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Abstract

In this paper, we are concerned with the numerical solutfdmghly-oscillatory Hamiltonian systems
with a stiff linear part. We construct an averaged systemsghsmlution remains close to the exact one
over bounded time intervals, possesses the same adiabdtitaaniltonian invariants as the original sys-
tem, and is non- stiff. We then investigate its numericakagjmation through a method which combines
a symplectic integration scheme and an acceleration tgabrior the evaluation of time-averages devel-
opped in ECC™ 05]. Eventually, we demonstrate the efficiency of our approachwo test problems
with one or several frequencies.
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1 Introduction

There are many different systems in nature whose evolutiacdurately described by Hamilton’s equations.
These are obtained from a variational principle and can bhealyg derived from a single scalar function,
called the Hamiltonian, which is an invariant of the proble®hysically, it represents the (constant) energy
of the system. Hamiltonian systems have the fundamentadepiy that their exact flow is a symplectic
transformation (see for instancell[WO06]) and often behave in a very remarkable way (as explained by
the celebrated theory of Kolmogorov, Arnold and Mosem63, Kol54, Mos62). These features motivate,
in accordance with the aims geometricintegration, the introduction adymplecticnumerical flows that
approximate the exact flow when, as occurs in practice, nreedl@xpression of the solution can be found.
Symplectic integration methods preserve the sympledticire of the Hamiltonian system and it has been
shown that they also preservenadifiedHamiltonian function over exponentially long intervalstiohe. The
theory sustaining this remarkable result, knowrbaskward error analysisHiLOOa, Rei99, is the key to
many theoretical results describing the qualitative biehavof numerical schemes applied to Hamiltonian
systems.



In this paper however, we are concerned more specifically Wémiltonian systems whose solution is
highly-oscillatory. A simple yet representative model of Hamiltonian systenosehsolutions are highly-
oscillatory in character is given by the second-order dhfféial system

E(t) + Q2x(t) = g(x(t)), (1.1)

where z(t) € R™*? is a function depending on timeé > 0 and Q is a positive semi-definite matrix
with somelarge eigenvalues, and wherg(z) = —VU (x) derives from a potential functiod/(z) . The
corresponding Hamiltonian function is of the ford (z,4) = ||&|? + 3//Qz[|> + U(z) . In order to get
a bounded error propagation for the purely linear cage=(0 ) with a given explicit numerical method, the
step sizeh must be restricted according to

hw < C,

where C' is a constant depending on the numerical method@nd the largest frequency if . In applica-
tions to molecular dynamics for instandastforces crudely modelized here by the ternf2?z (short-range
interactions) are much cheaper to evaluate slaw forces deriving fromU (long-range interactions). In
this case, it thus seems highly desirable to design nunmenietnods for which the number of evaluations of
slow forces is not (at least not too much) affected by thegmes of fast forces.

Another very undesirable consequence of the presencegsf fegquencies is the failure of backward
error analysis forhw >> 1, for which all bounds of error terms involve the produet . This prevents
one from drawing any conclusion from the existence of a medlifiystem and so an alternative theory has
to be proposed. Very recently, Cohen, Hairer and LubfCHIL03, CHLO5] have introduced the so-called
modulated Fourier expansiomwhich brings new light on the behaviour of highly-oscitlat Hamiltonian
systems. In their approach they consider the situation otiacks of frequencies i , where the first block
corresponds to the frequency zero and the other one is sopladarge parameter (this will constitute our
framework in this paper). Their contribution explains tle®d behaviour of certain Gautschi type methods
[Gau6l Deu79 GASSS99HL99, HLOOK], as far as preservation of the total energy and almostimves
of oscillatory energiesadiabatic invariant} is concerned. However, a careful study (sde\V06] Chapter
XIll.2.) shows that none of these methods has perfect enswggervation: for values of the stepsize such
that hw is close to a mutiple ofr the errors become large. Very recently, Grimm and Hochbhasle built
up a new Gautschi type method which provably carries no resunstepsizeGH06. The counterpart of
this favorable feature is a loose reproduction of the enexgyange between oscillatory components.

Hence, the challenge for a numerical method is to approxradequately both the adiabatic invariants
and the energy exchange while avoiding resonnances. Imp#per, we will introduce a new numerical
method based on an averaged version of the original eqsatidnich stems from a preconditionning of
the Hamiltonian by the fast variables. This introduces grlieix representation of the highly oscillatatory
components which can averaged over a period (and somehewvedilbut) by artificially decoupling the
two time-scales present in the problem. In Secttpmwe shall justify the procedure and try to give it a
sound ground by comparing the exact solutions of the origipstem and the averaged one. As expected,
the error on the solution itself grows unbounded ratherlduicln contrast and quite strikingly, the error
on the Hamiltonian remains bounded over infinite time. Muegpthe adiabatic invariants of the original
system become true quadratic invariants of the averaged tbigefeature is the key to all further results
since it allows for the construction of a numerical methaoat fhreserves adiabatic invariants. This method
involves the computation of a highly-oscillatory integvethich constitutes the largest share of its cost and
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we shall accordingly address its numerical approximationSection3, we will consider the extension of
this procedure to the case of multiple frequencies and shawall results carry on easily. Finally, we will
demonstrate on two simple test problems the validity of deotetical results and hopefully the potential
of our method (Sectiod), which preserves the total energy and the adiabatic ewtgiand does not suffer
from any resonnance.

