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Abstract. We consider the approximation of multi-particle quantum dynamics in the semi-
classical regime by Hagedorn wavepackets, which are products of complex Gaussians with polyno-
mials that form an orthonormal L2 basis and preserve their type under propagation in Schrödinger
equations with quadratic potentials. We build a time-reversible, fully explicit time-stepping algo-
rithm to approximate the solution of the Hagedorn wavepacket dynamics. The algorithm is based
on a splitting between the kinetic and potential part of the Hamiltonian operator, as well as on a
splitting of the potential into its local quadratic approximation and the remainder. The algorithm is
robust in the semi-classical limit. It reduces to the Strang splitting of the Schrödinger equation in the
limit of the full basis set, and it advances positions and momenta by the Störmer–Verlet method for
the classical equations of motion. The algorithm allows for the treatment of multi-particle problems
by thinning out the basis according to a hyperbolic cross approximation, and of high-dimensional
problems by Hartree-type approximations in a moving coordinate frame.
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1. Introduction. We consider the time-dependent Schrödinger equation in semi-
classical scaling,

iε
∂ψ

∂t
= Hψ, (1.1)

where ψ = ψ(x, t) is the wave function depending on the spatial variables x =
(x1, . . . , xN ) and the time t ∈ R. Here, ε is a small positive number representing
the scaled Planck constant and i is the imaginary unit. The Hamiltonian operator H ,
which depends on ε, is written

H = T + V

with the kinetic and potential energy operators

T = −
N∑

j=1

ε2

2mj

∂2

∂x2
j

and V = V (x),

where mj > 0 is a particle mass and where the real-valued potential V acts as a
multiplication operator on ψ.

For example, in quantum molecular dynamics, (1.1) is a Schrödinger equation for
the nuclei on an electronic energy surface in the time-dependent Born–Oppenheimer
approximation (see, e.g., [19, 20, 13]). Here ε2 is the mass ratio between electrons
and nuclei, of magnitude 10−4.

Numerical approaches to solving (1.1) face two principal difficulties:
• Highly oscillatory solutions: Typical solutions are wavepackets of width ∼ √

ε,
oscillatory with wavelength ∼ ε, with the envelope moving at velocity ∼ 1.
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• High dimension: For n particles, the spatial dimension in (1.1) is N = 3n.

Because of the highly oscillatory solution behaviour, grid-based methods need very
fine resolution for small ε and hence become computationally expensive or infeasible;
cf. [14]. This also precludes the approximation of the wave function on sparse grids in
higher dimensions, because the necessary smoothness requirements for this technique
are not met for small ε [4].

On the other hand, it is known that moving complex Gaussians approximate so-
lutions to (1.1) with an error of O(

√
εt) [6]. The model reduction from full quantum

dynamics to Gaussian wavepacket dynamics [10, 11] allows for computationally effi-
cient algorithms [3], but is often not accurate enough. Higher asymptotic accuracy
in ε can be analytically proved for approximations of the wave function by complex
Gaussians times polynomials [7, 8]. For the proof, Hagedorn [8] constructs particu-
lar, parameter-dependent L2-orthonormal basis functions. In one space dimension,
they are just scaled and shifted Hermite functions, but in higher space dimensions
they are both more general and suitable than tensor products of Hermite functions.
The main contribution of the present paper is to turn the Hagedorn functions into a
computational tool for the numerical solution of (1.1).

In Section 2 we briefly review Hagedorn’s parametrization of Gaussian wave pack-
ets and his parameter-dependent orthonormal basis functions (see also [13, Chap. V]
for a self-contained concise review of Hagedorn’s [6, 8] approach).

Section 3 describes our time-stepping algorithm working with the Hagedorn func-
tions. It is based on a splitting into kinetic and potential energy in (1.1) and on a
further splitting into the local quadratic approximation at the current classical posi-
tion and the non-quadratic remainder. The latter is treated by a Galerkin approach
with the Hagedorn basis for the current parameters, while the kinetic and quadratic
part yield simple equations for the time evolution of the parameters. This approach
yields an explicit time-stepping algorithm that is robust for ε → 0 and enjoys a
number of remarkable properties.

