
ε
(a|x−q|2+ p(x−q))

)

, (1.3)

wherea = α + iβ is a complex parameter (withβ > 0 denoting the width of the Gaus-
sian),q ∈ R and p ∈ R the position and momentum parameter of the Gaussian. The
termsπn(x) are polynomials of degreen depending on the parametersa, p, q, and of
the classical Hermite polynomials. We also address the samequestion when (1.2) is
approximated by using a pseudo-spectral discretisation, i.e. when theL2 product is
replaced by a discrete product involving collocation points associated with the Gauss-
Hermite polynomials.

The convergence results obtained below give bounds for the numerical approxi-
mation of (1.1) using Gauss-Hermite functions, with estimates depending explicitly of
the parametersa, q, p, ε andm. Allowing the parametersa, p and p to evolve with
time would give the approximation of (1.1) by Gauss-Hermitewavepacket for which
we give a numerical algorithm in Faouet al. (2007). Our result can hence been under-
stood as a first step to show the convergence of the fully discrete algorithm in Faouet
al. (2007). Note that the extension of these results to higher space dimensions and the
approximation by Hagedorn polynomials (see Hagedorn (1998)) may be made using
the same techniques. However, the practical implementation in higher dimensions uses
sparsedecompositions of the wave function, making the approach rather different from
the one-dimensional case, see Faouet al. (2007).

The paper is organised as follows: In Section 2, we consider asimplified situation,
whereε = m= 1 anda= i/2, p= q= 0. This allows us to introduce the basic concepts
of the approximation results. We then deal with the general Gauss-Hermite functions
(1.3) and give estimates depending explicitly on the various parameters. Note that one
of the difficulties comes from the oscillatory part in the Gaussian (1.3). In both cases,
the convergence estimates rely on a regularity assumption on the exact solution of (1.1).
In Section 3, we consider the pseudo-spectral approximation of (1.2) using quadrature
collocation points, and show similar estimates. Finally, we give numerical examples
for fixed parametersa, p andq and we compare them with the simulations obtained by
the algorithm in Faouet al. (2007).

2 Decomposition and spectral method

We start with a general approximation estimate. LetVN be a finite dimensional sub-
space ofL2, and letPN : L2 −→ VN be theL2-orthogonal projector ontoVN defined by
the relation

〈PNu,vN〉 = 〈u,vN〉 , ∀vN ∈ VN,

and letRN be the approximation error operator defined byRNu = u−PNu.
Let u(t) and uN(t) be solutions of (1.1) and (1.2) respectively, and leteN(t) =
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PNu(t)−uN(t). If u0 is smooth enough, the solutionu(t) satisfies in particular

iε
d
dt

〈u(t),vN〉 = 〈Hu(t),vN〉 for all vN ∈ VN . (2.1)

Substracting this equality from (1.2), we get

iε
〈

d
dt

eN(t),vN

〉

= 〈HeN(t),vN〉+ 〈HRNu(t),vN〉 for all vN ∈ VN .

This shows that

ε
2

d
dt

‖eN(t)‖2 = εℜ
〈

d
dt

eN(t),eN(t)

〉

= ℜ〈−iHeN(t),eN(t)〉+ ℜ〈−iHRNu(t),eN(t)〉 .

As the left hand side is real as well as〈HeN(t),eN(t)〉 for real potentialV, it must hold

ε
2

d
dt

‖eN(t)‖2 = ℜ〈−iHRNu(t),eN(t)〉 .

If we are able to write nowH = L+W such that for allt,

〈LRNu(t),eN(t)〉 = 0, (2.2)

then the problem is reduced to the estimation of‖WRNu(t)‖, because

ε
2

d
dt

‖eN(t)‖2 = ℜ〈−iWRNu(t),eN(t)〉 ≤ ‖WRNu(t)‖‖eN(t)‖ . (2.3)

As it will be of constant use throughout the rest of this work,we recall here the follow-
ing comparison result:

LEMMA 2.1 let f : R → R+ a continuous function, andy : R → R+ a differentiable
function satisfying the inequality

∀t ∈ R,
d
dt

y(t) ≤ 2 f (t)
√

y(t).

Then we have the estimate

∀t ∈ R,
√

y(t) ≤
√

y(0)+

∫ t

0
f (s)ds.

Proof. For all η > 0, we easily show (see e.g. Haireret al. (2006), Sec. I.10)

∀t ∈ R,
√

y(t) ≤
√

(y(0)+ η)+

∫ t

0
f (s)ds,

which yields the result by lettingη → 0.

Using this lemma, Eqn. (2.3) with a bounded functionW yields

‖u(t)−uN(t)‖ ≤ ‖eN(0)‖+‖RNu(t)‖+
1
ε

CW

∫ t

0
‖RNu(s)‖ds, (2.4)
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with CW = ‖W‖
L∞ . Hence, we see that the error due to the space discretisationin the

Schrödinger equation is controlled by the operatorRN. Let us note that the condition of
a boundedW may be relaxed to the integrability of‖WRNu(s)‖ with the corresponding
change in the constants.

Note that the condition (2.2) will be satisfied ifL sendV ⊥
N to itself. This will be the

case in the simplified situation studied in the next section,whereL will be the hamil-
tonian associated with the harmonic oscillator. For general Gaussian wave packets
with arbitrary parameters, the orthogonality condition (2.2) will not be exactly fulfilled
for the natural splitting between the kinetic and potentialoperators. Nevertheless, the
induced error will be small allowing us to obtain an error estimate.

2.1 Spectral Hermite Method

In this subsection, we consider the simplified situation whereε = m= 1 in the equation
(1.1). We consider theHermite functions:

χn(x) = e−x2/2Hn(x) , (2.5)

where for alln≥ 0, Hn denotes thenth Hermite polynomial defined recursively by the
formula

Hn+1−2xHn+2nHn−1 = 0, H0 = 1 and H1 = 2x. (2.6)

The functions (2.5) are the eigenfunctions of the problem

ex2/2∂x(e
−x2/2∂xχn +xe−x2/2χn)+ λnχn = 0

associated with the eigenvalueλn = 2n. The derivative of the Hermite function may be
written in terms of other Hermite functions:

χ ′
n = 2nχn−1−xχn = xχn− χn+1 = nχn−1−

1
2

χn+1 , for n≥ 1. (2.7)

Clearly, the Hermite functions are orthogonal inL2(R):
∫

R

χn(x)χm(x)dx= 2nn!
√

πδnm, (2.8)

Moreover, a careful computation shows that
(

−1
2

∂ 2
xx+

1
2

x2
)

χn(x) = (n+
1
2
)χn(x) , (2.9)

that is, the Hermite basis diagonalises the problem of the harmonic oscillator.
We considerVN = span{χ0, . . . ,χN} and see anyu∈ L2 as

u(x) = ∑
k≤N

ûkχk(x)+ ∑
k≥N+1

ûkχk(x) = PNu(x)+RNu(x) , (2.10)
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where for allk≥ 0,

ûk =
1

2kk!
√

π
〈u,χk〉 .

