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Chapter 1

Introduction

This document constitutes a synthesis document in preparation for my habilita-
tion degree in mathematics. I am researcher at the INRIA Rennes, in the IPSO
team headed by Philippe Chartier. My main topics of researchcan roughly be
divided into two parts: one about shell theory and one about geometric numerical
integration.

I did my PhD in the University of Rennes 1, under the directionof Monique
Dauge. Before beginning my thesis, my main subject of interest was Riemannian
geometry. I graduated in this fields in the University of Paris 7, under the direction
of Harold Rosenberg, with whom I studied minimal surfaces. When I physically
moved to Rennes in 1997 to follow my studies in the Antenne de Bretagne de
l’Ecole Normale Supérieure de Cachan, I was decided to mathematically move
to applied mathematics and numerical analysis. I met Monique Dauge, and we
agreed to work together on shell theory. It was an excellent compromise between
my background in differential geometry, and her outstanding expertise in asymp-
totic analysis for thin elastic plates (which are nothing but shells with vanishing
curvature). I completed my PhD on shells in 2000, deriving inparticular a geomet-
ric representation of the elasticity operator as anintrinsicobject in the geometrical
domain. My main contribution was my work on clamped ellipticshells for which
I showed the existence of a three scales asymptotic expansion for the displacement
(in the framework of linear elasticity). I present in Chapter 3 the main results I
obtained in this field in collaboration with Georgiana Andreoiu, Monique Dauge,
Ivica Djurdjevic, Andreas Roessle and Zohar Yosibah.

In September 2001, I obtained a permanent research positionat the INRIA
Rennes, in the ALADIN team headed by Jocelyne Erhel. I then started to move to
geometric integration, mainly by working with Philippe Chartier who was mem-

3



4 E. Faou

ber of this team at that time. Geometric integration is a general concept whose
goal is to perform numerical integration of time dependent problems by conserv-
ing the qualitative behaviour of the continuous systems, rather than approximating
precisely the trajectories (this last goal would be too costly for practical simula-
tions). I started by reading the book “Geometric Numerical Integration” written
by Ernst Hairer, Christian Lubich and Gerhard Wanner, and I was fascinated by
the backward error analysis results and their applicationsto numericalKAM the-
ory. I spent three months in Geneva working with Ernst Hairer, and then three
other months in Tübingen in the numerical analysis team headed by Christian Lu-
bich. In 2004, I became a member of the new IPSO team, created by Philippe
Chartier. The main topic of this team is the studying of geometric properties of
numerical integrators.

My work in geometric integration took two main directions: one is abouttheo-
retical geometric integration, dealing with the properties of numerical integrators
themselves. Particularly with Philippe Chartier, Ernst Hairer, Ander Murua and
Truong-Linh Pham, I worked on invariant preservation for numerical methods. In
a recent work with Philippe Chartier, we also derived a new way of integrating
piecewise smooth Hamiltonian systems without destroying the energy conserva-
tion property, in view of approximating systems whose energy is known only at
finite sets of points in the phase space. Within a collaboration between ALCATEL
and the IPSO team, we also showed how to take advantage of the Poisson struc-
ture of Raman laser equations to derive efficient and new numerical schemes for
these systems. This “theoretical” part ended with the work made in common with
Guillaume Dujardin who makes his PhD in the IPSO team under the direction of
François Castella and myself. This work deals with the long time behaviour of
splitting methods for the linear Schrödinger equations, and lies between perturba-
tion theory for classical systems and operator theory in infinite dimension.

This work on geometric integration took place into a generalwill of moving
to applications. The main application I focused on these last years is molecu-
lar dynamics. My first accomplishment in this fields was a workon averages
made in common with members of the IPSO team (François Castella and Philippe
Chartier), and members of the CERMICS (Eric Cancès, Claude Le Bris, Frédéric
Legoll and Gabriel Turinici). I then worked with Christian Lubich on Gaussian
Wave Packets dynamics to approximate the solution of the Schrödinger using a
variational splitting integrator. This work extends now toa collaboration with
Christian Lubich and Vasile Gradinaru on Gauss Hermite WavePacket dynamics.

Another very important issue in this field is the studying of ergodic properties
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of molecular dynamics systems. I proposed the idea of considering time depen-
dent symplectic matrices to increase the ergodic properties of molecular dynamics
systems without breaking the energy conservation. Extending this idea in a recent
work with Tony Lelièvre, we constructed stochastic differential equations that are
ergodic for the microcanonical measure. Though this work isstill in progress, I
explain our basic results at the end of the Chapter 5.

I conclude by presenting my most recent work on the analysis of splitting
methods for reaction-diffusion problems. After working with stochastic differ-
ential equations for molecular dynamics, I was led to use thewell known link
between stochastic processes and parabolic equations to derive new error esti-
mates for deterministic splitting methods. Besides, it turns out that probabilistic
interpretations of splitting methods yield to new “hybrid”numerical schemes. I
believe that this direction is very promising.

This document is organized by following basically the previous presentation:
I first describe my work on shells in Chapter 3, then on geometric integration
and molecular dynamics in Chapter 4 and 5, and I conclude by presenting my
recent results on hybrid methods for non linear parabolic equations in Chapter 6.
Chapter 7 gives a list of my publications. Note that most of them are available on
my homepage1.

A constant feature of my work is the use of formal series to separate the study-
ing of the structural properties of the problem from the convergence issues: It first
appears in shell theory, where we perform complete formal expansions in pow-
ers of the thickness before validating the asymptotics using a priori estimates.
It also appears in the studying of numerical integrators forHamiltonian systems,
where B-series are formal expansions in powers of the stepsize. The convergence
analysis in this case is ensured by the backward error analysis results while the ge-
ometric properties of the numerical integrators can be readon the formal B-series.
It plays also a central role in perturbation theory for the Schrödinger equation,
where we construct a normal form for splitting schemes usinga formal expansion
of operators with respect to the size of the potential. Once aformal construction
is achieved, convergence results rely on different processes, but in each cases the
methodology remains the same.

I do believe that the main word embracing this work isgeometry: Geometry of
shells, geometry of invariants of a vector field, geometry ofthe Schrödinger equa-
tion, and geometry of the Kolmogorov equation viewed as a transport equation
for stochastic differential equations. This is probably the main constant concept

1http://www.irisa.fr/ipso/perso/faou/

http://www.irisa.fr/ipso/perso/faou/
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surrounding my work.



Chapter 2

Introduction (French)

Ce document constitue une synthèse de mes travaux scientifiques en vue d’obtenir
l’habilitation à diriger les recherches en mathématiques.Je suis actuellement
chercheur à l’INRIA au sein du projet IPSO dirigé par Philippe Chartier. Mes
travaux peuvent être groupés essentiellement en deux parties: l’une concerne la
théorie des coques, et l’autre l’intégration géométrique.

J’ai effectué ma thèse sous la direction de Monique Dauge à l’Université de
Rennes 1. Auparavant, j’avais étudié la géométrie riemanienne, et effectué un
stage de DEA sur ce thème sous la direction de Harold Rosenberg, à l’Université
de Paris 7. Lors de mon arrivée à Rennes pour poursuivre mes études à l’antenne
de Bretagne de l’Ecole Normale Supérieure de Cachan, j’étais décidé à orien-
ter mes travaux vers les mathématiques appliquées et l’analyse numérique. Avec
Monique Dauge, l’étude des coques minces s’est imposé commeun excellent
thème de recherche nous permettant de combiner mes connaissances en géométrie
différentielle et ses travaux sur l’analyse asymptotique des plaques minces linéaire-
ment élastiques. J’ai obtenu ma thèse en juin 2000. Le sujet principal en est
l’analyse asymptotique des coques minces élastiques, avecen particulier un traite-
ment des opérateurs d’élasticité vus comme objetsintrinsèquesindépendants du
choix d’un système de coordonnées. Le résultat principal dema thèse est l’existence
d’un développement asymptotique complet du déplacement dans le cas des co-
ques elliptiques encastrées. Ce développement comporte trois échelles. Dans le
chapitre 3, je présente les principaux résultats que j’ai obtenus dans ce domaine,
en collaboration avec Georgiana Andreoiu, Monique Dauge, Ivica Djurdjevic, An-
dreas Roessle et Zohar Yosibah.

En septembre 2001, j’ai obtenu un poste de chercheur à l’INRIA Rennes,
au sein du projet Aladin dirigé par Jocelyne Erhel. J’ai commencé à travailler
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dans le domaine de l’intégration géométrique, principalement en collaboration
avec Philippe Chartier qui était membre du projet à cette époque. Le principe
général de l’intégration géométrique est de chercher à simuler numériquement
la solution d’un système différentiel en essayant non pas d’approcher précisem-
ment les trajectoires, mais en cherchant à conserver les propriétés qualitatives
du flot. J’ai commencé par lire le livre “Geometric NumericalIntegration” écrit
par Ernst Hairer, Christian Lubich et Gerhard Wanner, dans lequel j’ai décou-
vert l’analyse rétrogade et ses applications à la théorie KAM numérique pour les
systèmes complètement intégrables. J’ai ensuite effectuéun séjour de trois mois
à l’université de Genève dans l’équipe de Ernst Hairer, ainsi qu’un autre séjour
de trois mois dans l’équipe d’analyse numérique de l’Université de Tuebingen,
dirigée par Christian Lubich. En 2004, je suis devenu membrede la nouvelle
équipe IPSO créee par Philippe Chartier, et dont l’objectifprincipal est l’étude
des propriétés géométriques des intégrateurs numériques.

Mes travaux concernant l’intégration géométrique ont suivi deux directions:
l’une théorique et l’autre en lien avec les applications. Concernant les aspects
théoriquesde l’intégration géométrique, en collaboration avec Philippe Chartier,
Ernst Hairer, Ander Murua et Truong-Linh Pham, j’ai travaillé sur la préservation
des invariants de systèmes dynamiques par des méthodes numériques. Dans un
travail récent avec Philippe Chartier, nous avons introduit une nouvelle méthode
pour intégrer des système hamiltoniens peu réguliers tout en préservant le con-
servation de l’énergie, et ceci dans le but d’approcher des systèmes hamiltoniens
connus uniquement sur un ensemble discret de points. A travers une collaboration
entre ALCATEL et l’équipe IPSO, nous avons aussi montré comment on pou-
vait tirer bénéfice de la structure de Poisson des équations des lasers Raman pour
construire de nouveaux algorithmes performants pour ces systèmes. Cette par-
tie théorique comprend pour finir un travail récent effectuéen collaboration avec
Guillaume Dujardin, qui effectue sa thèse au sein du projet IPSO sous la direction
commune de François Castella et moi-même. Ce travail étudiele comportement
en temps long des méthodes de splitting appliquées à l’équation de Schrödinger
linéaire. Les techniques employées sont celles de la théorie classique des pertur-
bations, mais appliquées ici à des opérateurs en dimension infinie.

Concernant les aspects plus pratiques de l’intégration géométrique, je me suis
concentré principalement sur des problèmes issus de la dynamique moléculaire.
Dans ce domaine, j’ai tout d’abord travaillé sur des calculsde moyennes pour des
systèmes hamiltoniens, à travers une collaboration avec des membres de l’équipe
IPSO (François Castella et Philippe Chartier), et des membres du CERMICS
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(Eric Cancès, Claude Le Bris, Frédéric Legoll et Gabriel Turinici). J’ai ensuite
travaillé avec Christian Lubich sur l’approximation de la solution de l’équation
de Schrödinger par des paquets d’ondes gaussiens, en développant une nouvelle
méthode numérique issue d’une décomposition variationnelle de l’opérateur de
Schrödinger. Nous étendons actuellement ces travaux au casdes paquets d’ondes
de Gauss-Hermite (où on décompose la solution dans une base de polynômes de
Gauss-Hermite). Ce travail s’effectue en collaboration avec Christian Lubich et
Vasile Gradinaru.

Une autre problématique importante dans ce domaine est l’étude des pro-
priétés ergodiques des systèmes issus de la dynamique moléculaire. J’ai pro-
posé l’idée de considérer des systèmes du type hamiltonien,mais où la matrice
symplectique dépend du temps. Ceci permet d’espérer un comportement plus
chaotique du système sans détruire les propriétés de conservation de la mesure
et de l’énergie. Cette idée s’étend naturellement à des systèmes stochastiques, et
nous avons montré dans une récent travail avec Tony Lelièvrequ’il est possible
de construire des équations différentielles stochastiques qui sont ergodiques pour
la mesure microcanonique. Ces travaux, toujours en cours, son présentés à la fin
du chapitre 5.

Je conclus cette présentation par un travail récent sur l’analyse des méthodes
de splitting pour des systèmes de réaction-diffusion. Dansla lignée de mes travaux
sur les équations différentielles stochastiques en dynamique moléculaire, j’ai été
amené à utiliser le lien entre processus stochastiques et équations aux dérivées
partielles pour montrer de nouvelles estimations d’erreurpour les méthodes de
splitting déterministes appliquées à des problèmes paraboliques. De plus, ces
interprétations probabilistes des méthodes de splitting conduisent à de nouveaux
schémas numériques de type “hybrides". Je pense que cette direction de recherche
est très intéressante et peut s’avérer très fructueuse.

Ce document est organisé en suivant essentiellement la présentation précé-
dente: je décris tout d’abord mes travaux sur les coques dansle chapitre 3, puis
ceux sur l’intégration géométrique et la dynamique moléculaire dans les chapitres
4 et 5. Je conclus en présentant mes travaux récents sur les méthodes hybrides
pour des problèmes paraboliques non linéaires dans le chapitre 6. Le chapitre
7 donne une liste de mes publications. La plupart d’entre elles peuvent être
téléchargées sur ma page web1.

Une des constantes apparaissant dans mon travail est l’utilisation de séries
formelles pour séparer l’étude des propriétés structurelles du probleme coinsid-

1http://www.irisa.fr/ipso/perso/faou/

http://www.irisa.fr/ipso/perso/faou/


10 E. Faou

éré des questions de convergence: c’est central en théorie des coques, où on
étudie d’abord un développement complet en puissances de l’épaisseur avant de
le valider à l’aide d’estimationsa priori. Cela apparaît aussi dans l’étude des
méthodes numériques pour les systèmes dynamiques, où les B-series sont des
développements formels en puissances du pas de temps de discrétisation. L’étude
de la convergence dans ce cas est donnée par l’analyse rétrograde tandis que les
propriétés géométriques des intégrateurs sont lues directement sur les B-series
formelles. De même, en théorie des perturations pour l’équation de Schrödinger,
nous construisons les forme normales pour les méthodes de splitting en dévelop-
pant les opérateurs par rapport à la taille du potentiel. Dans tous les cas précédents,
la méthodologie est identique, même si une fois la construction formelle achevée,
les procédés de preuve de convergence diffèrent.

Je pense que le fil conducteur des mes travaux est le mot géométrie: géométrie
des coques, géométrie des invariants d’un champ de vecteur,géométrie de l’équation
de Schrödinger, et géométrie de l’équation de Kolmogorov vue comme une équa-
tion de transport pour des équations différentielles stochastiques. C’est probable-
ment le dénominateur commun à l’ensemble de mes travaux.



Chapter 3

Asymptotic analysis for thin elastic
plates and shells

The goal ofshell theoryis the approximation of the three-dimensional linear elas-
tic shell problem by a two-dimensional problem posed on the mid-surface. This is
an old and difficult question. As written by KOITER & SIMMONDS in 1972 [62]
“Shell theory attempts the impossible: to provide a two-dimensional representa-
tion of an intrinsically three-dimensional phenomenon.”

A shell is a three-dimensional object characterized by its mid-surfaceS and its
(half-)thicknessε. The mid-surface is a two-dimensional manifold embedded in
R3. We assume thatS if a C∞ smooth compact orientable manifold with boundary.
Let S ∋ P 7→ n(P ) ∈ R3 be a continuous unit normal field onS. We denote
the shell byΩε in order to remind the valueε of the thickness parameter which is
small enough,0 < ε ≤ ε0, so that the representation

S × (−ε, ε) ∋ (P, x3) 7→ P + x3 n(P ) ∈ R
3, (3.0.1)

is aC∞ diffeomorphism ontoΩε. In simpler words,Ωε is the surfaceS thickened
in its normal direction by the thicknessε. Of course, ifS a plane domain,Ωε is a
plate.