Section 4 deals with the computation of the Galerkin matrix for the non-quadratic
remainder or of its action on coefficient vectors, which is all that is needed in a short
Lanczos iteration for computing the time-dependent Galerkin approximation. With
the use of a hyperbolic-cross reduction of the multi-dimensional basis set, the com-
putational work is reduced from KN to O(K(logK)N−1), where K is the maximum
number of basis functions and quadrature points along a single coordinate direction.

Section 5 presents numerical experiments. We give detailed comparisons with
the full and sparse Fourier method in dimension 2 and also present some results of
computations in dimension 5.

In the present paper we concentrate on the conceptual and algorithmic aspects of
the approach. Error analyses of (some of) the various approximations involved will
be given elsewhere.

2. Building blocks.

2.1. Hagedorn wavepackets. We are looking for approximations to the Schröd-
inger equation that are products of complex Gaussians with polynomials. Represent-
ing the polynomials in a basis of scaled Hermite polynomials is very appropriate in 1
space dimension [2], but in the multi-dimensional case, simply taking tensor products
of Hermite polynomials (be it with a moving frame of coordinates) turns out to lead
to a number of both theoretical and computational difficulties. These are overcome in
an alternative extension to higher dimensions due to Hagedorn [8]. While the beauti-
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ful theoretical properties of this approach are evident from [8], it appears that so far
they have not been put to use in computational algorithms.

In Hagedorn’s approach [6], a Gaussian wavepacket is parametrized as1

ϕε
0[q, p,Q, P ](x)

= (πε)−N/4(detQ)−1/2 exp
( i

2ε
(x− q)TPQ−1(x− q) +

i

ε
pT (x− q)

)
, (2.1)

where q ∈ RN and p ∈ RN represent the position and momentum, respectively, and
Q and P are complex N ×N matrices satisfying the relations

QTP − PTQ = 0 (2.2)

Q∗P − P ∗Q = 2iI . (2.3)

Here QT denotes the transpose of Q, and Q∗ is the transpose and conjugate complex
matrix. As is explained in [8], these two equations imply that both Q and P are
invertible, and PQ−1 is complex symmetric with positive definite imaginary part:

Im PQ−1 = (QQ∗)−1 . (2.4)

Conversely, every complex symmetric matrix with positive definite imaginary part
can be written as PQ−1 with Q and P satisfying (2.2),(2.3). We further note that
(2.2),(2.3) are equivalent to stating that the matrix

Y =

(
ReQ ImQ
ReP ImP

)
is symplectic: Y TJY = J with J =

(
0 −I
I 0

)
.

Hagedorn constructs a complete L2-orthonormal set of functions

ϕk(x) = ϕε
k[q, p,Q, P ](x) ,

for multi-indices k = (k1, . . . , kN ) with non-negative integers kj . This is done recur-
sively as follows. Let x denote the position operator (acting on functions of x by
multiplication with x), and y = −iε∇x the momentum operator, and introduce the
raising operator R and lowering operator L as

R = (Rj) = − i√
2ε

(
P ∗(x− q) +Q∗(y − p)

)
.

L = (Lj) =
i√
2ε

(
PT (x− q) +QT (y − p)

)
.

With 〈j〉 = ej = (0 . . . 1 . . . 0) denoting the jth unit vector, set

ϕk+〈j〉 =
1√
kj + 1

Rjϕk . (2.5)

It then turns out that these functions are orthonormal. Moreover, we have

ϕk−〈j〉 =
1√
kj

Ljϕk ,

1In the notation used here, Q and P correspond to A and iB of [6, 7, 8], respectively. This
notation is motivated by the equations of motion of Q and P , which then become the linearized
classical equations for position and momentum, respectively.
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(the right-hand side is zero if kj = 0), and the functions ϕk are polynomials of degree
|k| = k1 + · · ·+ kN multiplied with the Gaussian ϕ0. Since the above relations imply
[8, (3.28)]

x− q =

√
ε

2
(QR +QL) ,

we obtain the recurrence relation

Q
(√

kj + 1ϕk+〈j〉(x)
)N

j=1
=

√
2

ε
(x− q)ϕk(x) −Q(

√
kj ϕk−〈j〉(x)