Let us denote the differential operator related to the Hermite functions byAu= u′+xu.
Guoet al.(2003) proved that the approximation error is of orderN−r/2 with r depend-
ing on smoothness assumptions onu. Since it is a result of fundamental importance for
our paper we give here the proof, together with a previously unexposed estimation of
the optimal constant:

LEMMA 2.2 Assume that forr ≥ 1, we haveAru∈ L2. Then forN ≥ r −1 we have the
estimate

‖RNu‖ ≤CrN
−r/2‖Aru‖ ,

with the constant(C1)
2 < 0.5, (C2)

2 < 0.25 and

(C2+p)
2 = 0.25·2−p(p+1)p+2

(p+2)!
, if p≥ 1.

Proof. The orthogonality of the Hermite functions gives

‖RNu‖2 = ∑
k≥N+1

ck|ûk|2 ,

with ck = 2kk!
√

π. By the orthogonality of the Hermite functions and the eigenvalue
property we have fork≥ 1:

ûk =
1
ck

∫

R

u(x)χk(x)dx= − 1
2k

1
ck

∫

R

u(x)ex2/2∂x

(

e−x2/2Aχk(x)
)

dx.

Integration by parts and the decay conditions at∞ for u give

ûk =
1
2k

1
ck

∫

R

Au(x)Aχk(x)dx=
1
ck

∫

R

Au(x)χk−1dx,

using the first relation (2.7) which can be writtenAχk = 2kχk−1 for k ≥ 1. This argu-
ment repeats giving

ckûk =

∫

R

Aru(x)χk−r(x)dx with r ≥ 1.

We substitute this expression in‖RNu‖2 in order to get

‖RNu‖2 = ∑
k≥N+1

ck−r

ck
·ck−r

∣

∣

∣

∣

∣

∣

1
ck−r

∫

R

Aru(x)χk−r(x)dx

∣

∣

∣

∣

∣

∣

2

.

Hence, we have
‖RNu‖2 = ∑

k≥N+1

ck−r

ck
·ck−r |(̂Aru)k−r |2.

As Aru is in L2, we obtain

‖RNu‖2 ≤ max
k≥N+1

ck−r

ck
· ‖Aru‖2 .
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We then get‖RNu‖2 ≤ g(N, r)‖Aru‖2, where

g(N, r) := max
k≥N+1

ck−r

ck
=

2−r

(N+1)N . . .(N− r +2)
for r ≥ 1. (2.11)

In the casesr = 1 andr = 2 we easily get the announced bounds for the constantsCr .
If r = 2+ p, with p≥ 1, one can show that

g(N, r) ·Nr =
1
4

N
N+1

p

∏
j=0

N
2(N− j)

is decreasing inN ≥ p+1. This yields the general expression ofC2+p. Let us note that
for reasonable moderatep ∈ {1,2, . . . ,14} we have really small constants, such that
C2+p < 0.5.

Assume now that the potential can be writtenV = 1
2x2+W with a bounded function

W. DenotingL = −1
2

∆ +
1
2

x2, the hamiltonianH splits intoH = L+W, and we have

using (2.9), for allu sufficiently smooth,

LRNu = L ∑
k≥N+1

ûkχk(x) = ∑
k≥N+1

ûk(k+
1
2
)χk(x)

that is orthogonal onVN.
Using the previous lemma and (2.4), we easily get the following result:

THEOREM 2.1 Let u(t) be a solution of (1.1) withε = m = 1, and with a potential
V(x) = 1

2x2 +W(x) whereW is bounded. LetuN(t) be the solution of (1.2) associated
with the manifoldVN = span{χ0, . . . ,χn}, and with initial valueu0

N = PNu(0). Let
r ≥ 1, and assume that the functiont 7→ Aru(t) is continuous fromR to L2, then we
have the following bound, for allt ≥ 0,

‖u(t)−uN(t)‖ ≤CrN
−r/2

(

‖Aru(0)‖+‖Aru(t)‖+CW

∫ t

0
‖Aru(s)‖ds

)

,

provided the right-hand side makes sense, whereCW = ‖W‖
L∞ < ∞ and whereCr is

the constant appearing in Lemma 2.2.

2.2 Gauss-Hermite Wave-packet

For fixed numbersa = α + iβ ∈ C with β > 0, p ∈ R and q ∈ R, let ϕ(x) be the
Gaussian function

ϕ(x) = exp

(

i
ε
(a|x−q|2+ p(x−q))

)

. (2.12)

In Faouet al.(2006), such functions are used to approximate the Schrödinger equation
(1.1) using Gaussian-wave packets dynamics. A natural extension is to consider the
natural Hermite basis associated with (2.12): For allN ≥ 0, we consider the linear
subspaceVN spanned by

ϕn(x) = ϕ(x) ·
√

ζdnHn(ζ (x−q)) , n = 0,1, . . . ,N , (2.13)
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with ζ =
√

2β
ε , whereHn are the hermite polynomials defined by (2.6), and where

dn = 1/
√

2nn!
√

π is a normalising constant. The functions (2.13) are generalisations
of the Hermite functions (2.5). Note that the shift in the functions (2.13) corresponds
to the shift made in the Gaussian (2.12), whose real part is exp(−β (x−q)2/ε). We
then expect the previous functions to satisfy orthogonality properties inherited from
the structure of Hermite functions.

Denotingy =
√

2β
ε (x−q) = ζ (x−q), we write the basis function

ϕn(x) =
√

ζ dnHn(y)e
− 1

2y2
ω(y) =

√

ζ dnχn(y)ω(y) , (2.14)

whereω(y) is the oscillatory part of the Gaussian wave packet, namely

ω(y) = exp

(

i
ε

(

α
ζ 2 y2 +

p
ζ

y

))

.

In this situation, the basis functionsϕn are no longer the eigenfunctions of an obvi-
ous operator as in the previous case. However, as|ω | = 1, we see that for alln,m≥ 0,
〈ϕn,ϕm〉 = δnm using the change of variablex 7→ y and the properties of the Hermite
functionsχn.

For anyu∈ L2, we decompose

u(x) = ∑
k≤N

ũkϕk(x)+ ∑
k≥N+1

ũkϕk(x) = P̃Nu(x)+ R̃Nu(x) ,

with the coefficients ˜uk = 〈ϕk,u〉, whereP̃N andR̃N are the corresponding projection
and error operators.