Starting from the three-dimensional equations of standardlinear elasticity for a
homogeneous and isotropic material, different models havebeen derived between
1959 and 1971: see in particular KOITER [59, 60, 61], NAGHDI [78], JOHN [56],
NOVOZHILOV [84]. Most of the shell models rely on a3 × 3 system of intrinsic
equations onS depending onε, and write

K(ε) := M + ε2B (3.0.2)

11



12 E. Faou

whereM is themembraneoperator onS andB is abendingoperator. Though all
of the above authors agree on the definition of the membrane operatorM, different
expressions ofB can be found in the literature. For general shell geometry, the
most popular and natural model is the one proposed by KOITER. This model
describes the displacement of the shell by two tensors representing the change of
metric and the change of curvature of the surface under displacement. Moreover
this model is elliptic forε > 0 (see [5]). However, forε = 0, the nature of
the membrane operator depends on the geometry of the surface. In particular,M
is elliptic only at the points whereS is elliptic. The Koiter model relies partly
upon computations made by JOHN in [56]. But the question of determining the
bestmodel was very controversial (see in particular the introduction in [11] and
discussions in [60, 78]).

Let us describe now the three-dimensional problem. The boundary of the shell
Ωε defined in (3.0.1) has three components: A lateral boundaryΓε

0 image of∂S×
(−ε, ε) by the applicationΦε, and upper and lower facesS±ε images ofS×{±ε}.
We assume that the material constituting the shell is homogeneous and isotropic,
characterized by its two Lamé coefficientsλ andµ. The loading forces applied to
the shell are represented by a smooth vector fieldf defined onΩε. We assume
that the shell is clamped alongΓε

0 and free onS+ε andS−ε. The displacement of
the shell is represented by the 1-form fieldu. In Cartesian coordinates{ti} the
problem is then written






−∂j

(
Aijkℓekℓ(u)

)
= f i in Ωε,

Ti(u) = 0 on S±ε,
u = 0 on Γε

0,
(3.0.3)

with Aijkℓ = λδijδkℓ + µ(δikδjℓ + δiℓδjk), where∂j is the partial derivative with
respect toti andeij(u) = 1

2
(∂iuj +∂jui) with u = uidt

i in Cartesian coordinates.
On the same wayf i denote the components of the vector fieldf in the basis ∂

∂ti
.

The operatorTi(u) is the natural traction operator on the facesS±ε appearing
after integration by parts in the associated bilinear form:

(u,v) 7→
∫

Ωε

Aijkℓeij(u)ekℓ(v) dt1 dt2 dt3. (3.0.4)

This is the classical problem of linear elasticity set in Cartesian coordinates on a
shell-shaped domain ofR3. The Korn inequality [36] implies that this problem
has a unique solution inH1(Ωε)3.

On Ωε, we call a “normal coordinate system” of the form(xα, x3) a system
induced by the mapping (3.0.1), wherexα is a coordinate system onS andx3 the
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transverse coordinate (see [P7] for details). Note that thedomainΩε is foliated
by the surfacesSx3

: Images ofS × {x3} under the diffeomorphism (3.0.1). We
always identify the mean surfaceS0 with the abstract manifoldS.

On the mean surfaceS0, a 2D displacement is represented by a coupled 1-form
field zα and functionz3. We denote byz = (zα, z3) ∈ Γ(T1S0) × C∞(S0) such a
couple. Here,Γ(T1S0) denotes the space of 1-form fields onS0. We let

Σ(S0) := Γ(T1S0) × C∞(S0)

be the space of (smooth) 2D displacements. More generally, we denote byHk(S0)
the space of 1-forms whose both components belong to the Sobolev spaceHk(S0).
We keep the notationHk(S0) for functions. Typical spaces for 2D displacements
areH

1×L2(S0) andH
1×H2(S0). We set(aαβ) the metric tensor onS, and(bαβ)

the curvature tensor. The Greek indices are two-dimensional varying indices. The
contraction by the metric tensor yields isomorphisms between tensor spaces on
S0. We have, for example,bαβ = aασbσβ .

The Koiter operator is the operatorK(ε) : Σ(S0) → Σ(S0) given by (3.0.2),
whereM is themembraneoperator defined by

{
Mσ = −λ̃Dσγ

ν
ν − 2µDαγ

α
σ ,

M3 = −λ̃bααγν
ν − 2µbβαγ

α
β ,

whereλ andµ are the Lamé coefficients of the material,λ̃ = 2λµ(λ+ 2µ)−1, Dα

is the covariant derivative onS0, and

γαβ(z) = 1
2
(Dαzβ + Dβzα) − bαβz3 (3.0.5)

is the linearized change of metric tensor onS0.
The operatorM is associated with the bilinear form defined for anyz andη in

H
1 × L2(S0) by

(z,η) 7→ aM(z,η) =

∫

S0

Mαβσδγαβ(z)γσδ(η) dS0, (3.0.6)

whereMαβσδ = λ̃aαβaσδ + µ(aασaβδ + aαδaβσ).
The operatorB is thebendingoperator defined by

{
Bσ = −1

3
λ̃bασDαρ

ν
ν − 1

3
λ̃Dαb

α
σρ

ν
ν − 2

3
µbασDνρ

ν
α − 2

3
µDνb

α
σρ

ν
α,

B3 = 1
3
λ̃DαDαρ

ν
ν + 2

3
µDαDνρ

ν
α − 1

3
λ̃cααρ

ν
ν − 2

3
µcβαρ

α
β ,
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wherecβα = bναb
β
ν and

ραβ(z) = DαDβz3 − cαβz3 + bσαDβzσ + Dαb
σ
βzσ (3.0.7)

is the linearized change of curvature tensor. This operatoris associated with the
bilinear form defined for anyz andη in H

1 × H2(S0) by

(z,η) 7→ aB(z,η) =
1

3

∫

S0

Mαβσδραβ(z)ρσδ(η) dS0. (3.0.8)

For a giveng ∈ Σ(S0), we consider the solutionz ∈ Σ(S0) associated with
the Koiter model is the solution of the problem

{
K(ε)z = g in S0,

z
∣∣
∂S0

= 0 and ∂rz3(ε)
∣∣
∂S0

= 0,
(3.0.9)

wherer is the normal coordinate to∂S0 in S0. The existence ofz is proved in [5].
This chapter is organized following roughly a chronological order. In Section

3.1 we first consider the three dimensional problem as a formal series problem
in powers ofε set on an abstract manifoldΩ defined as a dilatation ofΩε along
its normal direction (by settingX3 = ε−1x3 ∈ (−1, 1)). The result is that the
three dimensional problem can be reduced, at least formally, to a two dimensional
problem whose first terms are similar to those constituting the Koiter operator.
Moreover, we give a formal justification of the Koiter operator by showing that the
bending operatorB and the operator appearing in the formal reduction coincide
over the inextensional displacements space (z such thatγαβ(z) = 0) associated
with the membrane operator (see (3.0.5) and (3.0.6)).

In the next section 3.2, we use this formal series reduction to show the exis-
tence of a complete asymptotic expansion of the three dimensional displacement
u in the case where the shell is elliptic and where clamped boundary conditions
are imposed on the lateral boundary. This expansion includes boundary layer
terms with two different characteristic lengths (ε and

√
ε)), and allows to analyze

precisely the difference between the three-dimensional displacementu and the
solution of the Koiter model in this case. These two first sections constitute the
core of my PhD work.

Section 3.3 studies the three-dimensional eigen-frequencies problem corre-
sponding to (3.0.3) in the case of plates, and Section 3.4 considers the case of
shallow shells in the sense of [23], i.e. when the curvature of the shell is of order
ε. Section 3.5 presents a survey paper made in collaboration with Monique Dauge
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and Zohar Yosibah, in which we investigate the hierarchicalmodel problematic
for plates and shells, and show numerical computations of eigen-frequencies in
various situations still not fully understood from the mathematical point of view.

Eventually, we give in Section 3.6 a universal estimate between the three-
dimensional displacement and a reconstructed displacement depending on the so-
lution of the Koiter model in the case of clamped boundary conditions. This esti-
mate is in the spirit of Koiter’s tentative estimate in the sixties (see [59, 60, 61]).
Moreover, using the work of Monique Dauge and Isabelle Gruais on plates ([27,
28]) and the results of Sections 3.2 and 3.4, we can show that this estimate is
optimal in the case of plates, clamped elliptic shells and shallow shells.

3.1 Formal series

This section summarizes the work in[P2] and[P7]. It is part of my PhD work.

We denote byuε the solution of the equation (3.0.3). The first step when
studying a possible asymptotic expansion ofuε is expand the three-dimensional
operators in term of the thicknessε. This approach is common with the one of
KOITER, JOHN, NAGHDI in the sixties: see [60, 56, 78].

We assume that the right-hand sidef = f ε depends onε in the following
regular way: If(xα, x3) is a normal coordinate system onΩε we setX3 = ε−1x3,
and define the vector fieldf (ε)(xα, X3) = f ε(xα, x3) on the manifoldΩ :=
S × (−1, 1). We assume thatf(ε) admits the expansion

f (ε) ≃
∑

k≥0

εkfk, (3.1.1)

where for allk, f k is independent ofε in Ω. This hypothesis is satisfied in the case
wheref is independent ofε in the physical cartesian coordinates. In this case the
Taylor expansion off atx3 = 0 around the mid-surface yields the coefficients of
the expansion (3.1.1).

For ease of use, the standard change of unknownwε = µ−1(x3)u
ε is made

(see [78]), whereµ(x3) is defined by

u = µ(x3)w ⇔
{
uα = wα − x3b

β
αwβ and

u3 = w3.
(3.1.2)

It is clear that in the point of asymptotic expansion, the results are equivalent for
uε and for theshifteddisplacementwε.
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The first step in [P7] discards the lateral boundary conditions, and studies the
inner 3D equations written in terms of the shifted displacementw:

{
L(xα, x3; Dα, ∂3)w

ε = −f ε in Ωε

T(xα, x3; Dα, ∂3)w
ε = 0 on S±ε

(3.1.3)

where∂3 is the partial derivative with respect tox3 and where the operatorsL
andT are the three-dimensional operators (3.0.3) expressed in terms of shifted
displacement. The scalingX3 = ε−1x3 allows us to state the problem (3.1.3) on
the manifoldΩ = S × (−1, 1) with operatorsL(ε) andT(ε) having the following
power series expansions:

L(ε) = ε−2
∞∑

k=0

εkLk and T(ε) = ε−1
∞∑

k=0

εkTk, (3.1.4)

with which are associated the formal seriesL[ε] andT[ε] with the same coefficients
(see Theorem 3.3 of [P7]).

Suppose given two function spacesE andF . If a[t] =
∑

k≥0 t
kak is a formal

series int with coefficientsak ∈ L(E,F ) andb[t] =
∑

k≥0 t
kbk is a formal series

with coefficientsbk ∈ E, then the formal seriesc[t] = a[t]b[t] is defined by the
equationcn =

∑n
k=0 a

kbn−k for all n ≥ 0, with c[t] =
∑

k≥0 t
kck. This is the

classical Cauchy product for formal series.
Considering the formal seriesf [ε] =

∑
k≥0 ε

kf k induced by (3.1.1), the 3D
formal series problem writes: Find a formal seriesw[ε] =

∑
k≥0 ε

kwk with 1-
form field coefficients, such that

{
L[ε]w[ε] = −f [ε] in Ω,
T[ε]w[ε] = 0 on Γ±,

(3.1.5)

whereΓ± are the upper and lower faces ofΩ.
Theorems 4.1 and 4.3 of [P7] reduce this problem to a 2D formalseries prob-

lem onS0: There exist formal series operatorsV[ε], Q[ε], A[ε] andG[ε] such that
if z[ε] =

∑
k≥0 ε

kzk is a formal series with coefficients inΣ(S0) satisfying the
equation

A[ε]z[ε] = G[ε]f [ε] in S0, (3.1.6)

thenw[ε] defined by the equation

w[ε] = V[ε]z[ε] + Q[ε]f [ε] in Ω (3.1.7)
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is solution of (3.1.5). The formal seriesA[ε] writes

A[ε] = M + ε2A2 + · · · , (3.1.8)

whereM is the membrane operator. The exact expression ofA2 is given in Theo-
rem 4.4 of [P7].

The expression (3.1.8) is close to the definition of the Koiter operator (3.0.2).
Proposition 4.5 in [P7] allows to compare bothB andA2: Let z andη ∈ Σ(S0),
and assume thatη satisfies the boundary conditionη

∣∣
∂S0

= 0, then we have

∣∣∣
〈
(A2 − B)z,η

〉
L

2(S0)

∣∣∣ ≤ C
(
‖γ(z)‖

H
2(S0)

‖γ(η)‖
L

2(S0)

+‖z‖
H

1×H2(S0)
‖γ(η)‖

L
2(S0)

+ ‖γ(z)‖
H

1(S0)
‖η‖

H
1×H1(S0)

)
,

whereB is the bending Koiter operator andC a constant depending only onS0.
As corollary, the restriction ofA2 to the space of inextensional displacements

coincides with the restriction ofB: if VB = {z ∈ H
1
0 ×H2

0(S0)|γαβ(z) = 0}, then

∀ z,η ∈ VB, 〈A2z,η〉 = 〈Bz,η〉.

This result is consistent with the convergence result in [18, 90, 22].
In a functional point of view, the formal seriesV[ε], A[ε], Q[ε] andG[ε] satisfy

the functional equations
{

L[ε]V[ε]z = −I ◦ A[ε]z,
T[ε]V[ε]z = 0,

and

{
L[ε]Q[ε]f = I ◦ G[ε]f − f ,
T[ε]Q[ε]f = 0,

(3.1.9)
for all z ∈ Σ(S0) andf ∈ C∞(I,Σ(S0)). HereI is the canonical embedding
I : Σ(S0) 7→ C∞(I,Σ(S0)), whereI := (−1, 1).

The second step in [P7] (Theorem 5.3) deals with boundary layer formal se-
ries. In general, ifz[ε] is a solution of (3.1.6), the reconstructed displacement
(3.1.7) cannot satisfy the conditionw[ε] = 0 on the lateral boundary. Let(r, s) be
a coordinate system in a tubular neighborhood of∂S0 such thatr is the geodesical
distance inS0 to the boundary∂S0 ands the arc-length on∂S0. Similarly to plates
(see [81, 27, 26]), the change of variableR = r/ε allows us to state the formal se-
ries problem: Findϕ[ε] with coefficientsϕk(R, s,X3) exponentially decreasing
with respect toR, such that

(
L[ε], T [ε]

)
ϕ[ε] = 0 and w[ε]

∣∣
Γ0

+ ϕ[ε]
∣∣
R=0

= 0, (3.1.10)
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where the formal seriesL[ε] andT [ε] are induced by Taylor expansions atR = 0
andX3 = 0 of the operatorsL andT in coordinates(R, s,X3), and where the
formal seriesw[ε] is given by (3.1.7). Note thatR = 0 coincides with the lateral
boundaryΓ0.

Theorem 5.3 in [P7] shows that the existence of a formal seriesϕ[ε] solution of
(3.1.10) relies upon compatibility conditions onz[ε] on the boundary∂S0. There
exist formal series operatorsd[ε] and h[ε] whose coefficients define four trace
operators on the boundary∂S0, such that ifz[ε] satisfies the equation

d[ε]z[ε] = h[ε]f [ε] on ∂S0, (3.1.11)

then we can construct a formal seriesϕ[ε] solution of the problem (3.1.10). More-
over, the first term of the formal seriesd[ε] is written

d0z = (zr, zs, z3, ∂rz3)
∣∣
∂S0

. (3.1.12)

This operator is the natural Dirichlet operator associatedwith the Koiter model
K(ε) for ε > 0. As before, the formal seriesϕ[ε] is constructed using formal
series operator satisfying functional equations of the type (3.1.9) in 3D boundary
layer spaces (see equations (5.14) and (5.16) in [P7]).