)N

j=1
, (2.6)

which permits us to compute the functions ϕk at any given value x.
We will approximate solutions to the Schrödinger equation (1.1) in the form

ψ(x, t) ≈ u(x, t) = eiS(t)/ε
∑

k∈K

ck(t)ϕε
k[q(t), p(t), Q(t), P (t)](x) (2.7)

where the finite multi-index set K is such that for every k ∈ K, also k−〈j〉 ∈ K if kj >
0. In higher dimensions, the full cube kj ≤ K (j = 1, . . . , N) is not computationally
tractable and is replaced by a hyperbolic cross (1 + k1) · . . . · (1 + kN ) ≤ K or by the
cross of the axes where kj > 0 only for a single component j in each k. The latter
corresponds to a Hartree-type approximation in a moving frame.

In the following sections we will give a fully discrete, explicit, and time-reversible
time-stepping algorithm to propagate the Gaussian parameters q(t), p(t), Q(t), P (t),
the phase S(t), and the coefficients ck(t).

2.2. Splitting into bits and pieces. Our algorithm is based on the splitting
between the kinetic and potential operators T and V . We consider the free linear
Schrödinger equation

iε
∂ψ

∂t
= −

N∑

j=1

ε2

2mj

∂2ψ

∂x2
j

(2.8)

and the potential equation

iε
∂ψ

∂t
= V (x)ψ. (2.9)

The potential will be further decomposed into its quadratic part at the current position
q and the non-quadratic remainder.

We now describe the three main ingredients in the time-stepping algorithm. Start-
ing with a Hagedorn wavepacket (2.7) as initial data for the Schrödinger equation, we
make use of the following:

• We can solve exactly the free linear Schrödinger equation (2.8), with the
wavefunction remaining in the Hagedorn wavepacket form (2.7) with unal-
tered coefficients ck.

• For a quadratic potential, we can solve exactly the potential equation (2.9)
with the wavefunction remaining in the Hagedorn wavepacket form (2.7) with
the same coefficients ck.

• For an arbitrary potential, we can compute the Galerkin approximation of
the potential equation (2.9) on the linear space spanned by the functions ϕk

with fixed parameters q, p,Q, P , letting the coefficients ck in the formulation
(2.7) vary.
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2.3. Kinetic part and quadratic potential. The following two propositions
are direct consequences of [8, Theorem 3.4].

Proposition 2.1. A time-dependent Hagedorn wavepacket (2.7) solves the free
Schrödinger equation (2.8) if

q(t) = q(0) + tM−1p(0)

Q(t) = Q(0) + tM−1P (0)

S(t) = S(0) + 1
2 t p(0)TM−1p(0)

and p(t) = p(0), P (t) = P (0), ck(t) = ck(0). (Here, M =diag(mj) is the mass
matrix.)

Proposition 2.2. Let U(x) be a quadratic potential. A time-dependent Hagedorn
wavepacket (2.7) solves the potential equation (2.9) with V = U if

p(t) = p(0) − t∇U(q(0))

P (t) = P (0) − t∇2U(q(0))Q(0)

S(t) = S(0) − t U(q(0))

and q(t) = q(0), Q(t) = Q(0), ck(t) = ck(0). (Here, ∇U denotes the gradient and
∇2U the Hessian matrix of U .)

2.4. Galerkin approximation for non-quadratic potentials. Let W (x) be
a given (non-quadratic) potential. We consider the potential equation (2.9) with
V = W . We let the Gauss parameters q, p,Q, P fixed and consider the linear space

M[q, p,Q, P ] = { v ∈ L2(RN ) : v(x) =
∑

k∈K

ck ϕ
ε
k[q, p,Q, P ](x), ck ∈ C }

where ϕk = ϕε
k[q, p,Q, P ] are the Hagedorn functions (2.5) associated with the fixed

Gaussian parameters q, p,Q, P . The variational approximation on M[q, p,Q, P ] can
be written:

At every time t, determine ∂tu ∈ M[q, p,Q, P ] such that

∀ k ∈ K, 〈ϕk , εi∂tu−Wu〉 = 0. (2.10)

The following is then straightforward:
Proposition 2.3. The Galerkin approximation (2.10) is equivalent to the linear

system of ordinary differential equations

iε
dck
dt

=
∑

ℓ∈K

fkℓcℓ, k ∈ K,

where

fkℓ = 〈ϕk|W |ϕℓ〉 =

∫

RN

ϕk(x)W (x)ϕℓ(x) dx . (2.11)

If c(t) denotes the vector with components ck(t), k ∈ K, the solution of this problem
is thus given by the action of the exponential of the Hermitian matrix F = (fkℓ):

c(t) = exp
(
− it
ε
F

)
c(0).