Let us consider the transformationTudefined by

Tu(y) = (ω(y)
√

ζ )−1u(q+
1
ζ

y). (2.15)

As |ω |2 = 1 anddy= ζdx, we see thatT is an isometry ofL2: for functions f andg,

〈T f ,Tg〉 = 〈 f ,g〉 .

Moreover, from (2.14), we have

Tϕn = dnχn.

This implies that

ũn = 〈ϕn,u〉 = 〈Tϕn,Tu〉 = dn 〈χn,v〉 = d−1
n v̂n , (2.16)

wherev = Tu and where ˆvk denotes as before the coefficients in the decomposition
v = ∑k≥0 v̂kχk, see (2.10).

With these notations, we have for allk≥ 0, ũkTϕk = v̂kχk, and hence

P̃N = T−1PNT and R̃N = T−1RNT . (2.17)
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Using Lemma 2.2, the approximation error reads then in the parameter dependent set-
ting, for N ≥ r −1,

∥

∥R̃Nu
∥

∥=
∥

∥TR̃Nu
∥

∥= ‖RNTu‖ ≤CrN
−r/2‖Arv‖ . (2.18)

We require now some regularity on the solution of the continuous Schrödinger equa-
tion:

|u|2r := ∑
n≥r

2rn(n−1) . . .(n− r +1)|ũn|2 < ∞ . (2.19)

This condition is linked to the Hermite decomposition and the regularity of the related
functionv = Tu. Remember the differential operator related to the Hermitefunctions
Au= u′ + xu. By the recursion formula (2.6) we have thatAχn = 2nχn−1 and hence
Av= ∑

n≥0
v̂nAχn = ∑

n≥1
2nv̂nχn−1. Using this iteratively, we get using (2.8) and (2.16),

‖Arv‖2 = ∑
n≥r

(

2rn(n−1) . . .(n− r +1)
)2

cn−r |v̂n|2

= ∑
n≥r

(

2rn(n−1) . . .(n− r +1)
)2

cn−rc
−1
n |ũn|2

= ∑
n≥r

2rn(n−1) . . .(n− r +1)|ũn|2 ,

where as beforeck = 2kk!
√

π = d−2
k . Shortly, this means that

‖ArTu‖ = |u|r . (2.20)

Hence, the norm|u|r is just equivalent to the norm‖Arv‖ applied to the scaled function
v = Tu (note that the regularity assumptions onu andv = Tu are equivalent). This
observation brings the approximation error in the parameter dependent case from (2.18)
to the form

∥

∥R̃Nu
∥

∥≤ cN−r/2|u|r . (2.21)

Here, and in the following,c denote a generic constant independent ofN.
We now want to derive an estimate similar to (2.4).We begin with the following

result:

LEMMA 2.3 The kinetic part of the basis functionϕn may be split:

− ε2

2m
∆ϕn(x) =

1
2m

[2ā(x−q)+ p]2 ϕn(x)+L (ϕn,ϕn+1,ϕn+2) ,

whereL (ϕn,ϕn+1,ϕn+2) is a linear combination ofϕn, ϕn+1 andϕn+2 with coeffi-
cients depending ona, p, q, n andε.

Proof. Using (2.14), we have

∆ϕn = ζ 5/2dn [∆χn(y)ω(y)+2∂xχn(y) ·∂xω(y)+ χn(y)∆ω(y)] .
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The second derivative of the Hermite function may be computed using the recurrence
relations (2.7) and (2.6) as

∆χn(y) = ∂x(yχn(y)− χn+1(y))

= χn(y)+y∂xχn(y)− ∂xχn+1(y)

= χn(y)+y(yχn(y)− χn+1(y))− ((n+1)χn(y)−
1
2

χn+2(y)) .

We focus only on the terms that contain the factorsy or y2, since the other are just linear
combinations of Hermite functionsχm with m≥ n. Remark that

yχn+1(y) = (n+1)χn(y)+
1
2

χn+2(y) ,

and consequently, the first term in∆ϕn is

dn∆χn(y)ω(y)ζ 5/2 = ϕn(x)ζ 2y2 + linear(ϕn,ϕn+1,ϕn+2) ,

where the last term will enter into the definition of the operator L . The second term in
∆ϕn is

2dn∂xχn(y) ·∂xω(y)ζ 5/2 = 2dn(yχn(y)− χn+1(y))ω(y)(2αy+ pζ )
i
ε
√

ζ

=
i
ε

ϕn(x) ·2y(2αy+ pζ )+ linear(ϕn,ϕn+1,ϕn+2) .

The last term in∆ϕn is

dnχn(y)∆ω(y)ζ 5/2 = ϕn(x)

(

2α
ζ

y+ p

)2( i
ε

)2

+ ϕn(x) ·2α
i
ε

.

Altogether, we obtain

∆ϕn(x) = ϕn(x)

[(

ζ +
2α
ζ

i
ε

)

y+ p
i
ε

]2

+ linear(ϕn,ϕn+1,ϕn+2) ,

that gives the result of the lemma.

In comparison with the previous subsection, we cannot decompose the hamiltonian
H, which is independent onp andq, into L +W with L acting onV ⊥

N . However, we

can always split the operatorH asH = K +V whereV is the potential andK = − ε2

2m∆.
In the following, we assume that the potentialV is bounded. In this situation, the
orthogonal condition (2.2) is no longer exactly fulfilled:

LEMMA 2.4 Letcn, n = 0, . . . ,N be given complex numbers, and letwN =
N
∑

n=0
cnϕn ∈

ṼN.Then we have
〈

KR̃Nu,wN
〉

= s1
√

N+1ũN+1c̄N +

s2

(

√

N(N +1)ũN+1c̄N−1 +
√

(N+1)(N+2)ũN+2c̄N ,
)

with s1 = āp
√

2
mζ ands2 = ā2

mζ 2 .
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Proof. The previous Lemma gives

〈

KR̃Nu,wN
〉

=
2āp
m

〈

∑
n≥N+1

(x−q)ũnϕn,wN

〉

+
2ā2

m

〈

∑
n≥N+1

(x−q)2ũnϕn,wN

〉

.

Using standard Gaussian calculus, we compute the followingmomenta integrals:

〈ϕn |(x−q) |ϕm〉 =











1
ζ

√

n+1
2

if m= n+1,

0 otherwise,

(2.22)

〈ϕn |(x−q)2 |ϕm〉 =























1
2ζ 2 (2n+1) if m= n,

1
2ζ 2

√

(n+1)(n+2) if m= n+2,

0 otherwise,

(2.23)

and the result follows.