The equations
{

A[ε]z[ε] = G[ε]f [ε] in S0,
d[ε]z[ε] = h[ε]f [ε] on ∂S0,

(3.1.13)

define thereduced problemassociated with the 3D formal series problem. It is
worth noticing that the coefficients of the formal seriesA[ε] andd[ε] are 2Din-
trinsic operators: This means that they express in terms of geometric tensors in-
dependent of the choice of a coordinate system onS0.

3.2 Clamped elliptic shells

This section summarizes the work in[P5], [P6] and [P12]. It is part of my PhD
work.

The previous formal series result is valid for any geometry of the surfaceS0. It
shows that a formal asymptotic expansion of the 3D equationscan be determined
if we can solve the 2D reduced problem (3.1.13) onS0. This last problem is a
formal series problem, and its solution relies on the invertibility of the first term
(M, d0) which is themembraneoperator with corresponding boundary conditions.
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This lead to focus our attention to the special case where themean surfaceS
of the shell iselliptic, that is when the Gaussian curvature ofS is strictly positive
or equivalently when the principal curvatures are everywhere of the same sign. In
this case, the membrane operatorM is elliptic (see [40, 89, 18]). As the bend-
ing operatorB is of order4 while the membrane operatorM is of order2, the
Koiter operatorK(ε) = M + ε2B as well as the formal series operatorA[ε] are
singular perturbationof the membrane operator. The framework of VISHIK &
LYUSTERNIK [97] for scalar equations can be adapted to this situation, where the
equation is a system. Combining these techniques with the formal series reduction
of [P7] giving the structure of the 3D boundary layers, we obtain the following re-
sults in [P12]:

1. We show that the 2D displacement solution of the Koiter equation admits a
complete multiscale expansion including boundary layer terms of scaleε1/2

using a singular perturbation theory close to [97].

2. Using the result in [P7], we then show that the 3D displacement admits a
complete multiscale expansions with 2D boundary layers of scaleε1/2 as
for the 2D displacement, and 3D boundary layers of scaleε as for plates.

3. We use these expansions to bound the difference between the 3D displace-
ment and 2D reconstructed displacements as in [60] or [18, 68]. These
estimates are sharp in the sense that the error term has the same order than
the first neglected term in the asymptotic expansion.

We first consider the case of the Koiter problem (3.0.9). To construct the
expansion of the 2D displacement, we assume that the right-hand sideg = gε

depends onε and admits the expansion

gε ≃
∑

k≥0

εkgk, (3.2.1)

where for allk, gk ∈ Σ(S0). This means that for any Sobolev norm onS0 and any
N , we have

‖gε −
N∑

k=0

εkgk‖ ≤ CNε
N+1,

whereCN is independent onε. Let zε be the solution of the problem (3.0.9) with
a right-hand sidegε satisfying (3.2.1). Then we prove in [P12] thatzε admits an
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asymptotic expansion in powers ofε1/2:

zε(xα) ≃
∑

k≥0

εk/2

(
ζk/2(xα) + χ(r)Zk/2(

r√
ε
, s)

)
, (3.2.2)

where for allk, ζk/2 ∈ Σ(S0) is independent ofε andZk/2(T, s) is exponentially
decreasing inT , uniformly in s and smooth onR+ × ∂S0. The functionχ(r) a
C∞ cut-off function near∂S0.

The first termζ0 is the solution of the membrane problem

{
Mζ0 = g0 in S0,

zα

∣∣
∂S0

= 0,
(3.2.3)

whereg0 is the first term of the asymptotic expansion ofgε. The fact that the
membrane cannot solve for the boundary conditions onz3 is the reason for the
presence of the 2D boundary layer terms. Indeed, the third componentM3 is an
operator of order0 in z3, while B3 is of order4 in z3. The first boundary layer
terms satisfiesZ0

α = 0 butZ0
3 6= 0 in general.

Using the expansion (3.2.2) we obtain estimates betweenzε andζ0. For ex-
ample we get

‖zε − ζ0‖
H

1×L2(S)
≤ Cε1/4 (3.2.4)

whereC is independent onε. This estimate implies, in particular, the convergence
result of [18] and improves the result in [70].

Concerning the 3D displacement fielduε solution of (3.0.3), we prove the
following result: Assuming that the right-hand sidef ε satisfies (3.1.1), thenuε

admits the following asymptotic expansion in powers ofε1/2:

uε(xα, x3) ≃
∑

k≥0

εk/2

(
vk/2(xα,

x3

ε
) + χ(r)W k/2(

r√
ε
, s,

x3

ε
) + χ(r)ϕk/2(

r

ε
, s,

x3

ε
)

)

(3.2.5)

where for allk, vk/2 is aC∞ 1-form field onΩ andW k/2(T, s,X3) is uniformly
exponentially decreasing inT . The termsvk/2 and W k/2 are polynomial in
X3 = ε−1x3 and smooth. The termϕk/2(R, s,X3) is uniformly exponentially
decreasing inR and has singularities near the edges of the shell.
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Combining the two previous results, we can compare precisely the first terms
of zε anduε and write sharp estimates between the 3D displacement and the 2D
Koiter and membrane models. We defineUKLz the Kirchhoff-Love displacement
associated withz as

UKL
σ z = zσ − x3(θσ(z) + bασzα) + x2

3b
α
σθα(z) and UKL

3 z = z3, (3.2.6)

whereθα(z) = Dαz3 + bβαzβ . This displacement satisfiesei3(U
KLz) = 0 for all z.

Under the previous assumptions, letu(ε) be the three-dimensional displace-
ment on the scaled domainΩ. We setgε = 1

2ε

∫ ε

−ε
f εdx3. Letζε be the solution of

the membrane problem (3.2.3) with right-hand sidegε, andzε be the solution of
the Koiter model (3.0.9) with the right-hand sidegε. Then we have the estimates

‖u(ε) − ζε‖
H1(Ω)2×L2(Ω)

≤ Cε1/4,

‖u(ε) − zε‖
H1(Ω)2×L2(Ω)

≤ Cε1/4,

and
‖u(ε) − zε‖

H1(Ω)3
≤ Cε1/4,

‖u(ε) − UKLzε‖
H1(Ω)2×L2(Ω)

≤ Cε3/4,

whereζε( · , X3) := ζε( · ) andzε( · , X3) := zε( · ) onΩ.
It is worth noticing that ifg0 6= 0, we have in general‖ζε‖

H1(Ω)2×L2(Ω)
= O(1)

and‖zε‖
H1(Ω)2×L2(Ω)

= O(1). Here, we writea = O(εp) if we havecεp ≤ a ≤
Cεp for c andC non zero constants independent onε.

The previous estimates imply the convergence results of [20, 21]. Note that
the difference(ζε − u(ε)) does not converge to zero in theH1(Ω)3 norm. In
the membrane normH1(Ω)2 × L2(Ω), the convergence rate obtained with the
Kirchhoff-Love displacementUKLzε associated withzε is the best possible using
2D objects: the leading error terms is governed by pure 3D effects due to the
presence of boundary layer near the edges.

In energy norm, we need more terms to get an optimal estimate with the same
zε: Following Koiter [60] we define the three-dimensional reconstructed displace-
ment in normal coordinatesUz by

Uz = UKLz + UCompz (3.2.7)

where
UComp

σ z = 0 and U3z = −x3pγ
α
α(z) +

x2

3

2
pρα

α(z), (3.2.8)
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wherep = λ(λ + 2µ)−1. On the physical shellΩε, we define the energyEε
3D[v]

by the equation

Eε
3D[v] =

∫

Ωε

Aijkℓeij(v)ekℓ(v) dV. (3.2.9)

With these notations, we have the result, under the previoushypothesis: Assume
that the solution of the membrane problemζ0 given in (3.2.3) is not zero, then we
have the estimates:

Eε
3D[uε] = O(ε) and Eε

3D[uε − Uzε] ≤ CεEε
3D[uε], (3.2.10)

whereC is independent ofε.
This estimate can be compared to the one initially given by KOITER in [60].

The leading error term is governed by the 3D boundary layers.It improves the
result in [67] for elliptic shells.

3.3 Eigenmode problems for plates

This section summarizes the work in[P1]. This is a joint work with Monique
Dauge, Ivica Djurdjevic and Andreas Rössle.

We are now in the situation where the midsurfaceS is now a open subset ofR
2:

this means thatΩε is a plate. Our aim in [P1] is the investigation of modal analysis
in thin plates as the thickness parameterε goes to zero. We study theeigenmodes
of the plateΩε, that is the eigenvaluesΛε and the corresponding eigenvectorsuε of
the linearized elasticity operator (3.0.3) associated with the constitutive material
of the plates.

As usual in such a framework, we suppose that the plates are free on their
lower and upper facesS × {±ε}. As conditions on the lateral edge∂S × (−ε, ε),
we take into consideration as representative cases of the possible boundary condi-
tions, compare [29], the hard clamped case and the free edge case. These boundary
conditions determine admissible spaces of displacementsV (Ωε). We thus obtain
the eigenvalue problems associated with the bilinear formaε(u,v) associated with
the three-dimensional energy (3.2.9) in the spacesV (Ωε):

Find Λε and non-zerouε ∈ V (Ωε), ∀v ∈ V (Ωε), aε(u,v) = Λε〈u,v〉Ωε,

where〈·, ·〉Ωε denotes the usualL2 scalar product inΩε.
Thanks to the Korn inequality, [36], the formaε is positive symmetric with

compact resolvent. Thus its spectrum is discrete with only accumulation point at
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infinity and can be ordered (with the usual repetition convention according to the
multiplicity)

0 ≤ Λε
1 ≤ Λε

2 · · · ≤ Λε
ℓ ≤ . . . , lim

ℓ→∞
Λε

ℓ = +∞.

In [19], CIARLET & K ESAVAN study the case of hard clampedisotropicplates.
Their result shows up the bending dominated behavior of plates at the lowest fre-
quencies. Ifλ andµ are the Lamé coefficients of the plate material, the associated
two-dimensionalbendingoperatorLb is the biharmonic operator inS

Lb = (λ̃+ 2µ)∆2. (3.3.1)

The result in [19] is that eachΛε
ℓ tends to ε2

3
̺b,ℓ, with ̺b,ℓ the eigenvalue

of corresponding rank of the Dirichlet problem for the bending operatorLb and
that the eigenvectors tend to the Kirchhoff-Love displacement generated by an
associated eigenvector ofLb (after possible extraction of a subsequence in the
case of a multiple eigenvalue).

In [79], NAZAROV extends this result to plates with much more general mate-
rial law and moreover shows the influence on the three-dimensional spectrum of
the associated in-plane membrane operatorLm which generatesO(1) families of
eigenvalues, in contrast to theO(ε2) bending family : In the case of an isotropic
material with Lamé coefficientsλ andµ, Lm is the bi-dimensional Lamé operator
associated with the Lamé coefficientsλ̃ andµ, that is

Lm = µ

(
∆ 0
0 ∆

)
+ (λ̃+ µ)

(
∂1

∂2

)
div. (3.3.2)

The modal analysis in [79], and also in [81, 80] where a two-terms asymptotics
is constructed, requires an asymptotic analysis of the eigendisplacements, which
has to take into account the boundary layer in the neighborhood of the lateral
boundary.

As in the previous sections, we assume that the plates are made of a homoge-
neous and isotropic material. This assumption has an important consequence: It
allows the splitting of the three-dimensional spectrum in abending spectrum and
a membrane spectrum, in correspondence with the two-dimensional bending and
membrane operators.

In [P1] we therefore propose a further investigation of eigenmodes in two
directions:
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(i) Take advantage of the transverse symmetry of plate problemswhich enable
us to split eigenmodes inbendingandmembraneeigenmodes(Λε

b,u
ε
b) and

(Λε
m,u

ε
m).

(ii) Adapt the idea of combined outer and inner expansions to construct asymp-
totic expansions at any order for bending and membrane eigenmodes.

The main outcome is that theℓ-th bending eigenvalue ofaε has apower series
expansionstarting withε2

3
̺b,ℓ and that theℓ-th membrane eigenvalue ofaε has a

power series expansionstarting with theℓ-th eigenvalue̺ m,ℓ of the associated in-
plane membrane operator−Lm. These power series expansions do not converge
in general.

We emphasize that we prove this result even in the case when the limit eigen-
values aremultiple: Then it may happen that the corresponding three-dimensional
eigenvalues are multiple too, or that they have the same asymptotic expansion but
nevertheless differ with each other, or that they have distinct expansions with the
same first term.

Our result inspires the following comments:
(i) The limits of the eigenvalues ofaε are the eigenvalues of the operator

K(ε) :=

( −Lm 0

0 ε2

3
Lb

)
onS.

This operator is the exact counterpart for plates of the Koiter operator for shells.
(ii) If one considers the eigenvaluesΛε

ℓ arranged in non-decreasing order, as is
noticed in [17] one sees in the limit only the bending eigenvalues.

(iii) The eigenvalues of the Koiter operatorK(ε) do not give a full description
of the spectrum of the three-dimensional operator onΩε: In the limit asε → 0,
most of the three-dimensional eigenvalues go to infinity. The question of organiz-
ing them in coherent families behaving for example inO(ε−2) is still open.

3.4 Shallow shells

This section reflects the work in[P3] and [P4]. This is a joint work with Monique
Dauge and Georgiana Andreoiu.

Let us first note that we make a distinction between “physical" shallow shells
in the sense of [23] and “mathematical" shallow shells in thesense of [86]. The
former involves shells with a curvature tensor of the same order as the thickness,



Habilitation degree document 25

whereas the latter addresses a boundary value problem obtained by freezing coef-
ficients of the Koiter problem at one point of a standard shell.

In [P4], we concentrate on physical shallow shells. Let us consider a general
shellΩε. LetR denote the smallest principal radius of curvature of the mid-surface
S and letD denote the diameter ofS. In [P4], we prove that if there holds

R ≥ 2D, (3.4.1)

then there exists a pointP ∈ S, such that the orthogonal projection ofS on its
tangent plan inP allows the representation ofS as aC∞ graph inR

3:

ω ∋ (x1, x2) 7→
(
x1, x2,Θ(x1, x2)

)
∈ S ⊂ R

3, (3.4.2)

whereω is an immersed1 domain of the tangent plane inP , and whereΘ is a
function on this surface. Moreover, we have

|Θ| ≤ CR−1 and ‖∇Θ‖ ≤ CR−1, (3.4.3)

with constantsC depending only onD.
We say thatΩε is ashallow shellif S satisfies a condition of the type

R−1 ≤ Cε, (3.4.4)

whereC does not depend onε. Thus, if S is a surface satisfying (3.4.4), for
ε sufficiently smallS satisfies (3.4.1) whence representation (3.4.2). Moreover
(3.4.3) yields thatΘ and∇Θ are. ε.

Thus, we consider a three-dimensional shallow shell as an element of a family
of domains ofR3 indexed byε, of the formΩ̂ε = Φ

ε(Ωε), whereΩε = ω×(−ε, ε)
and

Φ
ε : Ωε ∋ (x∗, x3) = x 7−→ x̂ = (x∗, εθ(x∗)) + x3n

(
(x∗, εθ(x∗))

)
∈ Ω̂ε,

whereθ is a function over the manifoldω, andn the normal to the middle surface.
We moreover assume thatΩ̂ε is embedded inR3, thus it is a domain of the ambient
space. Ifω is embedded inR2, thenω is simply a domain ofR2, and the previous
application is a graph in the usual sense.

We suppose that̂Ωε is made with a homogeneous and isotropic material, and
we consider the equations of linear three-dimensional elasticity, with zero trac-
tion condition on the upper and lower faces. Moreover, we impose two kind of
conditions on the lateral boundary: clamped or free.