We note that F = O(ε3/2) if the quadratic Taylor polynomial of W at q vanishes.
The computation of the matrix exponential times a vector can then be done efficiently
using just a few Lanczos iterations with F [12]. The efficient computation of the
multi–dimensional integrals in (2.11) is discussed in Section 4.
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3. The time-stepping algorithm.

3.1. Abstract formulation. For given parameters Γ0 = (q0, p0, Q0, P 0, S0) and
coefficients c0 = (c0k)k∈K, we denote

• by Tt(Γ
0, c0) the solution to the free Schrödinger equation given by Proposi-

tion 2.1,
• by Ut(Γ

0, c0) the solution of the quadratic-potential equation given by Propo-
sition 2.2,

• and by Wt(Γ
0, c0) the propagator given by Proposition 2.3.

A noteworthy fact is that with both propagators Ut and Wt, the parameters q
and Q remain constant. Moreover, the propagators Ut and Wt commute. This can
be straightforwardly seen from the expressions in Propositions 2.2 and 2.3.

The algorithm is based first on the splitting between the kinetic and potential
operators, and secondly on a splitting of the potential into its quadratic part at the
current position and the remainder.

For a given stepsize ∆t, the time-stepping algorithm is described briefly as follows:

1. Half-step of kinetic part. We define the parameters (Γ1/2,−, c0) by ap-
plying the propagator T∆t/2 starting from (Γ0, c0). This yields updates q1/2,

Q1/2, and S1/2,−.
2. Full step of potential part. We split the potential V (x) into its quadratic

Taylor expansion around q1/2 and the corresponding remainder term: We
define the potentials

U1/2(x) = V (q1/2) +∇V (q1/2) (x− q1/2) +
1

2
(x− q1/2)T∇2V (q1/2)(x− q1/2)

as the local quadratic approximation to V (x), and the remainder

W 1/2(x) = V (x) − U1/2(x).

• We determine the parameters (Γ1/2,+, c0) by applying the propagator
U∆t associated with the quadratic potential U1/2 starting from (Γ1/2,−, c0).
This yields updates p1, P 1 and S1/2,+.

• We determine the coefficients c1 using the propagator W∆t associated
with the non-quadratic remainder W 1/2 starting from c0.

3. Half-step of kinetic part. We define the parameters (Γ1, c1) by applying
the propagator T∆t/2 starting from (Γ1/2,+, c1). This yields updates q1, Q1,
and S1.

3.2. Properties. The algorithm is of second order accuracy in the parameters
q, p,Q, P, S and ck and enjoys a number of attractive conservation and limit properties:

• The algorithm is time-reversible. This is due to the fact that Ut and Wt

commute, and that in the potential stage, the positions q and the width
matrix ImPQ−1 = (QQ∗)−1 remain unchanged.

• The algorithm preserves the symplecticity relations (2.2) and (2.3) between
the matrices Q and P , since it is a composition of exact flows with no or
a quadratic potential, and Q and P are not modified in the step with the
non-quadratic remainder.

• The algorithm preserves the L2 norm of the wavepacket, since the Hagedorn
functions ϕk are orthonormal and the propagation of the coefficients (ck) is
unitary.
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• For the position and momentum parameters q and p, the algorithm coincides
with the Störmer-Verlet algorithm [9] applied to the corresponding classical
equations of motion: in the kinetic part, we have the momentum p0 unchanged
and q1/2 = q0+ ∆t

2 p
0, whereas in the quadratic potential part, q1/2 is constant

while p1 = p0 − ∆t∇V (q1/2).
• In the limit of taking the full basis set ϕk with all k ∈ NN , the variational

approximation used in the remainder propagator becomes exact. Since Ut

and Wt commute, the second step in the previous algorithm asymptotically
tends to the solution of the potential equation (2.9) in L2. Hence, in this
limit the algorithm converges towards the Strang splitting (or symmetric Lie-
Trotter splitting) exp(− i