We make the smoothness assumption|u|2+r < ∞, with r ≥ 1. Even if the first part
of the splitting is no longer zero, the previous lemma gives us the upper bound, for
N ≥ r,

|
〈

KR̃Nu,wN
〉

|2 ≤ f (N, r)

[ |s1|2
N

+ |s2
2|
]

· |u|22+r · ‖wN‖2 ,

with f (N,0) = 2−1 and (see (2.11))

f (N, r) =
2−(r+1)

(N−1) . . .(N− r)
=

1
2

g(N−2, r) for r ≥ 1.

This justify again the use of the regularity condition (2.19). The upper bound forg(N−
2, r) yields finally

|
〈

KR̃Nu,wN
〉

|2 ≤CN−r
[ |s1|2

N
+ |s2|2

]

· |u|22+r ‖wN‖2 , (2.24)

whereC is a constant depending onr andC < 1 for r ∈ {1, . . . ,14}.
Now, let u(t) be a solution of (1.1) andvN(t) be the solution of (1.2) associated

with the manifoldṼN and initial valuevN(0) = P̃Nu(0), and leteN(t) = P̃Nu(t)−vN(t).
We obtain

ε
d
dt

‖eN(t)‖2 = ℜ
〈

−i(K +V)R̃Nu(t),eN(t)
〉

≤ |
〈

(K +V)R̃Nu(t),eN(t)
〉

|

≤
√

CN−r/2

√

|s1|2
N

+ |s2|2 · |u(t)|2+r ‖eN(t)‖

+CV
∥

∥R̃Nu(t)
∥

∥‖eN(t)‖ ,
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with the upper boundCV = ‖V‖
L∞ and the regularityr ≥ 1. We now use the upper

bound for the spectral approximation (2.18) withr + 2 in order to get, using Lemma
2.1,

ε ‖eN(t)‖ ≤ ε ‖eN(0)‖+cN−r/2

(

CV

N
+

√

|s1|2
N

+ |s2|2
)

∫ t

0
|u(ξ )|2+rdξ .

The conclusion is that under the(r +2)-regularity assumption on the exact solution
u(t) for a bounded potentialV, the error in the Gauss-Hermite spectral discretisation of
the Schrödinger equation stay of orderN−r/2. Note that there is a lose of accuracy when
compared to (2.18), where less regularity is required to obtain this rate of convergence.

THEOREM 2.2 Letu(t) be a solution of (1.1) such that|u|r is continuous, and|u|r+2 ∈
L1(0, t), for r ≥ 1 andt > 0. Let vN(t) be the solution of (1.2) associated with the
manifoldṼN and initial valuevN(0) = P̃Nu(0). Then fort ≥ 0 andN ≥ r, the estimate
of the error reads

‖u(t)−vN(t)‖ ≤ cN−r/2(|u(t)|r + |u(0)|r)+

cN−r/2

(

CV

Nε
+

|a|
2m

√

2
Nε

p2

β
+

1
β 2

)

∫ t

0
|u(ξ )|2+rdξ ,

with global constantc independent ofN andt, and upper boundCV for the potentialV.

3 Pseudo-spectral method

In concrete applications, we cannot in general compute exactly the right hand side of
(1.2), and we use a quadrature rule for the part involving thepotential.

3.1 Pseudo-spectral Hermite Method for the simplified Schr̈odinger
equation

Consider again the case of the simplified Schrödinger equation (ε = 1 andm= 1) with
the potentialV(x) = 1

2x2 +W(x) with a bounded functionW. Note that the Hermite
basis diagonalises the operatorL =− 1

2∆+ 1
2x2, but the integral〈WuN,vN〉 has to be ap-

proximated by the Gauss quadrature. This involves the gridΓM = {γM
0 , . . .γM

M } formed
by the(M +1)-zeros of the Hermite polynomialHM+1 and the Hermite-Gauss weights
ωγ = ργeγ2

with the Christoffel-numbers(ργ )t, with γ ∈ ΓM. (see Tang (1993) and
Section 3.3 below).

Let f be a polynomial of degree less or equal with 2M + 1 andg(x) = f (x)e−x2
.

The Gauss-Hermite quadrature is then exact:
∫

R
g(x)dx=

∫

R
f (x)e−x2

dx= ∑
γ∈ΓM

f (γ)ργ =: GM(g) .
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Denote by‖ · ‖
M

the discrete norm induced by the Gauss-Hermite quadrature formula

(u,v)M = ∑
γ∈ΓM

u(γ)v(γ)ωγ , ‖u‖
M

= (u,u)
1/2
M (3.1)

and byIM the Hermite interpolant on the pointsΓM:

IMv ∈ VM := span{χ0, . . . ,χM}
IMv(γ) = v(γ) , for γ ∈ ΓM .

Clearly‖IMv‖= ‖IMv‖
M

= ‖v‖
M

. We need the following two results for the Hermite-
interpolation from Guoet al. (2003):

‖IMv−v‖
Hµ ≤ cM1/3+(µ−r)/2‖Arv‖ , for 0≤ µ ≤ r , andr ≥ 1; (3.2)

‖v‖
M

≤ c(‖v‖+M−1/6|v|H1) , (3.3)

with Sobolev semi-norm| · |H1 and norm‖ · ‖
Hµ . The derivation of the constants is

less obvious here that in the previous section. This is why from now on we denote by
c a generic constant. However, it is not difficult to see from Guo et al. (2003) that for
µ = 0 and moderater ∈ {1, . . . ,14} the constant in (3.2) is strictly less than 1, while it
rapidly deteriorates forµ > 2.

We consider now again a solutionu(t) of (1.1) withε = m= 1. Let us now carry out
the error analysis of the collocation on the points fromΓM of the simplified Schrödinger
equation. LetM ≥ N be fixed. We consider the problem :

find uc
N(t) ∈ VN such that

i
d
dt

(uc
N(t),vN)M = (Luc

N(t),vN)M +(Wuc
N(t),vN)M for all vN ∈ VN ,

uc
N(0) = PNIMu(0) ,

(3.4)

wherePN is the projection operator defined in (2.10). Note that due tothe exactness
property of the Gauss quadrature, we have for all functionu,

PNIMu =
N

∑
k=0

1
ck

〈IMu,χk〉χk =
N

∑
k=0

1
ck

(u,χk)M χk,

with ck = 2kk!
√

π. Similarly, we rewrite the previous collocation equation as

find uc
N(t) ∈ VN such that

i
d
dt

〈uc
N(t),vN〉 = 〈Luc

N(t),vN〉+ 〈IM(Wuc
N(t)),vN〉 for all vN ∈ VN ,

uc
N(0) = PNIMu(0) .