1 In particularω may have self-intersection.
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Let (uε
j) and (f i,ε) be the components of the displacement field and of the

volumic forces applied to the shell in this coordinate system. As before, we do the
scalingX3 = x3/εwhich set the equations on the fixed manifoldΩ = ω×(−1, 1).
Moreover, we do the following scaling on the unknowns (as forplates):uε

α(xε) =
uα(ε)(x), α = 1, 2, anduε

3(x
ε) = ε−1u3(ε)(x). We also suppose that there exist

f = (f i) ∈ C∞(Ω)3 such thatfα,ε(xε) = fα(x) etf 3,ε(xε) = εf 3(x).
The principal results in [P3], [P4] is that under these assumptions, the dis-

placementu(ε) defined on the manifoldΩ admits an asymptotic expansion

u(ε)(x∗, X3) ≃ ∑

k≥0

(
uk

KL(x∗, X3) + vk(x∗, X3) + χ(r)wk(
r

ε
, s,X3)

)
(3.4.5)

whereuk
KL(x∗) =

(
ζk
∗(x∗) −X3∇∗ζ

k
3 (x∗), ζ

k
3 (x∗)

)
are Kirchhoff-Love displace-

ments onΩ whose generators(ζk
∗, ζ

k
3 ) are determined by an elliptic operator onω

described in [P4]. The termsvk are of zero mean value with respect toX3, and the
wk are boundary layer terms exponentially decreasing with respect to the variable
R = ε−1r. This asymptotic is of the same type as for plates (see [29]),except that
the membrane and bending operators yielding the deformation patterns are linked
by lower order terms: The associated membrane and bending strain components
γ̃αβ andρ̃αβ are given by

γ̃αβ := 1
2
(∂αζβ + ∂βζα) − ε∂αβθ ζ3 and ρ̃αβ := ∂αβζ3 (3.4.6)

respectively. It is worth noticing that the above strains are asymptotic approxima-
tions of the Koiter membrane and bending strains associatedwith the mid-surface
S = Sε depending onε. As a consequence, the Koiter model and the three-
dimensional equations converge to the same Kirchhoff-Lovelimit.

3.5 Asymptotics and hierarchical models

The paper[P9] is a review paper written in collaboration with Monique Dauge
and Zohar Yosibah, and published in theEncyclopedia for Computational Me-
chanics,edited by Erwin Stein, René de Borst, Thomas J.R. Hughes in 2004.

In this paper, we review asymptotic expansion results for plates and shells,
with a particular aim at assessing the validity of hierarchical models by compar-
ing them to asymptotic expansions of solutionsuε when they are available. These
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expansions typically contain two or three different scalesand boundary layer re-
gions (see the previous sections), which can or cannot be properly described by
hierarchical models.

In a first part of the work, we address the case of plates. We describe the
work in [27, 29] and the results in [P1]. We then introduce thehierarchical mod-
els as Galerkin projections on semi-discrete subspacesV q(Ωε) of the admissible
displacement spaceV (Ωε) defined by assuming a polynomial behavior of degree
q = (q1, q2, q3) in x3. The model of degree(1, 1, 0) is the Reissner-Mindlin model
and needs the introduction of areduced energy. The(1, 1, 2) model is the lowest
degree model to use the same elastic energy (3.2.9) as the 3D model.

We address shells in a second part for asymptotic expansionsand limiting
models results and for an introduction to hierarchical models.

The last part of [P9] is devoted to the discretization byp-version finite ele-
ments of the 3D problems and of their 2D hierarchical projections. The 3D thin
elements (one layer of elements through the thickness) constitute a bridge between
3D and 2D discretizations. We address the issue of locking effects (shear and
membrane locking) and the issue of capturing boundary layerterms. Increasing
the degreep of approximation polynomials and using anisotropic meshesis a way
toward solving these problems. We end by presenting a seriesof eigen-frequency
computations on a few different families of shells and draw some “practical” con-
clusions.

3.6 Koiter estimate revisited

The preprint[P16] provides an universal estimate in energy norm between the
three-dimensional displacement and a displacement reconstructed from the solu-
tion of the Koiter model. This work is still in progress, and is made in collabora-
tion with Monique Dauge.

As mentioned at the beginning of the chapter, most of classical shell models
rely on a3 × 3 system of equations onS depending onε, which can be written in
the form

K(ε) := M + ε2B (3.6.1)

whereM is themembraneoperator onS andB a bendingoperator. In [P16], we
always takeK(ε) as the Koiter operator.

When considering laterally clamped shells, the equation insideS has to be
complemented by the Dirichlet boundary condition and defineproblem(P2D).
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The unique solvability of this problem was proved by BERNADOU & C IARLET

[5]. Let z be the solution of problem(P2D). Natural questions arise:

Q1 Isz itself a “valid” approximation ofu ? In what sense ?

Q2 Is it possible to reconstruct withz only, a three-dimensional displacement
U = U(z) which would be an approximation ofu in (relative) energy norm?

To the our knowledge, the first question to be addressed was Q2, by KOITER

himself. Indeed, the energy norm seems to be the most naturalone and the easiest
to deal with. But, in general,z is not an approximation ofu in energy norm, but in
weaker norms, as stated and proved by SANCHEZ-PALENCIA [90] and CIARLET,
LODS, M IARA [20, 22, 21] who gave answers to question Q1. Let us go back to
Q2, which is our main point of interest.

KOITER proposed forU(z) (which we will also denote byUz) a modified
Kirchhoff-Lovethree-dimensional displacement

U(z) := UKL(z) + Ucmp(z), (3.6.2)

whereUKL(z) is the Kirchhoff-Love displacement associated withz given by
(3.2.6). The complementary termUcmp(z) is given by (3.2.8)

In his main papers [60, 61], KOITER obtained the following tentative energy
estimate:

Eε
3D

[
u − U(z)

]
≤ CS

(
ε2

L2
+
ε

R

)
Eε

2D[z], (3.6.3)

whereEε
3D is the quadratic energy functional associated with the problem (P3D)

andEε
2D is the quadratic “physical” energy associated with problem(P2D). More-

over1/R denotes the maximum principal curvature ofS andL a “wave length”
associated with the solutionz. IndeedL is a constant appearing ininverse esti-
matesconcerning the membrane and bending tensors ofz.

Let us stress thatz depends onε, and that the wave lengthL may also depend
onε. But, in the situation of plates,L does not depend onε and, of course,1

R
= 0.

Two years after the publication of [60, 61], it was already known that estimate
(3.6.3) does not hold asε → 0 for plates. We read in [62]“The somewhat de-
pressing conclusion for most shell problems is, similar to the earlier conclusions
of GOL’ DENWEIZER, that no better accuracy of the solutions can be expected
than of order ε

L
+ ε

R
, even if the equations of first-approximation shell theory

would permit, in principle, an accuracy of orderε2

L2 + ε
R

.”
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The reason for this is also explained by JOHN [56] in these terms“Concentrat-
ing on the interior we sidestep all kinds of delicate questions, with an attendant
gain in certainty and generality. The information about theinterior behavior can
be obtained much more cheaply (in the mathematical sense) than that required for
the discussion of boundary value problems, which form a more“transcendental”
stage.”.

The presence of boundary layer terms for thin plates in the vicinity of the
lateral part of the boundary was already pointed out by GOL’ DENWEIZER [41]
but a multi-scale asymptotic expansion combining (for plates) inner (boundary
layer) and outer (regular) parts was only available later, see Chapters 15 and 16 in
[73] and its bibliographical comments. A more specific form adapted for clamped
thin plates is provided by NAZAROV & Z ORIN in [81] and DAUGE & GRUAIS in
[27]. From these results we can deduce the sharp estimates for plates, valid for a
“standard” load, see [29, §12]

Eε
3D

[
u − U(z)

]
≤ bS εEε

2D[z], as ε → 0. (3.6.4)

In (3.6.4), the factorε in the bound comes from the contribution of the three-
dimensional boundary layer term along the lateral part of the boundary, andb−1

S

has the dimension of a length.
For shells, the complexity of a multi-scale analysis (if possible) is much higher.

There is at least one situation where such an analysis was successfully performed:
the case of clamped elliptic shells (see Section 3.2). The expansions (3.2.2) and
(3.2.5) indeed prove that the solutionz = zε of the Koiter problem(P2D) has a
boundary layer in the vicinity of∂S with length-scale

√
ε, which yields that the

wave lengthL is also aO(
√
ε).

Relying on these two results, the estimate (3.2.10) holds true, and it is sharp.
But now, both terms in the sumε

2

L2 + ε
R

are aO(ε) and this proves thatthe first
Koiter estimate(3.6.3)is asymptotically valid for clamped elliptic shells.

In [P16], our aim is to prove an universal estimate in the spirit of (3.6.3) with-
out a priori knowledge of multi-scale expansions foru andz. Our estimate is:

Eε
3D

[
u − Uz

]
≤ aS

(
BS(ε; z) Eε

2D[z] + D2E−1‖f rem‖2

L2(Ωε)

)

with BS(ε; z) =
ε

ℓ
+
ε2

r2
+
ε2

L2
+
ε4D2

L6
(3.6.5)

whereaS is an adimensional constant,E is the Young modulus,L, ℓ, r andD are
characteristic lengths. The termf rem is the remaining part of the loadf when
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the mean value off across each fiber is subtracted from the total loadf . More
precisely,

a) L is a global wave length forz similar to the one which Koiter used,

b) ℓ is a lateral wave length forz,

c) r is a constant depending on the curvature ofS,

d) D is a constant appearing in the 3D Korn inequalities

The precise definitions of these quantities are given in [P16]. In the cases of
plates and elliptic shells, the behavior of the first three characteristic lengths with
respect to the thicknessε can be made explicit:

• Forplates, the three wave-lengthsL, ℓ, andL♭ areO(1).

• For elliptic shells, ℓ andL♭ areO(1), whereasL is O(
√
εR∂) whereR∂ is

the curvature radius along the boundary ofS.

In both cases our general estimate (3.6.5) gives back the optimal estimate (3.6.4)
in the case of standard loads (wheref 6= f rem). If f is constant along each
fiber (which was Koiter’s hypothesis),f rem is 0: Thus the bound ofEε

3D

[
u− Uz

]

depends only on two-dimensional objects. Moreover, we find the following bound
for the difference between the energies ofz andUz2:

∣∣Eε
3D[Uz] − Eε

2D[z]
∣∣ ≤ aS

( ε
R

+
ε2

L2

)
Eε

2D[z], (3.6.6)

where1/R is the maximum principal curvature ofS. Therefore, if forε small
enoughaS(εR−1 + ε2L−2) is less than1

2
, estimate (3.6.5) combined with (3.6.6)

yields therelative energy estimate:

Eε
3D

[
u − Uz

]

Eε
3D[Uz]

≤ 2aS B(ε; z). (3.6.7)

The proof of the estimate (3.6.5) relies on the expansions ofthe three-dimensional
operators given in [P7].

2Note that this estimate is the same as Koiter heuristic estimate (3.6.3).



Chapter 4

Geometric integration of
Hamiltonian systems

In many physical situations, the time-evolution of certainquantities may be writ-
ten as a Cauchy problem for a differential equation of the form

y′(t) = f(y(t)), (4.0.1)

y(0) = y0. (4.0.2)

For a giveny0, the solutiony(t) at timet is denotedϕt(y0). For fixedt,ϕt becomes
a function ofy0 called theflow of (4.0.1). From this point of view, a numerical
scheme with step sizeh for solving (4.0.1) may be regarded as an approximation
Φh of ϕh. One of the main questions ofgeometric integrationis whetherintrinsic
properties ofϕt may be passed on toΦh.

The system (4.0.1) is said to beρ-reversible if there exists an involutive linear
mapρ such that

ρ ◦ ϕt = ϕ−1
t ◦ ρ = ϕ−t ◦ ρ. (4.0.3)

It is then natural to require thatΦh satisfies the same relation. If this is so,Φh is
said to besymmetric. Symmetric methods for reversible systems of ODEs are just
as much important assymplecticmethods for Hamiltonian systems and offer an
interesting alternative to symplectic methods.

Hamiltonian problems are ordinary differential equationsof the form:

ṗ(t) = −∇qH(p(t), q(t)) ∈ Rd

q̇(t) = ∇pH(p(t), q(t)) ∈ Rd (4.0.4)

31
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with some prescribed initial values(p(0), q(0)) = (p0, q0) and for some scalar
functionH, called the Hamiltonian. In this situation,H is an invariant of the
problem. The evolution equation (4.0.4) can thus be regarded as a differential
equation on the manifold

M = {(p, q) ∈ R
d × R

d |H(p, q) = H(p0, q0)}.

Consider now a parallelogramP originating from the point(p, q) ∈ R2d and
spanned by two vectorsξ ∈ R2d andη ∈ R2d, and letω(ξ, η) be the sum of the
orientedareas of the projections ofP over the planes(pi, qi),

ω(ξ, η) = ξTJη,

whereJ is thecanonical symplecticmatrix

J =

[
0 Id

−Id 0

]
. (4.0.5)

A continuously differentiable mapg from R
2d to itself is called symplectic if it

preservesω, i.e. if

ω(g′(p, q)ξ, g′(p, q)η) = ω(ξ, η).

A fundamental property of Hamiltonian systems is that theirexact flow is sym-
plectic.

Introducing the vectory = (p, q) ∈ R2d, the Hamiltonian system (4.0.4) can
be written

ẏ(t) = J−1∇H(y(t)). (4.0.6)

The Poisson bracket of two functionsH andK is defined by{H,K}(y) =
∇H(y)TJ−1∇K(y). Note that a functionK is invariant by the flowϕt(y) of
(4.0.6) ifK andH are in involution, i.e. if{H,K} = 0 in the phase space. When
there existd invariants in involution, the system (4.0.4) is said to beintegrable.

Owing to the fact that the exact flow of a Hamiltonian system issymplec-
tic, a natural requirement for numerical integrators in this framework is that the
numerical flowy 7→ Φh(y) is symplectic. Symplectic integrators exhibit good
qualitative behaviour, and share most of the properties of the exact flow. In par-
ticular, it can be shown that the energy is almost preserved over very long time
along the numerical solution given by a symplectic integrator. Besides, in the case
of an integrable system, it can be shown [45] that the numerical solution obtained
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with a symplectic integrator still possessesd almost invariant over very long time,
and the error-growth as a function of time is linear, whereasit would typically be
quadratic for non-symplectic methods.

All these properties are proved usingbackward error analysisthat states that
the (discrete) numerical dynamics given by a numerical integrator coincides, up to
exponentially small terms with respect to the stepsizeh, with the exact solution of
a differential equation involving amodified vector fieldthat is close to the initial
vector field. In the case of Hamiltonian systems, the modifiedvector field turns out
to remain Hamiltonian provided the numerical method is symplectic. In particular
there exists a modified Hamiltonian close to the original Hamiltonian function
that is hence invariant by the numerical flow. This analysis is valid as long as the
numerical trajectory is bounded, for exponentially long time (with respect to the
step size), and for sufficiently small step size.

Concerning the approximation of infinite dimensional cases, the previous anal-
ysis falls down: To be valid, backward error analysis would require in principle
step sizes smaller than the inverse of the highest frequencyof the system. For
infinite dimensional systems (or highly oscillatory systems), this means thath has
to be taken too small for practical computations. The analysis of these cases is a
fundamental ongoing challenge.

4.1 Energy conservation for symmetric methods

This section summarizes the work in[P14] written in collaboration with Ernst
Hairer and Truong-Linh Pham. It shows how energy conservation for symmetric
methods relies on compatibility conditions. If these conditions are not satisfied,
we construct counter examples of Hamiltonian functions producing energy drift
for some symmetric methods.

Our interest is the numerical solution of Hamiltonian systems (4.0.4) where
H(p, q) is a real-valued smooth function that it is constant along exact solutions
of (4.0.4).

For a numerical integration it is of interest to know whetherthe Hamiltonian
remains also constant or nearly constant along the numerical solution over very
long time intervals. It is known that

• symplectic one-step methods nearly conserve the Hamiltonian of an arbi-
trary system (4.0.4) over exponentially long times; [4] and[43],
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• symmetric reversible one-step methods nearly conserve allaction variables
of a reversible integrable system; see chapter XI of [45],

• certain symmetric multistep methods nearly conserve the Hamiltonian of
systems, whereH(p, q) = 1

2
pTp+ U(q); see [44].

In many other situations it is observed that the numerical solution also well con-
serves the Hamiltonian over long times but a theoretical explanation is missing.