ε∆tH) ≈ exp(− i
ε

∆t
2 T ) exp(− i

ε∆tV ) exp(− i
ε

∆t
2 T ) of

the Schrödinger equation.
• The algorithm is robust in the classical limit ε → 0 : The propagator of the

non-quadratic remainder, W∆t, is O(ε1/2∆t) close to the identity operator,
since W 1/2 is at least cubic in (x − q1/2). Hence the approximation in the
potential part becomes exact for ε → 0, while the kinetic part is anyway
solved exactly for all ε.

3.3. The practical time-stepping algorithm. We now give a full algorithmic
description. Assume that the stepsize ∆t is given, and let the real N -vectors qn, pn,
the complex N ×N matrices Qn, Pn, the real scalar Sn, and the complex coefficient
vector cn =

(
cnk

)
k∈K

be such that

un = eiSn/ε
∑

k∈K

cnk ϕ
ε
k[qn, pn, Qn, Pn]

is an approximation to the solution of the Schrödinger equation (1.1) at time tn = n∆t.
To compute the approximation un+1 at time tn+1 we proceed as follows:

1. Compute qn+1/2, Qn+1/2, and Sn+1/2,− via

qn+1/2 = qn +
∆t

2
M−1pn

Qn+1/2 = Qn +
∆t

2
M−1Pn (3.1)

Sn+1/2,− = Sn +
∆t

4
pnTM−1pn .

2. Compute pn+1, Pn+1, and Sn+1/2,+ via

pn+1 = pn − ∆t∇V (qn+1/2)

Pn+1 = Pn − ∆t∇2V (qn+1/2)Qn+1/2 (3.2)

Sn+1/2,+ = Sn+1/2,− − ∆t V (qn+1/2) .

3. Update the coefficient vector cn+1 = (cn+1
k )k∈K as

cn+1 = exp(−∆t
i

ε
Fn+1/2) cn. (3.3)

Here, Fn+1/2 = (fkℓ)k,ℓ∈K is the Hermitian matrix with entries

fkℓ = 〈ϕn+1/2
k |Wn+1/2 |ϕn+1/2

ℓ 〉, (3.4)
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where ϕ
n+1/2
k = ϕε

k[qn+1/2, pn+1, Qn+1/2, Pn+1] are the Hagedorn basis func-
tions and

Wn+1/2(x) = V (x) − Un+1/2(x)

is the remainder in the local quadratic approximation to V , given at q =
qn+1/2 by Un+1/2(x) = V (q) + ∇V (q) (x − q) + 1

2 (x − q)T∇2V (q) (x − q).

Note that fkℓ actually depends only on qn+1/2 and Qn+1/2, but not on pn+1

and Pn+1, since the imaginary parts in the arguments of the Gaussian cancel
out in (3.4).

4. Compute qn+1, Qn+1, and Sn+1 via

qn+1 = qn+1/2 +
∆t

2
M−1pn+1

Qn+1 = Qn+1/2 +
∆t

2
M−1Pn+1 (3.5)

Sn+1 = Sn+1/2,+ +
∆t

4
pn+1,TM−1pn+1.

4. Computing the contribution of the non-quadratic remainder. In the
above algorithm, Step 3 treating the non-quadratic remainder of the potential is the
computationally most expensive part of the algorithm, since it requires the computa-
tion of the multi-dimensional integrals (3.4) and of the action of the matrix exponential
in (3.3). The latter can be done efficiently by Lanczos iterations as studied in [12] and
first proposed in [17]. Since ‖F‖ = O(ε3/2), only few Lanczos iterations are needed.

Here we describe two approaches to compute the Galerkin matrix for the non-
quadratic remainder, F = (〈ϕk |W |ϕℓ〉)k,ℓ∈K, of (3.4) or its action on a coefficient
vector c = (ck)k∈K, as is needed in the Lanczos iteration. The second approach
appears particularly promising for higher-dimensional problems.