(3.5)

Remember from the decomposition method that we have for the exact solutionu(t) =
PNu(t)+RNu(t) with bothRNu(t) andLRNu(t) being orthogonal on the approximation
spaceVN. Hence

i
d
dt

〈PNu(t),vN〉 = 〈LPNu(t),vN〉+ 〈Wu(t),vN〉 for all vN ∈ VN .
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Subtracting the last two equations, we obtain the equation for the errorec
N(t)= PNu(t)−

uc
N(t):

i
d
dt

〈ec
N(t),vN〉 = 〈Lec

N(t),vN〉+ 〈Wu(t)−IM(Wuc
N(t)),vN〉 for all vN ∈ VN . (3.6)

We derive now an upper bound for the error, as in the previous section.

LEMMA 3.1 With the previous notations, the following inequality holds

‖ec
N(t)‖ ≤ ‖ec

N(0)‖+cN1/3−r/2
∫ t

0
(‖Ar(Wu(s))‖+‖Aru(s)‖)ds+CW

∫ t

0
‖ec

N(s)‖ds,

whereCW = ‖W‖
L∞ .

Proof. The decomposition (3.6) implies

d
dt

‖ec
N‖2 ≤ ‖Wu−IM(Wuc

N)‖‖ec
N‖ (3.7)

≤
(

‖Wu−IM(WPNu)‖+‖IM(Wec
N)‖

)

‖ec
N‖ . (3.8)

We deal now with the first term in this sum, that is

‖Wu−IM(WPNu)‖ ≤ ‖Wu−IM(Wu)‖+‖IM(WRNu)‖ .

Using (3.2) withµ = 0 for the first term, and (3.3) for the second term, we obtain for
r ≥ 1,

‖Wu−IN(WPNu)‖ ≤ cM1/3−r/2‖Ar(Wu)‖+c(‖WRNu‖+M−1/6|WRNu|H1) .

If W and its derivative are bounded, we use again the results on the upper bound of the
spectral approximation from Guoet al. (2003):

|RNu|H1 ≤ ‖RNu‖
H1 ≤ cN1/2−r/2‖Aru‖ , (3.9)

and hence, asM ≥ N andr ≥ 1,

‖Wu−IM(WPNu)‖ ≤ cN1/3−r/2(‖Ar(Wu)‖+‖Aru‖) .

It remains to look at the second term in (3.8), for which we usethe fact that the Gauss
quadrature rule onΓM is exact forM ≥ N:

‖IM(Wec
N)‖2 =

∫

R
|IM(Wec

N)|2dx= GM

(

|IM(Wec
N)|2

)

= GM

(

|Wec
N|2
)

≤ C2
WGM

(

|ec
N|2
)

= C2
W ‖ec

N‖2 , (3.10)

with the upper boundCW for the potentialW.
The two terms give then for the collocation error:

d
dt

‖ec
N(t)‖2 ≤ cN1/3−r/2 (‖Ar(Wu(t))‖+‖Aru(t)‖)‖ec

N(t)‖+CW ‖ec
N(t)‖2 ,

that brings us to the whished inequality using Lemma 2.1.

THEOREM 3.1 Letu(t) be a solution of (1.1) with potentialV(x) = 1
2x2 +W(x) and

ε = m = 1. Let uc
N(t) be the solution of the collocation problem (3.4) withM ≥ N.
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Assume that forr ≥ 1, the functiont 7→Aru(t) is continuous fromR to L2, ‖Ar(Wu)‖ ∈
L1(0, t) and‖Aru‖ ∈ L1(0, t) for all t ≥ 0. Then the following bound for the error in
the pseudo-spectral Hermite method for the simplified Schr¨odinger equation holds

‖u(t)−uc
N(t)‖ ≤ cN1/3−r/2

(

N−1/3‖Aru(t)‖+eCWt ‖Aru(0)‖
)

+

cN1/3−r/2
∫ t

0
eCW(t−s) (‖Ar(Wu(s))‖+‖Aru(s)‖)ds,

for a boundedW with CW = ‖W‖
L∞ andN ≥ r −1.

Proof. The Gronwall lemma and integration by parts gives then the upper bound for
the collocation error at the timet:

‖ec
N(t)‖ ≤ eCWt ‖ec

N(0)‖+cN1/3−r/2
∫ t

0
eCW(t−s) (‖Ar(Wu(s))‖+‖Aru(s)‖)ds.

We bound the first term using (3.2) withµ = 0 and we find forr ≥ 1,

‖ec
N(0)‖ ≤ ‖PNu(0)−PNIMu(0)‖ ≤ ‖u(0)−IMu(0)‖ ≤ cM1/3−r/2‖Aru(0)‖ .

The conclusion follows from the triangle inequality and Lemma 2.2.

3.2 Gauss-Hermite Collocation in the general case

We consider now the case of Gauss-Hermite wave-packets described in Section 2.2.
The space approximation space is now made of the functions (2.13). We use the set of
pointsΓ̃M = q+ 1

ζ ΓM, that are the zeros of the Hermite polynomialHM+1(ζ (x−q)).
We then define the corresponding interpolation operator

ĨM = T−1
IMT

whereT is defined in (2.15) andIM the interpolation operator of the previous section.
We clearly have

∥

∥w− ĨMw
∥

∥= ‖Tw−IMTw‖ .

The inequality (3.2) and the relation (2.20) give then the interpolation error:
∥

∥w− ĨMw
∥

∥≤ cM1/3−r/2‖ArTw‖ = cM1/3−r/2|w|r . (3.11)

We define the bilinear form

〈 f ,g〉M := (T f ,Tg)M = ∑
γ∈ΓM

(T f)(γ)T g(γ)ργ = ∑
γ∈ΓM

1
ζ

f (γ̃)ḡ(γ̃)ργ , (3.12)

with γ̃ = q+ 1
ζ γ. As in Section 2.2, we split the Schrödinger operator asH = K +V

with the potential functionV andK = − 1
2mε2∆. Analogously to the previous section,

we consider the problem:

find uc
N(t) ∈ ṼN such that

i
d
dt

〈uc
N(t),vN〉M = 〈Kuc

N(t),vN〉M + 〈Vuc
N(t),vN〉M for all vN ∈ ṼN ,

uc
N(0) = P̃NĨMu(0) ,

(3.13)
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whereP̃N = T−1PNT is the orthogonal projection operator associated with the space
ṼN, 〈·, ·〉M is the bilinear form defined in (3.12), andu(0) is the initial value of an exact
solutionu(t) of (1.1).

We investigate now in which conditions the sums are exact quadrature rules.

LEMMA 3.2 If M ≥ N+1, the problem (3.13) is equivalent to the problem

find uc
N(t) ∈ ṼN such that

iε
d
dt

〈uc
N(t),vN〉 = 〈Kuc

N(t),vN〉+
〈

ĨM(Vuc
N(t)),vN

〉

for all vN ∈ ṼN ,

uc
N(0) = P̃NĨMu(0) .