The aim of the work in [P14] is to study the energy conservation of a wide class
of numerical integrators including Runge-Kutta methods, Hermite-Obreschkoff
methods, the underlying one-step method of multistep and general linear methods.
We give conditions on the coefficients of the method that guarantee the existence
of a first integral of the modified equation that is close to theHamiltonian. If
these conditions are satisfied up to a certain order, then theHamiltonian is nearly
conserved up to this order by the numerical solution.

Given an-dimensional system of differential equations

y′(x) = f(y(x)), (4.1.1)

the Taylor series expansion aroundh = 0 of a given numerical methodsyn+1 =
Φh(yn) has the form of aB-series. A B-seriesB(a, y) is a formal expression of
the form

B(a, y) = idRn +
∑

τ ∈T

h|τ |

σ(τ)
a(τ)F (τ, y) (4.1.2)

= idRn + ha( )f(y) + h2a( )(f ′f)(y) + · · ·

where the index setT = { , , , , · · · } is the set of rooted trees, and for
each rooted treeτ , |τ | andσ(τ) are fixed positive integers1, F (τ, ·) is a map from
R

n to R
n obtained fromf and its partial derivatives, and wherea is a function

defined onT which characterizes the B-series itself. The concept of B-series was
introduced in [48], following the pioneering work of John Butcher [12, 13], and
is now exposed in various textbooks and articles, though possibly with different
normalizations [15, 47, 45] .

B-series play a central role in the numerical analysis of ordinary differential
equations as they may represent most numerical methods for solving the initial

1For illustration, first values are| | = 1, | | = 2, | | = 3, σ( ) = 1, σ( ) = 1, σ( ) = 1,
σ( ) = 2.
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value problem associated with (4.1.1). For instance, it is known [14] that the nu-
merical flow of a Runge-Kutta method can be expanded as a B-series with coeffi-
cientsa depending only on the specific method, or, that multistep methods possess
an underlying B-series method [44, 58]. A further remarkable result of Calvo and
Sanz-Serna [15] gives an algebraic characterization of symplectic B-series.

Backward error analysis is the main tool for getting insightinto the long-time
behaviour of numerical integrators. It is based on the observation that the numeri-
cal solution of a one-step methodyn+1 = Φh(yn) can be (formally) interpreted as
the exact solution of amodified differential equation. As proved in [42] (see also
Section IX.9 of [45]) this modified equation is given by

ẏ =
∑

τ∈T

h|τ |−1

σ(τ)
b(τ)F (τ)(y), (4.1.3)

or equivalently,hẏ = B(b, y) with coefficientsb(∅) = 0 andb(τ) that are in a
one-to-one correspondence with the coefficientsa(τ) of theB-series forΦh(y).

In [P14], we show that the energy conservation relies on compatibility condi-
tions for the coefficientsb(τ).

More precisely: For symplectic methods the modified differential equation
(4.1.3) is Hamiltonian (see [42]) with a function of the form

H(c, y) =
∑

τ∈T ∗

h|τ |−1

σ(τ)
c(τ)H(τ)(y) (4.1.4)

with real coefficientsc(τ) depending on a set of treesT ∗ made of an equivalence
class of trees associated with the relation consisting in moving the root of a tree2.
A possible choice for the trees inT ∗ with not more than6 vertices is as follows:

This motivates to study whether a function of the form (4.1.4) can be a first
integral of (4.1.3) also if the corresponding method is not symplectic.

We then show to the existence ofc(τ) such that (4.1.4) is invariant relies on
conditions over the coefficientsb(τ): We must haveb( ) = 0, which means that
the method has to be of order two. Moreover, we must have

b( ) + b( ) − 2 b( ) = 0. (4.1.5)

2for instance the trees and are equivalent
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This condition is satisfied for symplectic methods and also for some symmetric
methods. For trees of order6, the condition reads

5 b( ) + 5 b( ) + 6 b( ) + 6 b( ) − 12 b( ) + 3 b( )

−15 b( ) − 3 b( )
(
b( ) + b( )

)
= 0.

(4.1.6)

This relation is satisfied by every symplectic method, and bymethods that are
conjugate to a symplectic method (cf. Theorem IX.7.8 of [45]). However, the
3-stage Lobatto IIIB method (see [45, page 33]) does not satisfy the condition
(4.1.6). We therefore expect a drift in the numerical Hamiltonian.

Surprisingly, it is not easy to find a counter example exhibiting a drift in the
energy for the Lobatto IIIB method. This might be due to symmetries of the prob-
lem, yielding to hidden averaging properties enhancing theenergy conservation
properties. In our work, we present counter-examples of Hamiltonian systems
exhibiting energy drifts when the Lobatto IIIB method is used to integrate them.
They are constructed in order to break all the possible symmetries of the problem,
except the symmetryp 7→ −p. This is for instance the case of the Hamiltonian
function

H(p, q) =
1

2
pTp+

ω
2

2

(
‖q‖ − 1

)2
+ q2 −

1

‖q − a‖ . (4.1.7)

wherep = (p1, p2) ∈ R
2, q = (q1, q2) ∈ R

2 and‖ · ‖ is the Euclidean norm. This
is a model of a spring pendulum with exterior forces. The spring is modeled by a
harmonic potential with frequencyω = 2 (Hooke’s law). The exterior forces are
gravitation and attraction to a mass point situated ata = (−3,−5)T . The initial
values for the position of the free mass point areq(0) = (0, 1)T (upright position),
and for the velocityp(0) = (−1,−0.5)T . The pendulum thus turns around the
fixed end of the spring which is at the origin. The two exteriorpotentials are
chosen so that no symmetry in theq-variables is present.

4.2 Quadratic and Hamiltonian invariants

This section reflects the work in[P19] written in collaboration with Philippe
Chartier and Ander Murua.

In the same framework as in the previous section, this work aim at characteriz-
ing B-series integrators that preserve quadratic or Hamiltonian invariants. In this
context arises a new type of series, introduced by MURUA in [77] and embedding
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B-series (and Lie-derivatives along a vector field represented by a B-series) as a
particular case. They are of the form

S(α) =
∑

u∈F

h|u|

σ(u)
α(u)X(u) (4.2.1)

where the index setF = {e, , , , , , , , · · · } is now the set of
forests,|u| andσ(u) are for each forestu ∈ F fixed positive integers, andX(u)
is a linear differential operator acting on smooth functions onRn, and whereα
is a real function defined onF which characterizes the S-series itself. In contrast
with B-series, which are (formal) functions fromRn to itself, S-series are (formal)
differential operators acting on smooth functionsg ∈ C∞(Rn) (or more generally
on smooth mapsg ∈ C∞(Rn,Rm)):

S(α)[g] = α(e)g + hα( )g′f + h2α( )

2
g′′

(
f, f

)
+ h2α( )g′f ′f + · · ·

Assuming that a smooth functionI is a first integral of (4.1.1), i.e. satisfies

∀ y ∈ R
n,

(
∇I(y)

)T

f(y) = 0, (4.2.2)

preservingI for an integratorB(a) given as a B-series (4.1.2) amounts to satisfy-
ing the condition

∀ y ∈ R
n,

(
I ◦B(a)

)
(y) = I(y),

and it can be shown [77], that

I ◦B(a) = S(α)[I], (4.2.3)

whereα, acting onF , is uniquely defined in terms ofa. The requirement of a B-
series preserving the first integralI exactly can sometimes be relaxed by requiring
the existence of amodified invariant̃I obtained as the action onI of S-series of
the form:

Ĩ = S(β)[I] = I + hβ( )I ′f + · · ·

This lead to the following definition: Consider a differential system of the form
(4.1.1) for which there exists an invariantI. A modified invariantĨ of B-series
B(a) is a (formal) seriesO(h)-close toI of the form

Ĩ = S(β)[I], (4.2.4)



38 E. Faou

whereβ is a function onF (satisfyingβ(e) = 1 so thatĨ = I + O(h)), such that

Ĩ ◦B(a) ≡ Ĩ .

Using the formalism of S-series introduced with greater detail in [P19], we de-
rive algebraic conditions for a B-series integrator toexactlypreserve quadratic and
Hamiltonian invariants: we give alternative (algebraic) proofs of already known
results:

1. B-series integrators preservequadraticinvariants if and only if they satisfy
thesymplecticityconditions (a result already proved for a general class of
one-step methods [9]);

2. B-series integrators preserveHamiltonianinvariants forHamiltonian prob-
lemsif and only if they satisfy certain specific conditions (alsoderived in
[38]).

The analysis conducted to derive algebraic conditions for exact preservation of
invariants serves as a guideline for the rest of the paper. Wethen address the
question of existence ofmodifiedinvariants: under which conditions on the B-
series integrator may one construct a modified invariant of the form (4.2.4)? It
turns out that in each of the two aforementioned cases (quadratic and Hamiltonian
invariants) such a construction is possible if and only if the method is conjugate
to a method that preserves invariants exactly. To be more specific, we provide the
proofs of the following results:

1. a B-series integrator possesses a modified invariant for all problems with a
quadraticinvariant if and only if it is conjugate to asymplecticmethod;

2. a B-series integrator possesses a modified Hamiltonian for all Hamiltonian
problems if and only if it is conjugate to a method that preserves the Hamil-
tonian exactly;

3. a symplectic B-series is formally conjugate to a B-seriesthat preserves the
Hamiltonian exactly.

A surprising consequence of the last but one result (generalized to P-series)
along with the results derived in [44]: The underlying one-step method of any
symmetric linear multistep method is formally conjugate toa method that is sym-
plectic for Newton equations.
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4.3 Piecewise smooth Hamiltonian systems

The work[P23] introduces a way of performing geometric integration of non
smooth Hamiltonian systems. It is made in collaboration with Philippe Chartier.

In [P23], we consider a Hamiltonian system
{
q̇ = ∇pH(q, p),
ṗ = −∇qH(q, p),

(4.3.1)

where(q, p) ∈ Rd × Rd, and with a separable HamiltonianH of the form

H(q, p) =
1

2
pTp+ V (q), (4.3.2)

whereV (q) is the potential function that is piecewise multiquadraticand globally
C1,1, which happens to be the minimum regularity necessary to ensure existence
and uniqueness of a continuous flow for (4.3.1).

In many applications, it is of importance that the numericalflow used to com-
pute the solution of (4.3.1) preserves the symplecticity, the volume form, the
Hamiltonian, or a combination of the three (given that for smooth Hamiltoni-
ans, symplecticity implies preservation of volume). However, for these properties
to show up in long-term integration, quite a lot of smoothness is required. Ben
Leimkuhler’s work on smooth switches between different symplectic integrators
points toward the same direction [63]. In the paper [P23], weaddress some of
the theoretical questions arising from the non-smoothnessof the Hamiltonian: we
show in particular that the exact flow of (4.3.1) is still symplectic and volume-
preserving, though in a weaker sense.

In a second step, we consider the construction of a geometricnumerical inte-
grator for (4.3.1). A possible approach considered in the literature is to solve in
sequence thed Hamiltonian systems with Hamiltonians

H [i](qi, pi) =
1

2
p2

i + V [i](qi) +
1

2

∑

j 6=i

p̄T
j p̄j , (4.3.3)

V [i](qi) = V (q̄1, . . . , q̄i−1, qi, q̄i+1, . . . , q̄d) , (4.3.4)

obtained by freezing all components (denoted with a bar) except the two con-
jugate coordinatesqi and pi. If each subsystem can be solved exactly and the
same step-size is used for all, the resulting “numerical” method preserves the de-
sired quantities, since each sub-step is symplectic and preservesH [i] (and thus
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H). Considering that each subsystem is of dimension 2 and thusintegrable, it can
be hoped that an exact solution is indeed obtainable in some specific situations.
Nevertheless, such situations are rather non-generic, though it is important to men-
tion the special case of multi-quadratic potentials, i.e. potentials such that for all
i = 1, . . . , d and allq ∈ Rd , V [i] is quadraticin qi. In this context, the method
described above1 has been introduced in by R. Quispel and R.I. McLachlan in
[76].

In order to retain the possibility of solving exactly each sub-system and at the
same time to cover more general problems, we give up the requirement of exact
Hamiltonian preservation and we consider a multi-quadratic piecewise approxi-
mation ofH. If instead of (4.3.1) with a general potentialV we now solve

{
q̇ = ∇pH

τ (q, p),
ṗ = −∇qH

τ (q, p),
(4.3.5)

whereHτ (q, p) = 1
2
pTp+V τ (q) is aC1,1 multi-quadratic approximation ofH, the

aforementioned procedure applied with exact solution of the sub-systems gives a
first-order method which preservesHτ exactly as well as the volume form. If
supK |H − Hτ | = CKτ

2 for a compact subsetK of Rd × Rd containing the nu-
merical solution, thenH is conserved up to an error of sizeO(τ 2) over arbitrarily
long intervals of integration (including infinite ones).

Note that this approach remains valid for more general Hamiltonians (non-
separable for instance), provided an exact solution can be computed, so that all
theoretical results concerning the conservation of energyand volume are stated in
[P23] for general Hamiltonians. In contrast, we describe the implementation of
the method with quadratic B-splines only for the case of separable Hamiltonians.

For generic Hamiltonians, the cost of the SDH method is exponential ind and
there is very little hope that it becomes competitive with existing ones. The main
motivation for yet considering B-splines approximations stems from applications
whereH is actually not smooth enough or where the potential function V has a
special form:

1. In several applications (e.g. orbital simulations), it is common to consider
potentials which are defined differently on different areasof the physical
space, hence containing jumps in the derivatives. In this situation, where
the dimension is reasonably low and the Hamiltonian merelyC1, the nu-
merical solution provided by standard geometric integrators is qualitatively
erroneous and our approach is -to our knowledge- the only stable one for
long-term simulations.
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2. For systems originating from the space-discretisation of some Hamiltonian
partial differential equations (such as Schrödinger or Maxwell equations),
the potentialV can be written componentwise asV (q) =

∑d
i=1W (qi) and

its B-splines approximation requires only the computationof a piecewise
polynomial approximation of the one dimensional functionW . In this case,
the approximated potentialV τ is only quadratic (and not multi-quadratic)
and the corresponding system can be solved on its cell. The cost of the
SDH method is then only linear inτ−1, while still preserving both energy
and volume over infinite time-intervals.

4.4 Splitting methods applied to the Schrödinger equa-
tion

The aim of this work is the studying of the long time behaviourof splitting meth-
ods applied to the Schrödinger equation. This is a joint workwith Guillaume
Dujardin, who is doing his PhD under the direction of François Castella and my-
self. It was announced in[P20] and [P22]. The main results are given in full
details in[P24].

We consider the time-discretization of the linear Schrödinger equation by
splitting methods and analyze the long time behavior of the corresponding “nu-
merical" solution. Since no approximation in space is made,the problem is infi-
nite dimensional, and the classical theory used in the case of ordinary differential
equations cannot be applied. In particular, the long time behavior of the solution
cannot be understood by the use of classical backward error analysis, see [45, 66]:
In the finite dimensional case, a stability argument is invoked by assuming that the
numerical solution lies in a compact set of the phase space over very long time.
In infinite dimension, the corresponding assumption would require thea priori
control of the regularity of the numerical solution over long time (see [16, 69] for
the case of the non linear wave equations).

In the case of splitting methods, exponential methods or standard methods for
highly oscillatory equations, it is well known that for somevalues of the stepsize
resonances appear, making the a priori assumption of uniform conservation of
regularity irrelevant.

In [P24], we consider one of the simplest possible situations: The case of
splitting methods applied to the linear periodic Schrödinger equation with an an-
alytic potential in one space dimension. Moreover, we will consider the splitting
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scheme as a multiplicative symplectic perturbation of the free linear Schrödinger
propagator, and show the quasi persistence of the conservation properties over
exponentially long time with respect to the size of the potential.