4.1. Computing the matrix elements by Gauss-Hermite quadrature.

Formulas (2.1) and (2.6) show that with the change of variables x = q+
√
ε|Q|y with

|Q| = (QQ∗)1/2 we can write

ϕk(x)ϕℓ(x) = | detQ| εN/2 φk(y)φℓ(y)

with the ε-independent functions φk given recursively by

φ0(y) = π−N/4e−|y|2/2 (4.1)

Q
(√

kj + 1φk+〈j〉(y)
)N

j=1
=

√
2 |Q|y φk(y) −Q(

√
kj φk−〈j〉(y)

)N

j=1
. (4.2)

We note that φk(y) = pk(y)e−|y|2/2 with some polynomial pk(y) of degree k1+· · ·+kN .
With these functions we thus have

∫

RN

ϕk(x)W (x)ϕℓ(x) dx =

∫

RN

φk(y)W (q +
√
ε|Q|y)φℓ(y) dy .

We use multi-dimensional Gauss-Hermite quadrature for the latter integral; cf. [1,
p. 174]. We denote by γm and ωm the quadrature points and weights, respectively,
for multi-indices m = (m1, . . . ,mN ) with mj = 1, . . . ,M , and approximate

∫

RN

f(y) dy ≈
∑

m

ωm f(γm).
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We have γm = (ξm1
, . . . , ξmN

), where the ξi are the zeros of the Mth degree Hermite
polynomial HM . The weights are

ωm = wm1
· . . . · wmN

with wi =

√
π

M · hM−1(ξi)2
.

Here hM−1 is the (M − 1)-th Hermite function, which is computed in a stable way
via the recurrence relation (4.1)–(4.2) with N = 1 and Q = 1. Then, the quadrature

formula is exact for all f(y) = e−|y|2p(y) with p(y) a polynomial of degree up to 2M−1
with respect to every coordinate. In this way we compute the matrix elements of (3.4):

〈ϕk |W |ϕℓ〉 ≈ 〈ϕk |W |ϕℓ〉GH =
∑

m

ωm φk(γm)W (q +
√
ε|Q|γm)φℓ(γm) .

In higher dimensions, instead of the full tensor grid with MN quadrature points, one
can use sparse Gauss-Hermite quadrature with O(M2(logM)N−1) evaluations of the
potential; cf. [13, Sect. III.1.2].

4.2. Computing the action of the Galerkin matrix. An alternative ap-
proach to computing the product of the matrix F = (〈ϕk |W |ϕℓ〉) with a vector c,
as is required in the Krylov subspace approximation to exp(−∆t i

εF )c in (3.3), is now
described. This is applicable if the potential W is given as (or approximated by)

W (x1, . . . , xN ) =

R∑

r=1

αr p
1
r(x1) . . . p

N
r (xN )

with univariate polynomials pj
r.

First we assume the case of a full tensor set of multi-indices K = {0, . . . ,M−1}N

in (2.7). We consider the matrix of the jth coordinate function (for j = 1, . . . , N),

Xj = (xj
kℓ) with xj

kℓ = 〈ϕk |xj |ϕℓ〉 for k, ℓ ∈ K.

Since the Gauss-Hermite quadrature here is exact, we have

Xj = U∗ΓjU with Γj = diag(γj
m) and

U = (umℓ) with umℓ =
√
ωm φℓ(γm).

By the orthogonality of the Hagedorn functions ϕℓ and again by the exactness of the
Gauss-Hermite quadrature for their inner products, the matrix U is unitary: U∗U = I
and, since U is quadratic, also UU∗ = I. It then follows that the matrices X1, . . . , XN

commute, and for any univariate polynomial p, the matrix

Pj = (pj
kℓ) with pj

kℓ = 〈ϕk | p(xj) |ϕℓ〉GH for k, ℓ ∈ K

is given by

Pj = p(Xj).