(3.14)

Proof. As the Gauss quadrature rule is exact onṼN, it holds

〈uc
N(t),vN〉M = 〈uc

N(t),vN〉 .

Owing to Lemma 2.3, we know that the operatorK = − ε2

2m∆ yields linear and quadrat-
ical terms:

Kuc
N(x) = K

(

N

∑
n=0

ũnϕn(x)

)

=
N

∑
n=0

ũn

(

1
2m

[2ā(x−q)+ p]2 ϕn(x)+L (ϕn,ϕn+1,ϕn+2)

)

.

Written in the variabley, the last expression is a polynomial of degreeN + 2 times
the exponential weight. This makes the difference between the pseudo-spectral Gauss-
Hermite method and the previous case. We are forced hence to require the condition
M ≥ N+1:

〈Kuc
N(t),vN〉M = ∑

γ̃∈Γ̃M

1
ζ

Kuc
N(t, γ̃)vN(γ̃)ργ = ∑

γ∈ΓM

T(Kuc
N)(γ)TvN(γ)ργ

=

∫

R
T(Kuc

N)(y)T vN(y)dy= 〈T(Kuc
N),TvN〉 = 〈Kuc

N,vN〉 .

As the potential part concerns, we have:

〈Vuc
N(t),vN〉M = ∑

γ̃∈Γ̃M

1
ζ

V(γ̃)uc
N(t, γ̃)vN(γ̃)ργ = ∑

γ∈ΓM

T(Vuc
N)(γ)T vN(γ)ργ

=

∫

R
IM[T(Vuc

N)](y)Tvn(y)dy=
〈

T−1
IM[T(Vuc

N)],vN
〉

=
〈

ĨM(Vuc
N),vN

〉

,

and this yields the result.

We proceed analogously to the previous case (Hermite spectral decomposition)
with the only difference that we keepM ≥ N + 1. For the errorec

N = P̃Nu− uc
N, it

holds

ε ‖ec
N‖

d
dt

‖ec
N‖ ≤

∥

∥Vu− ĨM(Vuc
N)
∥

∥ · ‖ec
N‖+ |

〈

KR̃Nu,ec
N

〉

| . (3.15)

We bound the last term using (2.24):

|
〈

KR̃Nu,ec
N

〉

| ≤ cN−r/2

√

|s1|2
N

+ |s2|2 · |u|2+r ‖ec
N‖ .
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LEMMA 3.3 The potential term
∥

∥Vu− ĨM(Vuc
N)
∥

∥ is bounded from above by

CV ‖ec
N‖+c

(

M1/3−r/2|Vu|r +N−r/2|u|r +M−1/6N1/2−r/2|u|r
)

,

whereCV = ‖V‖
L∞ , and wherec is a constant depending on‖V‖

L∞ and‖∇V‖
L∞ .

Proof. We concentrate now on the evaluation of the potential term:
∥

∥Vu− ĨM(Vuc
N)
∥

∥ = ‖T(Vu)−IM[T(Vuc
N)]‖

≤ ‖T(Vu)−IM[T(Vu)]‖+‖IM[T(Vec
N)]‖+

∥

∥IM[T(VR̃Nu)]
∥

∥ .

The first term is related to the interpolation error:

‖T(Vu)−IM[T(Vu)]‖ ≤ cM1/3−r/2‖ArT(Vu)‖ ≤ cM1/3−r/2|Vu|r .
The second term is bounded like in (3.10):

‖IM[T(Vec
N)]‖2 = ∑

γ∈ΓM

1
ζ
|V(γ̃)ec

N(γ̃)|2ργ ≤C2
V ‖Tec

N‖2 = C2
V ‖ec

N‖2 .

For the third term, we first notice that for two functionsf andg, we have

T( f g)(y) = f (q+
1
ζ

y) · (Tg)(y).

Now we use (2.17) and (3.3) in order to obtain
∥

∥IM[T(VR̃Nu)]
∥

∥ =

∥

∥

∥

∥

IM[V(q+
1
ζ
·)RN(Tu)]

∥

∥

∥

∥

=

∥

∥

∥

∥

V(q+
1
ζ
· )RN(Tu)

∥

∥

∥

∥

M

≤ c

(
∥

∥

∥

∥

V(q+
1
ζ
·)RN(Tu)

∥

∥

∥

∥

+M−1/6

∣

∣

∣

∣

V(q+
1
ζ
·)RN(Tu)

∣

∣

∣

∣

H1

)

.

TheL2 and theH1-error estimates (2.18) and (3.9) yield
∥

∥IM[T(VR̃Nu)]
∥

∥≤ cN−r/2|u|r +cM−1/6N1/2−r/2|u|r ,
wherec depends on‖V‖

L∞ and‖∇V‖
L∞ . Altogether, we obtain the upper bound for

the potential term.

Now, we turn back to the inequality (3.15). The previous Lemma with r +2 yields

ε
d
dt

‖ec
N(t)‖2 ≤ CV ‖ec

N(t)‖2 +c
(

M−2/3−r/2|Vu|r+2+M−1/6N−1/2−r/2|u|r+2

)

‖ec
N(t)‖

+cN−r/2

(

1
N

+

√

|s1|2
N

+ |s2|2
)

· |u|2+r ‖ec
N(t)‖ .

Combining Lemma 2.1 and the Gronwall Lemma, we obtain the following upper bound
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for the collocation error:

‖ec
N(t)‖ ≤ e

CV
ε t ‖ec

N(0)‖+cM−2/3−r/2
∫ t

0
e

CV
ε (t−s) 1

ε
|Vu(s)|r+2ds+

c
1
ε

M−1/6N−1/2−r/2
∫ t

0
e

CV
ε (t−s)|u(s)|r+2ds+

cN−r/2
∫ t

0
e

CV
ε (t−s)

(

1
Nε

+
|a|
2m

√

2
Nε

p2

β
+

1
β 2

)

|u(s)|r+2ds.

Denoting

f1(t) =

∫ t

0
e

CV
ε (t−s) 1

ε
|Vu(s)|r+2ds and f2(t) =

∫ t

0
e

CV
ε (t−s)|u(s)|r+2ds, (3.16)

we may rewrite the previous expression as

‖ec
N(t)‖ ≤ e

CV
ε t ‖ec

N(0)‖+cM−2/3−r/2 f1(t)+

cN−r/2

(

1
ε

M−1/6N−1/2 +
1

Nε
+

|a|
2m

√

2
Nε

p2

β
+

1
β 2

)

f2(t) .