We consider the linear Schrödinger equation

i
∂ϕ

∂t
(x, t) = −∂

2ϕ

∂x2
(x, t) + V (x)ϕ(x, t), with ϕ(x, 0) = ϕ0(x), (4.4.1)

whereϕ(x, t) is a complex function depending on the space variablex ∈ T :=
R/2πZ and the timet ≥ 0. The potentialV (x) is a real function and the function
ϕ0 is the initial value att = 0. For a given time steph > 0, we consider the
approximation scheme

ϕ(h) ≃ exp(ih∆) exp(−ihV )ϕ(0) (4.4.2)

where by definition,exp(ih∆)ϕ andexp(−ihV )ϕ are the solutions at the time
t = h of the equations

i
∂ψ(t)

∂t
= −∆ψ(t), with ψ(0) = ϕ,

ans

i
∂ψ(t)

∂t
= V ψ(t), with ψ(0) = ϕ

respectively. If the potential is smooth enough, it can be shown that the approx-
imation (4.4.2) is a first order approximation of the solution of (4.4.1), see [54]
and [7] (where the non-linear case is studied). Note moreover that the scheme
(4.4.2) conserves theL2 norm. As the problem (4.4.1) is set on an infinite di-
mensional space of functions, the long time behavior of thismethod cannot be
analyzed using classical backward error analysis (see for instance [45, 66]) and
the Baker-Campbell-Hausdorff formula.

To study the long time behavior of the numerical scheme (4.4.2), we consider
the family of Hamiltonians

H(λ) = −∆ + λV, λ ∈ R, (4.4.3)

with λ sufficiently small and with an analytic potentialV . We denote by

L(λ) = exp(ih∆) exp(−ihλV ), λ ∈ R, (4.4.4)
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the corresponding family of propagators. The HamiltonianH(λ) is thus viewed as
an analytic perturbation of the HamiltonianH(0) = −∆ which is completely in-
tegrable in the sense where the dynamics can be reduced to an (infinite) collection
of periodic systems in terms of Fourier coefficients of the solution.

We use the following non-resonance condition on the stepsize: There exist
γ > 0 andν > 1 such that

∀ k ∈ Z, k 6= 0,

∣∣∣∣
1 − eihk

h

∣∣∣∣ ≥ γ|k|−ν . (4.4.5)

It can be shown that the set of stepsizesh ∈ (0, h0) that do not satisfy (4.4.5) has
a Lebesgue measureO(hr+1

0 ) for r > 1 whenh0 > 0 is close to0 (see [45, 92]).
We identify a functionψ(x) and its Fourier transform onT. This means that

we writeψn thenth Fourier coefficient ofψ for all n ∈ Z, and identify the col-
lection(ψn)n∈Z with the functionψ itself. We identify operators acting onL2(T)
with operators acting onl2(Z). Such an operatorS can thus be characterized by its
complex coefficients(Sij)(i,j)∈Z2 . If ψ = (ψn)n∈Z ∈ C

Z, the productϕ = Sψ is
defined by the sequenceϕ = (ϕn)n∈Z of CZ with coefficientsϕn :=

∑
k∈Z

Snkψk,
provided the summation makes sense. For two operatorsA andB, the product
AB is the operator whose coefficients are given formally by the relation

∀ (i, j) ∈ Z
2, (AB)ij =

∑

k∈Z

AikBkj. (4.4.6)

We define the analytic norm for functions

‖ψ‖
ρ

= sup
k∈Z

(
eρ|k||ψk|

)

for a given positive numberρ. We make the assumption that there existsρV > 0
such that‖V ‖

ρV
<∞. In the following, for a functionϕ we use the notation

|ϕ|20 = |ϕ0|2 and ∀ k ∈ Z\{0}, |ϕ|2k = |ϕk|2 + |ϕ−k|2 (4.4.7)

to denote the energies associated with the double eigenvalues−k2 of the Laplace
operator. Moreover, fors > 0 we introduce the norm

‖ϕ‖
s,∞

= sup
k≥0

((1 + k)s|ϕ|k) . (4.4.8)

In [P24] we prove the following result concerning the long time behavior of
the numerical solution provided by the splitting method (4.4.2):
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Theorem 4.4.1 For n ∈ N, we setϕn = L(λ)nϕ0. There exist positive constants
C, c, λ0, andσ depending only onV , γ andν such that for allh ∈ (0, 1) satisfying
the non-resonance condition(4.4.5), all λ ∈ (0, λ0), n ≤ exp(cλ−σ/2), and
ϕ0 ∈ L2(T),

∀ k ∈ N, k ≤ λ−σ,
∣∣ |ϕn|k − |ϕ0|k

∣∣ ≤ Cλ1/2‖ϕ0‖ . (4.4.9)

Moreover, the two following propositions hold true:

(i) For all s > 1/2 and all s′ such thats − s′ ≥ 1/2, there exists a constantcs
depending only onV , γ, ν ands, such that for allh ∈ (0, 1) satisfying(4.4.5), all
λ ∈ (0, λ0), n ≤ exp(cλ−σ/2), andϕ0 with ‖ϕ0‖

s,∞
< +∞, we have

sup
0≤k≤λ−σ

(
(1 + k)s′

∣∣ |ϕn|k − |ϕ0|k
∣∣
)
≤ csλ

1/2‖ϕ0‖
s,∞

. (4.4.10)

(ii) For all ρ ∈ (0, ρV /5), there exist positive constantsµ0 andCρ (depending only
on V , γ, ν andρ) such that for allh ∈ (0, 1) satisfying(4.4.5), all λ ∈ (0, λ0),
n ≤ exp(cλ−σ/2), µ ∈ (0, µ0) andϕ0 with ‖ϕ0‖

ρ
<∞,

sup
0≤k≤λ−σ

(
eµk

∣∣ |ϕn|k − |ϕ0|k
∣∣
)
≤ Cρλ

1/2‖ϕ0‖
ρ
. (4.4.11)

The inequality (4.4.9) expresses the fact that the oscillatory energies|ϕ|k are
conserved over very long time for asymptotically large modesk. The inequalities
(4.4.10) and (4.4.11) give more precise estimates in the case where the initial
condition has more regularity.

The proof of the Theorem relies on a normal form result given in [P24]. We
explain here the main ideas. For an operatorS and forρ ∈ R+, we define the
norm

‖S‖
ρ

= sup
k,ℓ∈Z

(
eρ|k−ℓ||Skℓ|

)
(4.4.12)

and we setAρ the space of operatorsS with finite norm‖S‖
ρ
< ∞. We define

moreover theX-shapedoperators as the elementsX ∈ Aρ for which we have
Xkℓ 6= 0 =⇒ |k| = |ℓ|. For a givenK > 0 we define the set of indices

IK = {(k, ℓ) ∈ Z | |k| ≤ K or |ℓ| ≤ K}. (4.4.13)

We then defineXK
ρ the set of operatorsX ∈ Aρ that arealmostX-shapedin the

sense where
Xkℓ 6= 0 =⇒

(
|k| = |ℓ| or (k, ℓ) /∈ IK

)
.
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It is worth noticing that under the action of a given almost X-shaped operator, all
the spaces{ϕ |ϕj 6= 0 =⇒ j = ±k }, |k| ≤ K, are invariant, as well as the space
{ϕ |ϕj 6= 0 =⇒ |j| > K }.

In [P24] we prove the following result: There exist positiveconstantsc, λ0 and
σ depending only onV , γ andν and families of operatorsQ(λ), Σ(λ) andR(λ)
analytic inλ for |λ| < λ0 such that forλ ∈ (0, λ0) and allh ∈ (0, 1) satisfying
(4.4.5), we can write

Q(λ)L(λ)Q(λ)∗ = Σ(λ) +R(λ)

with the estimate

‖R(λ)‖
ρV /5

≤ exp(−cλ−σ). (4.4.14)

Moreover, the operatorsQ(λ) andΣ(λ) are unitary for allλ, and satisfy forλ ∈
(0, λ0)

‖Q(λ) − Id‖
ρV /4

≤ λ1/2 and ‖Σ(λ) − eih∆‖
ρV /4

≤ hλ1/2.

Eventually, we have

Q(λ) ∈ AρV /4 and Σ(λ) ∈ XK
ρV /4 with K = λ−σ

that is,Σ(λ) is a unitary almost X-shaped operator.
Roughly speaking, this result shows that after a unitary change of variables

close to the identity in some analytic operator norm, the dynamics can be reduced
up to exponentially small terms to the action ofΣ(λ) which decouples into2 × 2
symplectic dynamics for each modes±k. This is valid for asymptotically large
modes|k| ≤ λ−σ. More precisely, ifϕ is a function and ifψ = Σ(λ)ϕ, we have
for |k| ≤ λ−σ, (

ψk

ψ−k

)
=

(
ak(λ) bk(λ)
ck(λ) dk(λ)

) (
ϕk

ϕ−k

)
(4.4.15)

where the2 × 2 matrix in this relation is close to the diagonal matrix with entries
e−ihk2

, and is unitary. This implies that we have for|k| ≤ λ−σ, |ψk|2 + |ψ−k|2 =
|ϕk|2 + |ϕ−k|2. Combining this conservation law for the action ofΣ(λ) with the
exponential estimate (4.4.14) allows us to obtain the long time bounds of Theorem
4.4.1.
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4.5 Application to Raman lasers

This work is a collaboration withAlcatel. Its goal is the numerical simulation of
multi-wavelength Raman lasers. It turns out that the systemof equations govern-
ing the phenomenon exhibits a Poisson (or non-canonical symplectic) structure,
and that this is the key for the numerical simulation. Noticethat the publication
[P8] written in collaboration with François Castella and Philippe Chartier deals
with a more general class of systems than the one given by the Raman lasers equa-
tions. The other publications[P10] and [P13] describe in full details the mathe-
matical and experimental analysis. This is a joint work withFrançois Castella,
Philippe Chartier, and the Alcatel team: F. Leplingard, C. Martinelli, S. Borne, L.
Lorcy, T. Lopez and D. Bayart

The problem originates from a model of Raman laser amplification effect in
an optic fiber [57]. Standard discrete models of this phenomenon (see [1] or [88])
lead to a system of differential equations of Lotka-Volterra form (see for instance
[45]), where high-frequency waves traveling forward and backward in the fiber
disseminate part of their energy to low-frequency waves through a prey-predator
process. Boundary conditions corresponding to Bragg reflecting lattices are im-
posed on both sides of the laser cavity [88].

In the case of an idealized fiber, this system turns out to havea Poisson struc-
ture (see for instance [45]) for which we can exhibit explicitly the Hamiltonian and
the Casimir invariants. However, the underlying Hamiltonian function is affine
with respect to the unknowns. The corresponding invariant manifold is thus not
compact so that the existence of a solution remains a non-trivial question. More-
over, the system is posed as a boundary value problem. These aspects contribute
to make a numerical approximation difficult to obtain : for instance, theshooting
method [3] is to be banned here due to the presence of nonlinearities (most initial
values would lead to blow-up in finite time); more elaboratedmethods, such as
finite differences, collocation, or multiple shooting, arepossible alternatives, but
might become prohibitively costly in large dimension.

Another difficulty comes from the fact that in the original variables, there ex-
ists always a “trivial" solution corresponding to the case where the Raman am-
plification effect has not yet started. Numerically, the presence of this dummy
solution makes the choice of the initial values in an iterative process difficult to
determine.

In our work, we prove that the Poisson system can be brought tocanonical
form through aglobalchange of coordinates. Note that the change of coordinates
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defined in Darboux-Lie’s Theorem is usually local and that the literature offers
only a few examples of such global changes (see [45] pp. 241 for a nice example).
We show that for an ideal fiber the equations can be written

u′ = G∇uH(u, d) with H(u, d) =

n∑

i=1

di sinh ui, (4.5.1)

whereu is an unknown vector of dimensionn ≥ 1 of functions defined on the
fiber,d an unknown element ofRn, G a skew-symmetric matrix andH(u, d) the
Hamiltonian of the problem. At this stage, getting a canonical Poisson system
requires only to bring theconstant skew-symmetricmatrixG to canonical form.
Note that thedi’s are Casimir invariants of the underlying Poisson structure (see
[45]).

In this form, the “trivial" solution has disappeared, but the problems of ex-
istence and uniqueness of the solution (and thus definition and convergence of
shooting schemes) are still present. Note that the boundaryconditions depend
also on the unknown values of the Casimir invariantsdi. In the general case (i.e.
not for an idealized fiber), we show that we can write the problem in a form close
to (4.5.1) where thedi’s remain invariants of the problem with unknown values.

We show that it is actually possible to take benefit of the available free pa-
rametersd so as toreformulatethe problem as aCauchy problem for a system
of integro-differential equations. In this form, the problem is well-posed : us-
ing standard techniques (Schauder’s theorem), the existence of solutions can be
easily proved for boundary conditions independent ofd (see [P8]). Uniqueness
for boundary values that are not too far apart and an arbitrary dimension is also
shown. Note that ad-hoc techniques allow for the treatment of the one and two-
dimensional cases for arbitrary boundary values (see [P8]). Eventually, we prove
the existence and uniqueness of a solution to the original problem (with boundary
conditions depending ond) under strong assumptions on the data.

Using the integro-differential formulation of the problem, we derive a numer-
ical Picard-like scheme converging toward the solution under smallness assump-
tions on the data. We conclude this work by giving numerical examples showing
that this scheme converges linearly to the solution in practical cases.
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Chapter 5

Molecular dynamics

There is a large demand in biomolecular modeling for models that integrate mi-
croscopic molecular dynamics simulation into statisticalmacroscopic quantities.
These simulations involve huge systems of ordinary differential equations over
very long time intervals. This is a typical situation where the determination of
accurate trajectories is out of reach and where one has to rely on the good qual-
itative behavior of structure-preserving integrators. Due to the complexity of the
problem, more efficient numerical schemes need to be developed.

In molecular dynamics the fundamentalergodic hypothesisstates that the flow
of a Hamiltonian system is ergodic with respect to the microcanonical measure.
This measure is induced by the Euclidean measure in the phasespace on the isoen-
ergy manifolds of the system. However, it is well known that this hypothesis is not
satisfied in many situations. Amongst them are the systems close to integrable sys-
tems. In this case, it is even worse: When the numerical integrator is symplectic
or symmetric, the invariant functions associated with the initial integrable system
remain almost invariant for the numerical solution (see [45]). This is typically a
situation where one has to perform several simulations to explore the whole phase
space. However, due to the special characteristics of a dynamics associated with
an integrable system, we can accelerate the convergence of averages taken along
a numerical trajectory in this situation. We explain this idea in the next Section.

To improve the ergodic behaviour of molecular dynamics systems, we aim at
deriving systems that possess no other invariant than the initial Hamiltonian func-
tion. To “shake" the systems without destroying the volume and energy properties
of the initial molecular dynamics systems, we can modify thesymplectic matrix
and make it depend on the time. This idea can be applied to microcanonical sys-
tem as well as to other situations: as an example, we prove thebenefit of these

49
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shakerswhen introduced in Nosé-Hoover systems, and we extend them to the case
of stochastic shakersfor constructing ergodic microcanonical dynamics.

At the end of the section, we consider the approximation of the time depen-
dent Schrödinger equation using Gaussian wave packets dynamics. It turns out
that the dynamics of Gaussian wave packets exhibits a Poisson (or non canoni-
cal symplectic) structure, and that we can derive a reversible and explicit Poisson
scheme from variational splitting of the initial equation.

5.1 Averaging for integrable dynamics

The next work is devoted to the application of the numerical KAM theory to
the computations of averages. This is a joint work with Eric Cancès, François
Castella, Philippe Chartier, Claude Le Bris, Frédéric Legoll and Gabriel Turinici.
The corresponding publications are[P11]and [P15].

Consider a Hamiltonian dynamical equation inR
d × R

d

{
ṗ(t) = −∇qH(p(t), q(t)), p(0) = p0,
q̇(t) = ∇pH(p(t), q(t)), q(0) = q0.

(5.1.1)

LetM(p0, q0) be the manifold{(p, q) ∈ R2d |H(p, q) = H(p0, q0)}. The solution
of (5.1.1) is a dynamical system onM(p0, q0) with the invariant measure

dρ(p, q) =
dσ(p, q)

‖∇H(p, q)‖
2

, (5.1.2)

wheredσ(p, q) is the measure induced onM(p0, q0) by the Euclidean metric of
R2d (see for instance [35]), and‖ · ‖

2
the Euclidean norm inR2d.