Therefore, we obtain that the Gauss-Hermite quadrature approximation F ≈ F̃ =(
〈ϕk |W |ϕℓ〉GH

)
k,ℓ∈K

is given as

F̃ = W (X1, . . . , XN) =

R∑

r=1

αr p
1
r(X1) . . . p

N
r (XN ) . (4.3)
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Using the recurrence relation (2.6) and the orthogonality of the Hagedorn functions,
it turns out that the action of Xj on a vector c = (ck)k∈K is readily computed:

(
(Xjc)k

)N

j=1
= ck q +

√
ǫ

2
Q

(√
kj ck−<j>

)N

j=1
+

√
ǫ

2
Q

(√
kj + 1 ck+<j>

)N

j=1
(4.4)

for all k ∈ K. This remarkably simple formula enables us to computeXjc in O(N ·#K)
operations. With (4.3), we can thus

compute F̃ c in O(N · #K · d) operations,

where d =
∑R

r=1

∑N
j=1 deg pj

r is the sum of all polynomial degrees.
We can use the approximation (4.3) with (4.4) also when K is not the full multi-

index set with MN elements, but a hyperbolic cross with #K = O(M · (logM)N−1)
elements.

5. Numerical experiments. We consider the following settings for the simu-
lations:

(a) The torsional potential is

V (x) =

N∑

j=1

(1 − cos(xj)) .

As initial value we take the normed Gaussian wavepacket in Hagedorn’s
parametrization (2.1) with the identity matrix Q = IN and P = iIN , lo-
calized around q = (1, 0, . . . , 0)T and with p = 0.

(b) The modified Henon-Heiles potential as in [15] and [18] is defined as:

V (x) =
1

2

N∑

j=1

σjx
2
j +

N−1∑

j=1

(
σ∗(xjx

2
j+1 −

1

3
x3

j ) +
1

16
σ2
∗(x

2
j + x2

j+1)
2

)

with harmonic part coefficients σj = 1 and the mixing coefficient σ∗ = 0.2.
In the case N = 2, we take the initial conditions from [15], i.e., a normed
Gaussian wavepacket with q = (1.8, 0)T , p = (0, 1.2)T , and with the matrices
Q =

√
2 ·diag(

√
0.56,

√
0.24), P = iQ−1 in Hagedorn’s parametrization (2.1).

5.1. Comparison with the Fourier method. The periodicity and the smooth-
ness of the torsional potential make it ideal for comparison tests with the Fourier
method. We take a uniform grid with (2r)2 points on [−π, π]2. In the cases ǫ = 0.1, 0.01
the choice r = 11 together with the Strang-splitting in time gives a good approxima-
tion to the solution of the time dependent Schrödinger equation, whereas ǫ = 10−3

needs a Fourier resolution of r = 12. We take the Fourier solution as reference for
a comparison with the solution obtained by the Hagedorn wavepackets. We fix the
time-step ∆t = 0.01 and approximate by sparse Hagedorn wavepackets (2.7) with
K = {(k1, k2) : (1 + k1)(1 + k2) ≤ K} with K = 8, i.e., we use 20 basis functions.
We compute the values of the solutions at the Fourier grid points. If we compare
these values directly, we expect a phase-error of order (∆t)2/ǫ. If we compare the
absolute values of the two solutions, we have only the error of order (∆t)2, and this
is the quantity we plot against time in Figure 5.1. On the right side of this figure we
compare the absolute values of the Fourier solutions at levels r = 10 and r = 12 at
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ǫ = 0.1, 0.01, 0.001. We note that contrary to the Fourier method, the method based
on the Hagedorn wavepacket improves for small ǫ.

Fig. 5.1. Time evolution of the maximum error in the absolute values of the wave function:
Hagedorn with 20 basis functions (left) and Fourier with (2r)2 basis functions for r = 10 (right).

Fig. 5.2. Fourier: total energy conservation for ǫ = 10−3 at resolutions r = 10 (left) and
r = 12 (right); the kinetic and the potential energy (dotted line) oscillate.

Fig. 5.3. Hagedorn: energy deviation and evolution (right at ǫ = 10−3).

We observe from Figure 5.2 that even though the total energy is well conserved



12 E. Faou, V. Gradinaru, and C. Lubich

at the level r = 10, the resolution of the full grid Fourier method must be increased
to r = 12 in the case ǫ = 0.001 in order to get a correct energy exchange. Moreover,
at resolution r = 11, the picture of the energies looks very much like the right part of
Figure 5.2, even if the maximum error is about 0.7. On the contrary, the Hagedorn
wavepacket with 20 basis functions gives a better approximation of the energies as
Figure 5.3 shows.