Using (3.11) to bound the term‖ec
N(0)‖ we finally obtain:

THEOREM 3.2 Let u(t) be a solution of (1.1) and letuc
N(t) be the solution of the

problem (3.13) withM ≥ N+1 associated with the Gauss-Hermite basis of parameters
a = α + iβ , p andq. Assume that forr ≥ 1, |Vu|r+2 ∈ L1(0,t) for all t ≥ 0 and that
the applicationt 7→ |u(t)|r+2 is continuous onR, so that in particular, the functions
f1(t) and f2(t) in (3.16) are continuous. Then the following bound for the error in the
pseudo-spectral Gauss-Hermite method holds:

‖u(t)−uc
N(t)‖ ≤ ce

CV
ε tM−2/3−r/2|u(0)|r+2 +cM−2/3−r/2 f1(t)

+cN−r/2

(

1
ε

M−1/6N−1/2 +
1

Nε
+

|a|
2m

√

2
Nε

p2

β
+

1
β 2

)

f2(t)

+cN−1−r/2|u(t)|r+2 ,

whereCV = ‖V‖
L∞ , f1(t) and f2(t) are given by (3.16), and where the constantc

depend onL∞ bounds onV and∇V.

REMARK 3.1 ForM = N+1 we have the convergence rate(N+1)1/3−r/2.

3.3 Practical Approach

In the previous section, we started from the collocation onΓ̃M and we reformulated the
problem into the variational form. During this process, we remarked that we need at
leastM +1= N+2 collocation points. From the algorithmical point of view,it is most
advantageous to have the same number of quadrature points asbasis functions. In this
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case, the Christoffel-Darboux formula gives an elegant andquick method to transform
from function values to Gauss-Hermite coefficients and back, see Tang (1993). This
motivates us to use directly the variational formulation ofthe continuous problem and
to discretise it by a Galerkin method and Gauss-Hermite quadrature:

find uN(t, ·) ∈ ṼN such that

iε
d
dt

〈uN(t),vN〉 = 〈KuN,vN〉+
〈

ĨN(VuN),vN
〉

for all vN ∈ ṼN ,

uN(0, ·) = ĨNu0(·) .
(3.17)

This is exactly the formulation (3.14) with the only difference that we now interpolate
on exactlyN + 1 points (M = N instead ofM = N + 1). Hence, the same estimate of
the error holds as in the collocation case withM = N in the last Theorem. However,
the formulation (3.17) is not equivalent to any collocationformulation. We work now
with N+1 basis functions and we use the special form of〈Kuc

N,vN〉 and the formulas
for the Gaussian integrals (2.22) and (2.23). The moment is come to reveal the linear
combination term in the Lemma 2.3:

L (ϕn,ϕn+1,ϕn+2) = ϕn

(

2α
ε

i − 4α
ε

i(n+1)− (2n+1)

)

(3.18)

−ϕn+1
2pζ

ε
i
√

2(n+1)−ϕn+2
4α
ε

i
√

(n+1)(n+2).

ConsideruN(x) =
N
∑

m=0
uG

mϕm(x) and test with all basis functionsvN := ϕn:

〈KuN,ϕn〉 =
p2

2m
uG

n +
2ap
m

1
ζ

(

√

n
2

uG
n +

√

n+2
2

uG
n+2

)

+

2a2

m
1

2ζ 2

(

(2n+1)uG
n +

√

(n−1)nuG
n−2+

√

(n+1)(n+2)uG
n+2

)

+

(

−2α
ε

+
4α
ε

(n+1)− (2n+1)

)

uG
n +

2pζ
ε
√

2(n+1)uG
n+1 +

4α
ε
√

(n+1)(n+2)uG
n+2 .

Hence, the kinetic energy operator may be discretised by a very sparse Hermite matrix.
The potential energy operator is then obtained using quadrature onΓ̃N:

P∗diag(ω .∗V(γ))∗PT ,
whereγ andω are vectors of lengthN + 1 containing the points and the weights of
the Gauss quadrature,P is the(N + 1)× (N + 1)-matrix of the Hermite polynomials
evaluated at the the quadrature points and.∗ denotes pointwise multiplication. We
obtain a small linear system of ordinary differential equations.

4 Numerical examples

In order to illustrate the previous results, we consider theapproximation of (1.1) in the
case wherem= 1 and where the potential function is given byV(x) = (1−cos(x))/2.
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We consider the space spanned by the functionsϕn(x), n = 0, . . . ,N, given by (2.14)
associated with the parametersa = i/2, q = 0 andp = 0 in Eqn. (2.12), i.e. the Gauss-
Hermite functions associated with the Gaussian exp(−x2/(2ε)).
The initial value is

v0(x) =

(

2β0

επ

)1/4

exp

(

−β0

ε
(x−q0)

2
)

whereβ0 > 0 andq0 are real parameters. Note that in all case, we have‖v0‖ = 1.

4.1 Fixed basis in time

We consider the solution of (3.17) at timeT = 1, i.e. the exact solution of the Pseudo-
spectral Gauss-Hermite problem withN + 1 interpolation points, which means that
M = N as in the previous section. In this case, the system is a linear system of ODE’s,
and its solution is calculated using an approximation of thematrix exponential.

For eachN, we compare these solutions with the numerical solutions given by the
Strang-splitting scheme in time with stepsizeδ t = 10−4, combined with fast Fourier
transform with 216 = 65536 points on the interval[−π ,π ]. This provides a very good
approximation of the exact solution, see Jahnke & Lubich (2000), and we take it for
the exact solution in our comparisons.

In Figure 1, we consider the case whereβ0 = 0.5 andq0 = 0.1. We plot the rel-
ative error and observe the convergence of the approximation with N. Note that the
convergence is relatively robust withε.
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Figure 1: Relative approximation error withN at T = 1 for ε = 0.1 (line), ε = 0.01
(dashed) andε = 0.001 (dash-dotted).q0 = 0.1. Fixed approximation basis in time.

In Figure 2, we focus on the caseq0 = 0.3. We note that the convergence is slower
than in the previous case. In particular, it deteriorates with smallerε. This is due
to the fact that the definition of the basis{ϕn(x) |n = 0, . . . ,N}, which is constructed
from Gaussian function centered atq = 0, requires to take largeN to approximate a
Gaussian-shaped function centered aroundq = q0 6= 0, particularly whenε → 0.
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Figure 2: Relative approximation error atT = 1 for ε = 0.1 (line), ε = 0.01 (dashed)
andε = 0.001 (dash-dotted).q0 = 0.3. Fixed approximation basis in time.

In Figure 3, we turn to the caseq0 = 0.7, and we oberve that the results are worse
(in particular, the convergence forε = 10−3 requires at leastN > 100).
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Figure 3: Relative approximation error atT = 1 for ε = 0.1 (line), 0.01 (dashed) and
0.001 (dash-dotted).q0 = 0.7. Fixed approximation basis in time.