It is a common problem to estimate thespaceaverage of an observable1 A
over the manifoldM(p0, q0)

∫
M(p0,q0)

A(p, q)dρ(p, q)
∫

M(p0,q0)
dρ(p, q)

, (5.1.3)

1Properties of a physical system at thermodynamical equilibrium such asradial distributions,
free energies, transport coefficientscan be computed as averages of some observables over the
phase space of a representative microscopic system. In mostapplications of interest, this micro-
scopic system is composed of a high number of particles, making the computation of averages a
challenging issue.
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through the limit of thetimeaverage

lim
T→∞

1

T

∫ T

0

A(p(t), q(t))dt, (5.1.4)

where(p(t), q(t)) is the solution of (5.1.1). The attention of the reader should be
drawn on the fact that one can only expect the coincidence of (5.1.4) and (5.1.3)
in very specific situations. Generally speaking, the trajectory originating from
(p0, q0) lies on a submanifold ofM(p0, q0): in order to recover the correct space
average (5.1.3), it is necessary to average (5.1.4) over several initial conditions.

The conditions under which the limit (5.1.4) can be identified can not be stated
in generalapart from the two specific -and somewhat opposite- situations:

• in the case of a differential equation with an hyperbolic structure, giving rise
to mixing, the convergence of (5.1.4) toward (5.1.3) forT going to infinity
is insured at a typical rate of1/

√
T . It is the belief of the authors that not

much can be gained in this situation due to the presence of chaos,

• in the case of anintegrablesystem, a well-known result of Bohl, Sierpinski
and Weyl (see [2] and references therein) states that, undera non-resonant
condition on the frequency vector associated with the initial condition, the
space average of a continuous function on the manifold

S(p0, q0) = {(p, q) ∈ Rd × Rd ;
I1(p, q) = I1(p0, q0), . . . , Id(p, q) = Id(p0, q0)}, (5.1.5)

whereI1, . . . , Id are thed invariants of the problem (5.1.1), coincide with
the long-time average of this function. Moreover, if the frequencies satisfy a
diophantinecondition, the convergence is of orderT−1. Being more analyt-
ically tractable, this case allows for the design of more elaborated averaging
methods than the straightforward numerical simulation of (5.1.4).

In realistic situations, Hamiltonian systems belong neither to the first category,
nor to the second one: They typically exhibit different behaviors for different
energy levels. Nevertheless, the acceleration techniquespresented in [P11] and
[P15] have an induced computational overhead that is only marginal and thus
not penalizing when integrability assumptions are violated. Meanwhile, when
the explored energy level is such that the system can be (locally) considered as
integrable, a significant acceleration is observed.
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Integrable systems under some diophantine condition constitute the natural
framework of [P11] and [P15]. Besides, all the results couldbe extended to the
case of near-integrable systems.

Let us consider a completely integrable Hamiltonian system(5.1.1) in the
sense of the Arnold-Liouville theorem [2, 45]: There existd invariantsI1 =
H, I2, . . . , Id in involution (i.e. their Poisson Bracket{Ii, Ij} = 0) such that their
gradient are everywhere independent, and the trajectoriesof the system remain
bounded. Under these conditions, there exist action-angles variables(a, θ) in a
neighborhoodU of S(p0, q0) given by (5.1.5). We have(p, q) = ψ(a, θ), whereψ
is a symplectic transformation

ψ : D × T
d ∋ (a, θ) 7→ (p, q) ∈ U,

with Td = (R/2πZ)d the standardd-dimensional flat torus, andD a neighborhood
in Rd of the pointa0 such that(a0, θ0) = ψ−1(p0, q0). By definition of action-
angle variables, the HamiltonianH(p, q) of (5.1.1) is writtenH(p, q) = K(a) in
the coordinates(a, θ), and thus the dynamics reads

{
ȧ(t) = 0,

θ̇(t) = ω(a(t)),
(5.1.6)

whereω = ∂K/∂a is the frequency vector associated with the problem. The
solution of this system for initial data(a0, θ0) is simply writtena(t) = a0 and
θ(t) = ω(a0)t+ θ0.

For fixed(a0, θ0) = ψ(p0, q0), the image ofS(p0, q0) underψ−1 is the torus
{a0} × Td. On this torus, the measuredθ is invariant by the flow of (5.1.6).
Considering the pull-back of this measure by the transformation ψ, we thus get a
measuredµ(p, q) on S(p0, q0) which is invariant by the flow of (5.1.1). For any
functionA(p, q) defined onS(p0, q0) we define thespaceaverage:

〈A〉 :=

∫
S(p0,q0)

A(p, q)dµ(p, q)
∫

S(p0,q0)
dµ(p, q)

=
1

(2π)d

∫

Td

A ◦ ψ(a0, θ)dθ. (5.1.7)

For a fixed timeT , thetimeaverage is defined as

〈A〉(T ) :=
1

T

∫ T

0

A(p(t), q(t))dt. (5.1.8)

In a first step, we investigate the extent to which the convergence of the time
average (5.1.8) toward the space average (5.1.7) can be accelerated through the
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use of weighted integrals of the form

〈A〉ϕ(T ) :=

∫ T

0
ϕ
(

t
T

)
A(p(t), q(t))dt

∫ T

0
ϕ
(

t
T

)
dt

, (5.1.9)

whereϕ is a positive smooth function with compact support in[0, 1] (we refer toϕ
as thefilter function; it is sometimes refereed as awindowfunction in the context
of signal processing [85]).

In a second step, we consider the time-discretization of (5.1.9), i.e. the dis-
cretization of both the integral through Riemann sums and the trajectory with
symplectic integrators. In particular, we derive estimates of the convergence with
respect toT and the sizeh of the time-grid, which are in perfect agreement with
the numerical experiments conducted in [P11].

5.2 Nosé-Hoover dynamics in a shaker

This section describes the work in[P18]. It gives a new way to improve ergodic
behaviour of the Nosé-Hoover systems in molecular dynamicswithout changing
the measure and energy conservation properties.

Molecular simulations at constant temperature can be performed by using the
Nosé extended-Lagrangian method [82, 83], and its real-time formulation due to
Hoover [52]. These systems are continuous, preserve the canonical Boltzmann-
Gibbs measure, conserve an energy, but suffer from a lack of ergodicity for small
or stiff systems (see [25, 83, 71, 65]).

The aim of the work in [P18] is to show that we can introduce time-dependent
terms in the Nosé-Hoover equation without destroying the measure and energy
conservation. The role of these terms is to break the possible hidden invariants
of the system, and to reinforce its chaotic behavior. We callthem “shakers” as
they are independent of the dynamics itself but preserve themeasure conservation
properties of the original Nosé-Hoover systems. We show that it is possible to
adapt the existing algorithms to integrate these systems. By numerical examples
we show that the introduction of shakers improves the sampling properties of the
systems, and make them produce correct distributions. Moreover, we note that
this method is rather general and can be applied to other situations (in particular
for microcanonical sampling, see the next Section below).

We consider a system ofN particles in a space of dimensiond, of massesmi,
positionsqi ∈ Rd and impulsespi ∈ Rd, i = 1, . . . , N interacting in a potential
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V (q) at constant temperatureT , in the framework defined by Nosé and Hoover.
We denote byq andp the vectors(qi)N

i=1 and(pi)
N
i=1 respectively. The classical

Nosé-Hoover equations are written

q̇ = M−1p

ṗ = −∂qV (q) − λp

λ̇ =
1

Q

(
pTM−1p −NfkT

)
,

(5.2.1)

whereNf = d × N is the number of degrees of freedom of the system. Here,
∂qV (q) is theNf -dimensional vector with components∂qi

V (q). The matrixM
is the diagonal matrix with coefficientsmi. The constantk is the Boltzmann
constant, andT denotes the temperature. The numberQ is a free parameter of the
problem. It is well known that this system preserves the (extended) Boltzmann-
Gibbs measure, see [82, 52, 25],

exp

(
− 1

kT

(
1

2
pTM−1p + V (q) +

Qλ2

2

))
dq dp dλ. (5.2.2)

If we add the equation
ξ̇ = λ (5.2.3)

to the equations (5.2.1), we get the following system, written in matrix form:



q̇

ξ̇

ṗ

λ̇




=




0 0 Id 0

0 0 0 1/Q

−Id 0 0 −p/Q

0 −1/Q pT/Q 0







∂qV (q)

NfkT

M−1p

Qλ



. (5.2.4)

As the matrix in the right-hand side of (5.2.4) is skew-symmetric, we easily see
that the system (5.2.1)-(5.2.6) conserves the energy

H(q, ξ,p, λ) =
1

2
pTM−1p + V (q) +

Qλ2

2
+NfkTξ. (5.2.5)

For small or stiff systems, numerical examples indicate that the system (5.2.1)
is in general not ergodic for the measure (5.2.2): See in particular [71, 25, 65] and
the numerical examples in [P18].



Habilitation degree document 55

Let A(t) = (Aij(t))
Nf

i,j=1 be a time dependentNf × Nf matrix andα(t) =

(αi(t))
Nf

i=1 be a time dependent vector of sizeNf . We consider the following
equations:

q̇ = A(t)M−1p +Qα(t)λ

ṗ = −A(t)T∂qV (q) − λp

λ̇ = 1
Q

(
pTM−1p −NfkT

)
− α(t)T∂qV (q).

(5.2.6)

The case whereA(t) = Id andα(t) = 0 corresponds to the standard Nosé-
Hoover equations. In the following, we assume that the applicationst 7→ A(t)
andt 7→ α(t) are smooth (and in particular, “deterministic"), to ensurethe local
existence and uniqueness of a smooth solution to (5.2.6). The matrixA(t) and the
vectorα(t) are calledshakers, as they can change strongly the dynamics without
breaking the original measure and energy conservation of the system.

For a givent0 ∈ R and y0 = (q0,p0, λ0) ∈ R
Nf × R

Nf × R, we write
Γ(t, t0,y0) = (q(t),p(t), λ(t)) the solution of (5.2.6) satisfyingq(t0) = q0,
p(t0) = p0 andλ(t0) = λ0. In [P18] we prove the following: The measure (5.2.2)
is invariant by the flowΓ(t, t0, · ). Moreover, if we add the equation (5.2.3) to the
system (5.2.6) the energy (5.2.5) is conserved along the solution of (5.2.3)-(5.2.6).

The choice of the matrixA(t) and the vectorα(t) can be arbitrary. A typical
choice can be

A(t) = Id +
K∑

k=1

Ak cos(ωkt) and α(t) =
K∑

k=1

αk cos(βkt) (5.2.7)

whereAk, αk, K, ωk andβk are to be chosen (Ak areNf -dimensional matrices).
Equivalently, we could also assumeA(t) andα(t) to depend on a collection of
harmonic oscillators. In order to expect good sampling properties, it is advisable
to choose the collectionΩ := (ω1, . . . , ωK , β1, . . . , βM) rationaly independent to
avoid resonances and KAM behavior (see [37] for a similar case of study). The
coefficients can also be randomly chosen at the beginning of the simulation.

We also show that we can adapt the standard numerical integrators used to
simulate the trajectory of the Nosé-Hoover equations (see [25]). In particular, in
the case whereα(t) = 0 in (5.2.6), we can adapt all the existing reversible and
explicit algorithms existing for the Nosé-Hoover equations (see e.g. [72, 96, 55,
10]). For instance, the following scheme is an explicit and reversible adaptation
of the leapfrog scheme presented in [55]:

An = A((tn + tn+1)/2) (5.2.8)
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and

pn+1/2 = pn − ∆t

2

(
(An)T∂qV (qn) + λnpn+1/2

)

qn+1 = qn + (∆t)AnM−1pn+1/2

λn+1 = λn +
∆t

Q

(
(pn+1/2)TM−1pn+1/2 −NfkT

)

ξn+1 = ξn +
∆t

2
(λn + λn+1)

pn+1 = pn+1/2 − ∆t

2

(
(An)T∂qV (qn+1) + λn+1pn+1/2

)
.

(5.2.9)

In [P18] we present numerical experiments that show the improvement yielded by
the introduction of these terms in the Nosé-Hoover systems.

5.3 Stochastic shakers

This work is the continuation of the previous idea: Instead of taking matrices
depending in a deterministic way of the time, we use stochastic skew-symmetric
matrices to break all the possible hidden invariants of a given Hamiltonian system.
The dynamics, driven now by an SDE and described with full details in [P26],can
be shown to be ergodic for the microcanonical measure. This is a joint work, still
in progress, with Tony Lelièvre.

The introduction of shakers can be made in many different systems. Consider
in particular a Hamiltonian system

ẏ(t) = J∇H (y(t)) (5.3.1)

whereJ is the skew-symmetric matrix (4.0.5).
The flow associated with this system preserves the Euclideanvolume and the

energy surfaces{y |H(y) = H(y(0))}. As a consequence, it preserves the Li-
ouville (or microcanonical) measuredσ(y)/‖∇H(y)‖ on the isoenergy surfaces
(see (5.1.2)). However, as mentioned at the beginning of theChapter, it is well
known that the dynamics associated with (5.3.1) is not ergodic with respect to this
measure in general. The most striking counter-example is the case of integrable
systems, where we can show the existence of stable “hidden” invariants (see Sec-
tion 5.1 and the references therein).
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If J(t) is a time-dependent matrix such that for all timet, J(t) is skew sym-
metric, we can show that the solution of the system

ẏ(t) = J(t)∇H (y(t)) (5.3.2)

holds the same preservation properties as the Hamiltonian system (5.3.1): Along
the solution of (5.3.2) the energyH(y0) is constant and the Euclidean volume is
conserved. This implies that the measuredσ(y)/‖∇H(y)‖ is invariant for the
exact solution of (5.3.2). As for the Nosé-Hoover systems, we expect that the
introduction of quasiperiodic shakers to construct the symplectic matrix destroys
the possible hidden invariants of the system. Notice that inthis situation, there
exist ergodicity results in the case of a quadratic Hamiltonian (i.e. a collection of
harmonic oscillators), see [37].

Extending this idea, we aim at takingJ(t) as a random skew-symmetric func-
tion of the timet. This is the main goal of our work in [P26].

Let us considerH(y) a smooth real-valued function defined fory ∈ R
N . For

anys ∈ R, we set
Σz = { y ∈ R

N |H(y) = z}. (5.3.3)

We assume that there exists on open setO ⊂ R such that, for allz ∈ O, the sets
Σz are compact and the gradient∇H does not vanish onΣz.

The microcanonical onΣz is written:

δH(y)−z =
dσΣz

‖∇H(y)‖ , (5.3.4)

wheredσΣz
(y) is the Lebesgue measure onΣz induced by the Lebesgue measure

in RN .
Let (Gα)1≤α≤N(N−1)/2 be the set ofN×N skew symmetric matrices such that

Gα
ij = 0 for all (i, j) ∈ {1, . . . , N}2\{(i(α), j(α)), (j(α), i(α))}, andGα

i(α),j(α) =

−Gα
j(α),i(α) = 1, where the indices(i(α), j(α)) are such that

⋃N(N−1)/2
α=1 (i(α), j(α)) =⋃

1≤i<j≤N(i, j). The set of matrices(Gα) for 1 ≤ α ≤ N(N − 1)/2 is a basis of
the space of (real) skew symmetric matrices. In the caseN = 3, we can choose,
for instance,(i(1), j(1)) = (1, 2), (i(2), j(2)) = (1, 3) and(i(3), j(3)) = (2, 3),
which corresponds to

G1 =




0 1 0
−1 0 0
0 0 0


 , G2 =




0 0 1
0 0 0
−1 0 0


 , and G3 =




0 0 0
0 0 1
0 −1 0


 .
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We consider stochastic differential equations of the form (we use the summation
convention of repeated indices)

dXi(t) = Jik∂kH(X(t))dt+Gα
ik∂kH(X(t)) ◦ dWα(t) (5.3.5)

where◦ denotes the Stratonovich product,J is aN × N skew symmetric matrix
and whereWα(t) are the components of aD-dimensional Brownian motion, with
D = N(N − 1)/2.