Raising the dimension of the space N makes the costs of the full-grid Fourier
method prohibitive. An alternative is to consider the Fourier method on sparse grids
[4]. However, as is explained in detail in [5], this alternative suffers from an aliasing
problem that makes it incompatible with small ǫ and hence is not well suited for a
semi-classical approximation. We illustrate this fact in Figure 5.4. Here, we take as
reference the full grid Fourier method at level r = 10 using (210)2 = 1048576 points.
We display the maximum error at the grid points that are common to the full grid
and to sparse grids at levels 13, 14, and 15, having, respectively 77 825, 163 841,
and 344 065 points. We see that for smaller ǫ, we need to increase the resolution of
the grid. Hence, even if it lessens the curse of dimensionality, the sparse grid Fourier
method is not well suited for small ǫ [4].

Fig. 5.4. Maximum error in the sparse Fourier method: level 13 for ǫ = 0.1 (left) and levels
14 and 15 for ǫ = 0.01 (right).

We focus on the modified Henon-Heiles potential for the rest of the numerical
experiments. Similar results arise in the case of the torsional potential.

5.2. Convergence in time. A sparse Hagedorn wavepacket is now propagated
with different time-steps. The solution computed with the smallest time-step 0.1 ·
2−11 = 9.765625 · 10−5 serves as reference solution and is compared to the solutions
obtained with other time-steps. Given enough observation points in the space domain,
we look at the maximum error in the absolute values of the wave function at time
t = 1 and t = 5. The plots for different ǫ are indistinguishable in Figure 5.5. The
temporal convergence is of order 2, uniformly in ǫ.
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Fig. 5.5. Convergence in time at t = 1 and t = 5: indistiguishable error curves for different ǫ.

5.3. Variable number of basis functions. Sparse Hagedorn wavepackets with
different numbers of basis functions are now propagated with the fixed time-step 10−2.
The solution computed with the largest set of basis functions (i.e., 645, hyperbolic
cross with K = 27) serves as reference solution and is compared to the solutions
obtained at other resolutions. Given enough obervation points in the space domain,
we look at the maximum error of the absolute values at time t = 1 and t = 5. We
notice that the convergence improves with smaller ǫ. However, we do not observe
satisfactory convergence for long times, unless ǫ is very small.

Fig. 5.6. Maximum error versus number of basis funtions at t = 1 and t = 5.

5.4. Computations in dimension N = 6. Let us end with two plots of the
evolution of the energies in dimension N = 6. First, we extend our considered two
dimensional Henon-Heiles model. We take initial values q = (1.8, 0, . . . 0)T , p =
(0, 1.2, 0, . . . , 0)T , Q =

√
2 · diag(

√
0.56,

√
0.24, 1, . . . , 1), P = iQ−1. In this case, we

plot the total, the potential and the kinetic energy (dotted line) on the left of the
Figure 5.7. The right side of the Figure 5.7 has parameters similar to [16]. Now, we
have σ∗ = 1/

√
80 and the initial data given by q = (2, . . . , 2)T , p = 0 and identity

matrix Q. Both computations are done with ǫ = 10−2, a time-step 10−2 and a sparse
Hagedorn wavepacket with K = {(k1, . . . , kN ) :

∏N
j=1(1+kj) ≤ K} and K = 8, hence

with 138 basis functions.
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Fig. 5.7. Energy evolution for the two benchmarks in dimension N = 6 at ǫ = 10−2.
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363–374.

[8] G.A. Hagedorn, Raising and lowering operators for semi-classical wave packets. Ann. Physics
269 (1998), 77–104.

[9] E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration illustrated by the Störmer-
Verlet method. Acta Numerica 12 (2003), 399–450.

[10] E.J. Heller, Time dependent approach to semi-classical dynamics. J. Chem. Phys. 62 (1975),
1544–1555.

[11] E.J. Heller, Time dependent variational approach to semi-classical dynamics. J. Chem. Phys.
64 (1976), 63–73.

[12] M. Hochbruck, C. Lubich, On Krylov subspace approximations to the matrix exponential op-
erator. SIAM J. Numer. Anal. 34 (1997), 1911–1925.

[13] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical
Analysis. EMS Zürich, 2008.
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