In Figure 4, we plot the evolution of the error with the time, in the case whereN =
M = 10 is fixed, andε = 0.01. We display the results forq0 = 0.1 (left) andq0 = 0.25
(right), both inL∞ andL2 norm. As before, we observe a significant difference when
q0 is away fromq = 0 or not.
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Figure 4: Evolution of the error with time.q0 = 0.1 (left) andq0 = 0.25 (right).
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4.2 Gauss-Hermite wave packets dynamics examples

We have seen in the previous section that the quality of the Gauss-Hermite approxi-
mation of (1.1) with fixed parameters in time heavily dependson the choice of these
parameters with respect to the behaviour of the exact solution.

In Faouet al. (2007), we introduce an algorithm to approximate (1.1) by functions
of the form∑N

k=0ckϕk(x) where theϕk(x) are functions of the form (2.14) but where
all the parametersa, p, q andck (k = 0, . . . ,N) evolve with time. The algorithm can be
quickly described as follows: Given the parametersan, pn andqn andcn

k (k = 0, . . . ,N)
associated with an approximate solution at the timetn = n∆t, we determine the param-
eters at the timetn+1 using a symmetric combination of the following three pieces:

1. Free Schrödinger equation: The exact solution of the equation (1.1) without po-
tential, with an initial value given as a Gauss-Hermite wavepacket can be calcu-
late explicitly for any time.

2. Quadratic potential part: We split the potentialV(x) into its quadratic Taylor
expansion aroundq0 and the corresponding remainder term: We define the po-
tentials

Qn(x) = V(qn)+ ∇V(qn)(x−qn)+
1
2

∇2V(qn)(x−qn)2

as the local quadratic approximation toV(x). In this case, we can again calculate
explicitly the exact solution of the equationiεψ = Qnψ , for an initial value given
as a Gauss-Hermite wave packet.

3. Cubic potential part: With the previous notation, we define

Wn(x) = V(x)−Qn(x).

The solution of the equationiεψ = Wnψ is then approximated by solving the
corresponding Galerkin problem over Gauss-Hermite functions with fixed pa-
rametersan, pn andqn.

We can show that in this algorithm, the numerical trajectorycorresponding to the
parametersp andq correspond to the Verlet algorithm applied to the Hamiltonian sys-
tem with potentialV. Moreover, whenN → ∞, if converges towards the (abstract)
Strang splitting between the kinetic and potential energy.

In Figure 5, we show the convergence of this algorithm applied to the same case
as in the previous subsection. We see that we need much less numbersN to obtain
correct approximation results. Note that we compute the error between the moduli of
the solutions (in this case the error isO(∆t2) while it is of orderO(∆t2/ε) for the phase
error, see Faouet al. (2006) for the case whereN = 1).

The step size used to calculate the solution associated withthe algorithm described
above is∆t = 0.01, whileN ranges from 1 to 10.
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Figure 5: Relative approximation error atT = 0.5 for ε = 0.1 (line),ε = 0.01 (dashed)
andε = 0.001 (dash-dotted);q0 = 0.3. Adaptative parameters.

Note that for small epsilon, the convergence is better. Thisis due to the compat-
ibility of the algorithm with the semi-classical limit (seeFaouet al. (2006, 2007) for
further details).

Finally, we consider in Figure 6 the same situation as for theFigure 4, whereε is
fixed to 0.01, β0 = 0.5, q0 = 0.1 andq0 = 0.25. We takeN = 5 and∆t = 0.1 in the
adaptative Gauss-Hermite algorithm. We see that the behaviour is the same in both
cases, as opposed to the situation of the Fig. 4.
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Figure 6: Time evolution of the error for the adaptative algorithm in L∞ (points) andL2

norms (lines);q0 = 0.1 (left) andq0 = 0.25 (right).
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DION, C. & CANCÈS, E. (2003) Spectral method for the time-dependent Gross-
Pitaevskii equation with a harmonic trap,Physical Review E, 67.

FAOU, E. & LUBICH, C. (2006) A Poisson integrator for Gaussian wavepacket dy-
namics,Computing and Visualization in Science9, 45–55

FAOU, E., GRADINARU , V. & L UBICH, C. (2008) Computational quantum molecu-
lar dynamics using Hagedorn wavepackets, in preparation.

FUNARO D. & K AVIAN , O. (1990) Approximation of some diffusion evolution equa-
tions in unbounded domains by Hermite functions,Mathematics of Computation, 57,
597–619.

GUO, B. (1999) Error estimation for Hermite spectral method fornonlinear partial
differential equations,Mathematics of Computation, 68, 1067–1078.

GUO, B., SHEN, J. & XU, C. (2003) Spectral and pseudospectral approximations us-
ing Hermite functions: application to the Dirac equation,Advances in Computational
Mathematics, 19, 35–55.

GUO, B. & X U, C. (2000) Hermite pseudospectral method for nonlinear partial dif-
ferential equations,Mathematical Modeling and Numerical Analysis, 34, 859–872.

HAGEDORN, G. (1998) Raising and Lowering Operators for Semiclassical Wave
Packets,Annals of Physics, 269, 77–104.

HAGEDORN, G. & JOYE, A. (2006) Mathematical Analysis of Born-Oppenheimer
Approximations, to appear inAMS Proc. of Symposia in Pure Math.

HAIRER, E., NØRSETT, S.P. & WANNER, G. (1987) Solving Ordinary Differential
Equations I, Second revised Edition, Springer.

JAHNKE , T. & L UBICH, C. (2000) Error Bounds for Exponential Operator Splittings,
BIT, 40, 735–744.

LUBICH, C. (2004) A variational splitting integrator for quantum molecular dynam-
ics,Appl. Numer. Math., 48, 355–368.

LUBICH, C. (2005) On variational approximations in quantum molecular dynamics,
Math. Comp., 74, 765–779.

MA , H., SUN, W. & TANG, T. (2005) Hermite spectral methods with a time-
dependent scaling for parabolic equations in unbounded domains,SIAM Journal on
Numerical Analysis, 43, 58–75.



REFERENCES 25

TANG, T. (1993) The Hermite spectral method for Gaussian-type functions,SIAM
Journal of Scientific Computing, 14, 594–606.

TEUFEL, S. (2003) Adiabatic perturbation theory in quantum dynamics, Lecture
Notes in Mathematics, 1821, Springer-Verlag, Berlin.

V IJAY A.,WYATT R. & B ILLING G. (1999) Time propagation and spectral filters in
quantum dynamics: A Hermite polynomial perspectiveJournal of Chemical Physics,
11, 10794–10805.

WEIDEMAN , J. (1992) The eigenvalues of Hermite and rational differentiation matri-
ces,Numerische Mathematik, 61, 409–431.