Equation (5.3.5) can be written in Itô form as follows

dXi(t) =

(
Jik∂kH +

1

2
(Gβ

jk∂kH)(Gβ
iℓ∂jℓH)

)
(X(t))dt

+Gα
ik∂kH(X(t))dWα(t). (5.3.6)

In [P26], we prove the following:

Theorem 5.3.1 Under the previous hypothesis on the functionH(y), letX(t) be
a stochastic process which is solution to(5.3.5). ThenX(t) satisfies the energy
conservation:

∀ t ≥ 0, H(X(t)) = H(X(0)). (5.3.7)

Moreover, for allz ∈ O, the microcanonical measure on the hypersurfaceΣz is
invariant by the flow of(5.2.6)in the following sense: for all functionϕ defined
onΣz,

d

dt

∫

Σz

E(ϕ(X(t, y))
dσΣz

(y)

‖∇H(y)‖ = 0 (5.3.8)

whereX(t, y) denotes the solution of(5.2.6)starting aty.

We can moreover prove that the solution of the equation (5.3.5) is ergodic with
respect to the microcanonical measure:

Theorem 5.3.2 Under the previous hypothesis, letz ∈ O and let us consider a
stochastic processX(t, y) solution to(5.2.6), with H(y) = z. Then the law of
X(t, y) geometrically converges to the microcanonical measure in the following
sense: For any functionϕ integrable with respect to the microcanonical measure,
there exists some positive constantsC andγ such that, for allt ≥ 0,

∣∣∣∣∣E(ϕ(X(t, y))) −
∫

Σz

ϕ(y)
dσΣz

(y)

‖∇H(y)‖

∣∣∣∣∣ ≤ C exp(−γt). (5.3.9)
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Moreover,X(t, y) is ergodic with respect to the microcanonical measure in the
following sense: For any functionϕ integrable with respect to the microcanonical
measure,

lim
T→∞

1

T

∫ T

0

ϕ(X(t, y)) dt =

∫

Σz

ϕ(y)
dσΣz

(y)

‖∇H(y)‖ , (5.3.10)

the convergence being almost sure, and inL1.

At the present time, we try to prove that numerical discretisations of (5.3.6)
that leave the energy surface invariant and that are consistent with the Stratonovich
integration are actually ergodic for the microcanonical measure.

5.4 Gaussian-wave packets dynamics

The paper[P17],written in collaboration with Christian Lubich, yields a numer-
ical schemes to simulate the Gaussian wave packet dynamics frequently used in
molecular dynamics to approximation the solution of the time dependent Schrödinger
equation. The algorithm is a reversible and explicit Poisson integrator whose
semi-classical limit turns out to be the Störmer-Verlet scheme.

Gaussian wavepacket dynamics is widely used in quantum molecular dynamics as
an approximation to the time-dependent Schrödinger equation, which we write as

iε
∂ψ

∂t
= Hψ, (5.4.1)

whereψ = ψ(x, t) is the wave function depending on the spatial variablesx =
(x1, . . . , xN) with xk ∈ R

d (e.g., withd = 1 or 3 in the partition) and the time
t ∈ R. Here,ε is a (small) positive number representing the scaled Planckconstant
andi is the complex imaginary unit. The Hamiltonian operatorH is written

H = T + V

with the kinetic and potential energy operators

T = −
N∑

k=1

ε2

2mk
∆xk

and V = V (x),



60 E. Faou

wheremk > 0 is a particle mass and∆xk
the Laplacian in the variablexk ∈ Rd,

and where the real-valued potentialV acts as a multiplication operator onψ.
In Gaussian wavepacket dynamics [49, 50, 51, 64, 93, 24, 8, 98] an approxi-

mation to the wave functionψ(x, t) is sought for in the form

u(x, t) = eiφ(t)/ε

N∏

k=1

ϕk(xk, t) (5.4.2)

with

ϕk(xk, t) = exp
( i
ε

(
ak(t) |xk − qk(t)|2 + pk(t) · (xk − qk(t)) + ck(t)

))
, (5.4.3)

where| · | and· denote the Euclidean norm and inner product onRd, respectively.
Here,ak = αk + iβk (with βk > 0) is a complex width parameter,ck = γk +
iδk is a complex phase parameter, andφ is a real phase. (Only the sum of the
phasesφ +

∑
k ck is determined uniquely. The partition of the phases is made

by convenience so that eachϕk is of constant norm.) The parametersqk ∈ Rd

andpk ∈ Rd represent the position and momentum average, respectively: qk =
〈xk〉 andpk = 〈−iε∇xk

〉. Here and in the following we denote the average of
observables along the approximate wave functionu by

〈A〉 = 〈 u |A | u 〉
/
‖ u ‖2

where‖ u ‖2 = 〈 u | 1 | u 〉 is the squaredL2 norm and, for real-valued functionsA,

〈 u |A | u 〉 =

∫

RD

A(x)

N∏

j=1

exp
(
− 2

ε

(
βj|xj − qj |2 + δj

))
dx, (5.4.4)

whereD = N ×d. The average〈A〉 of a real-valued functionA atu thus depends
only on the parametersqj , βj, andδj.

The Dirac-Frenkel-McLachlan variational principle [34, 39, 74] yields equa-
tions of motion for these parameters as derived by Heller [50]:

q̇k =
pk

mk

ṗk = −〈∇xk
V 〉

ȧk = −2a2
k

mk

− 1

2d
〈∆xk

V 〉

ċk =
iεdak

mk
+

ε

8βk
〈∆xk

V 〉

(5.4.5)
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and

φ̇ =
N∑

k=1

|pk|2
2mk

− 〈V 〉.

We show that the system (5.4.5) has a non-degenerate Poissonstructure, or
in other terminology, it is a non-canonical Hamiltonian system. In particular, it
preserves the total energy

〈H〉 =

N∑

k=1

( |pk|2
2mk

+
εd

2mk

α2
k + β2

k

βk

)
+ 〈V 〉. (5.4.6)

TheL2 norm of the approximation,‖u‖ =
√
〈 u | 1 | u 〉, is also preserved.

Our interest in [P17] is the structure-preserving time integration of the Gaus-
sian wavepacket equations (5.4.5). We propose and study a method that is based
on the splitting of (5.4.5) into the kinetic and potential energy parts, similarly as
is done in classical molecular dynamics in the Störmer-Verlet method [46, 75].
Since it turns out that the kinetic and potential energy subsystems can be solved
explicitly, this splitting yields a simple time-stepping algorithm for computing ap-
proximationsqn

k , p
n
k , a

n
k = αn

k + iβn
k , c

n
k = γn

k + iδn
k , andφn to the corresponding

parameters at timetn = n∆t. We denote the so obtained approximation tou(tn)
of (5.4.2) byun, and averages atun by

〈A〉n = 〈 un |A | un 〉
/
‖ un ‖2.

Algorithm. A step from timetn to tn+1 proceeds as follows:

1. With the averages determined from (5.4.4), compute

p
n+1/2
k = pn

k − ∆t

2
〈∇xk

V 〉n

αn,+
k = αn

k − ∆t

4d
〈∆xk

V 〉n (5.4.7)

γn,+
k = γn

k +
∆t ε

16βn
k

〈∆xk
V 〉n.

2. From the valuespn+1/2
k , an,+

k = αn,+
k + iβn

k andcn,+
k = γn,+

k + iδn
k compute
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qn+1
k , an+1,−

k = αn+1,−
k + iβn+1

k , andcn+1,−
k = γn+1,−

k + iδn+1
k via

qn+1
k = qn

k +
∆t

mk
p

n+1/2
k

an+1,−
k = an,+

k

/(
1 + 2

∆t

mk
an,+

k

)
(5.4.8)

cn+1,−
k = cn,+

k +
iεd

2
log

(
1 + 2

∆t

mk
an,+

k

)
.

3. Computepn+1
k , αn+1

k , γn+1
k from

pn+1
k = p

n+1/2
k − ∆t

2
〈∇xk

V 〉n+1

αn+1
k = αn+1,−

k − ∆t

4d
〈∆xk

V 〉n+1 (5.4.9)

γn+1
k = γn+1,−

k +
∆t ε

16βn+1
k

〈∆xk
V 〉n+1.

Finally, the phase is updated as

φn+1 = φn + ∆t
N∑

k=1

∣∣pn+1/2
k

∣∣2

2mk

− ∆t

2

(
〈V 〉n + 〈V 〉n+1

)
. (5.4.10)

Note that in Step 3. the averages〈A〉n+1 depend, in view of (5.4.4), only on
the parametersqn+1

k , βn+1
k , δn+1

k which are computed already in Step 2. These
averages can be reused in the subsequent time step.

We show that this method is a second-order, time-reversiblePoisson integra-
tor for (5.4.5), which preserves the total energy〈H〉n up toO(∆t2) over time
intervals that are exponentially long in∆t, i.e., of sizeO(ec/∆t) with a constant
c > 0, uniformly in ε. The norms‖un‖ are conserved exactly along the numerical
solutions. If the potential has a rotational symmetry so that the angular momen-
tum is conserved in the full quantum dynamics, then also the numerical integrator
preserves the angular momentum.

In the classical limitε → 0, the position and momentum approximationsqn
k , p

n
k

converge to the position and momentum approximations obtained by applying the
Störmer-Verlet method to the classical limit systemq̇k = pk/mk, ṗk = −∇qk

V (q).
We present the results of numerical experiments with the Hénon-Heiles and

Kepler Hamiltonians. Extensions of the algorithm to higher-order approxima-
tions, to non-spherical Gaussian wavepackets, and to splittings other than between
the kinetic and potential energy are briefly addressed.



Chapter 6

Hybrid methods for solving
parabolic PDEs

6.1 Analysis of splitting methods for reaction-diffusion
systems

This is a very recent work in a new direction. We show in[P25]how probabilistic
interpretations of splitting schemes for non linear parabolic equation can give
deterministic estimates, and provide new numerical schemes.

The equations we consider are of the form

∂u

∂t
(t, x) = ∆u(t, x) + g(u(t, x)), u(0, x) = u0(x) (6.1.1)

whereu(t, x) is a real function depending on the timet ≥ 0 and the space variable
x = (xi)

d
i=1 ∈ Rd, d ≥ 1. The operator∆ =

∑d
i=1 ∂

2
xi

is the Laplace operator
in Rd. The reaction termu 7→ g(u) is a real function defined onR such that
g(0) = 0. For simplicity, we often writeu(t) to denote the solution of (6.1.1) at
the timet ≥ 0. We defineet∆u0 andϕt(u0) the solutions at the timet ≥ 0 of the
equations

∂tv(t, x) = ∆v(t, x), v(0, x) = u0 (6.1.2)

and

∂tv(t, x) = g(v(t, x)), v(0, x) = u0 (6.1.3)

63
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respectively. We consider the approximations of the solution of (6.1.1) given by
the Lie-splitting methods:

u(t) ≃ ϕt(e
t∆u0) =: (ϕt ◦ et∆)(u0) (6.1.4)

and
u(t) ≃ et∆(ϕt(u0)) =: (et∆ ◦ ϕt)(u0). (6.1.5)

We also consider the following Strang-splitting method

u(t) ≃ ϕt/2(e
t∆ϕt/2(u0)) =: (ϕt/2 ◦ et∆ ◦ ϕt/2)(u0). (6.1.6)

The starting point is to write the preceding approximationsusing the Feynman-
Kac formula: For instance, we can write for allx,

(
et∆ ◦ ϕt(u0)

)
(x) = E(ϕt(u0(X

x
t ))) (6.1.7)

whereXx
t is the standardd-dimensional Wiener process inRd (scaled by a factor√

2) starting inx. Using this representation, the goal of the paper [P25] is twofold:

• Use stochastic calculus to obtain bounds for the error between u(t) and
the previous splitting approximations. In the linear case,this can be done
directly using the Feynman-Kac formula for the exact solution itself. In
the nonlinear case, it turns out that it is still possible to obtain estimates
using the Itô formula. We actually do not need to have a probabilistic rep-
resentation of the exact solution of (6.1.1), but rather only use probabilistic
representations of the splitting methods themselves. At the end, we obtain
deterministic bounds using stochastic methods.

• Use these probabilistic representations to derive new numerical schemes:
Indeed, ifh > 0 denotes a small stepsize, we approximateu(h) using (6.1.7)
by the Monte-Carlo formula

u(h, x) ≃ u1(x) :=
1

N

N∑

n=1

Φh(u0(X
x
h;n)) (6.1.8)

whereΦh is a numerical approximation of the flowϕh and where theXx
h;n,

n = 1, . . . , N are independent realizations of the processXx
h . After inter-

polatingu1, we can iterate the algorithm and obtain a numerical scheme.
This methods is a compromise between fully deterministic schemes where
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a space approximation of the Laplace operator would be used,and Monte-
Carlo or particles methods where the stochastic processes are simulated up
to the final timeT . We show by numerical experiment that schemes of the
form (6.1.8) are very efficient, even for relatively small values ofN . We
also show how this principle can be extended to other types ofpartial dif-
ferential equation, and we give numerical results for the Burgers equation.

It is worth noticing that the method we use can be applied to more general
situations. In particular, the results in [P25] extend straightforwardly to partial
differential equations of the form

∂tu = div(A(x)∇u) + f(x)T∇u+ g(u) (6.1.9)

whereA(x) is ad × d matrix such thatA = 1
2
σσT whereσ(x) is ad × d matrix,

and wheref(x) is a d-dimensional vector. In this case, the stochastic process
appearing in (6.1.7) in a splitting procedure between the linear and the nonlinear
part is replaced by the solution of the stochastic differential equation

dXx
t = f̃(Xx

t )dt+ σ(Xx
t )dWt, Xx

0 = x,

wheref̃(x) = f(x) +
∑d

i=1 ∂xi
Aij(x). In particular, we never use the regulariza-

tion properties of the heat equation semi group. For simplicity of the presentation,
we only consider the case whereA is the identity matrix, andf = 0.

The paper is organized as follows: We first study the linear case, i.e. systems
whereg(u) = V u, with a potential functionV (x) that depends on the space
variablex ∈ Rd. In this situation, many results already exist: See in particular
[54, 53, 33], the review in [91] and the reference therein. Wemention in particular
the results in [94] where a probabilistic method is used. As in our work, the
starting point is the Feynman-Kac formula. However, the analysis is made using
estimates on the probability transition kernel, while in our work we use directly the
Itô formula and basic estimates of solutions of stochastic differential equations.
As in [94], we obtain estimates inLp norms for arbitraryp. The proof of the main
result relies on the following: We write the Feynman-Kac formula for the exact
solution and for the solution of the splitting method. The difference is driven by
a quadrature error of the processV (Xx

t ) whereV is the potential function and
Xx

t the process in appearing in (6.1.7). We thus obtain directlythe result using
standard estimates for the expectation of Wiener processes.

In a second step, we study the nonlinear case (6.1.1) and showthe convergence
of the Lie and Strang splitting methods above under smoothness assumptions on
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the initial conditions. The method consists in studying thestochastic processs 7→
U(s) := ϕs(u(t − s,Xx

s )). At the times = 0, it is equal tou(t, x) and at the
time s = t, to ϕt(u0(Xt)) whose expectation gives the splitting scheme (6.1.7).
We use the Itô formula to expandU(s), and conclude by estimating the terms in
the expansion after taking the expectation. This method is familiar when working
with the approximations of parabolic PDE using Monte-Carlomethods: see for
instance [95]. For the analysis of splitting schemes applied to nonlinear reaction-
diffusion problem using deterministic methods, we refer to[32, 30, 31].

In the last section, we describe a hybrid Monte-Carlo methodfollowing from
the representation (6.1.7). We give a numerical example andcompare it with fully
Monte-Carlo methods in the linear case. We also show how thismethod can be
possibly extended to many various situation, as the Burgersequation for which
we show numerical experiments. This method is different from standard Monte-
Carlo or particle methods (see [6, 87]). In particular, though the splitting used
is similar to the one used in Puckett’s method [87], the method differs because
each stochastic process is simulated from points on a fixed grid at each time step,
while in particles methods, the processes are simulated up to the final time. The
price to pay is the interpolation made at each time-step, butthe advantage is that
the processes appearing in the algorithm have all small variances, and hence the
number of realizationsN can be taken much smaller than usual.
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