2 A simplified model with one frequency

As a first step, we consider, as it has become common in taeslittre (see for instancel[W06]), a Hamil-
tonian system of the form

21 = gi(z1,22) = =V1U (21, 22),
) 2.1)
2o + 22 = g2(x1,22) = —=VoU (21, 22),

where z; € R™ and x5 € R?, U(z1,x2) is a real-valued function and € (0,¢) is a small parameter.
To this system is associated the Hamiltorian
B 2 2 21

H(wl,lﬂg,il,i’g)— 222 + 5 + D) +U(l’1,l’2).

In the whole paper, we will assume that the initial valuds, 29, 29, i} satisfy the condition (of bounded
energy) for a given positive

[ e g 2
2¢2 2 2

where E > 0 is a fixed number, independent ef.
For the sake of conciseness, we will often work with the caxgtescaled) variableg, = =1 + iiy

e € (0,c0), <F, (2.2)

and y, = % +i/ex9 , SO that the equations can be rewritten as the system
1 = S(y1) +ign(R(y1), pR(y2)),
. i , (2.3)
Y2 = b2 +ipge(R(y1), p¥(y2)),

where ® denotes the real part of a complex number and where we hawtedkfor convenience:. = /= .
To this system is associatethe real-valued Hamiltonian of complex variables

21
He(yr,y2) = 1Sy 1P + — t 2U(R(y1), nR(y2)), (2.4)
and condition 2.2) now reads correspondingly
oy2 . lv2l?
ISI + =~ < 2E. (2.5)
"Here and in the sequel, the norm used is the Euclidean nomeispacesR™ and R? or C™ and C? .
2Through the equationg; = —i%—;"f L ji=1,2.



Note that under assumptio.f) , the initial valuey° satisfies||y3|| = O(u). Eventually, we will some-
times use the “pre-conditionned” variables (sB&(7]) z; = y; and z, = /¢y, , for which the system
takes the simple form

{2'1 = (1) +ig1(R(21), pR(e " 23)), 2.6)

2 = ipelFgy(R(z1), pR(e = z).

The bounded energy condition is the same &8)( Equations 2.6) are non-stiff (the term inl/s has
disappeared), but non-autonomous and associated witmbedependent Hamiltonian

Ke(t/es21,22) = [S(20) |7 + 20 (R(=1), uR(e ™"/ 22))). (2.7)

For brevity, we also write systen2.©) as
z2=F(t/e, 2) (2.8)

with z = (21, 22) € R™*? and whereF(r, 2) = (Fy(r, 2), F»(r,2)) defined by
Fi(r,2) = S(21) +ig1(R(21), pR(e™"22)),
Fy(r,2) = ipe'Tga(R(21), pR(e” 7 z2),

is periodic inT € T . The main ingredient of the approach developped in thisigape replace systen2(8)
by the averaged one

(2.9)

1 27

. o1 T
Z—Tlgrolo?/o F(T,Z)dT—% ; F(r,Z)dr (2.10)

which is now a standard non-stiff system. In the next sectienwill show that even if the solution of
(2.10 approximates the solution o2.©) only over bounded time intervals, it still hagdamiltonian struc-
ture, possesses trediabatic invariants of the exact solution of4.6) over unbounded time intervals, and
preserves the initial energy(2.7) up to € over long time under some mild assumptions on the potential
function U . System 2.10) thus becomes

. 1 2w iy
L= S(Z) +i- / G (R(Z1), pR(e=2)) ds,
0

- (2.11)
Zy = wz—/ e ga(R(Z1), uR(e™"* Zy) ds.
™ Jo
As already mentionned, it is again Hamiltonian with Hanilam
1 27 s
(Kc) (71, 22) = IS(Z0)IF + — | UR(Z1), pR(e™* Z2)) ds. (2.12)
0

Example 2.1 As an example, we consider the Fermi-Pasta-Ulam systenesasided in HLWO04, i.e. with
Hamiltonian

1 1 1
H(q1,q2,p1,p2) = 529{}71 + ipgpz + @q,érfh +U(q1,92) (2.13)

where
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d—1
U(q1,92) = 1 {(qu — 20" + > (qriv1 — @) — (g1 + ¢2.0)" + (qra + Q2,d)4} :
=1

Computing exactly the integrals i{2.11) and going back to the original variables leads to the follogyi
expression for the averaged Hamiltonidi) :

1
(K)(q1.q2,p1,02) = §pflpp1+Vs(U1,U2), (2.14)

with
1 d—1

3 3
Ve(qr, q2) = — (qil,l + Z(QMH —qua)t + Qfd) + Zq%,l(qg,l + Eng,l) + Z(Ql,d)z(qg,d + Eng,d)
=1

B

= W

d—1
+ 2 qrist — 010)* (@241 + 62,0 + €2 (D2,i41 + P2i)?)
i=1

3 3
(Q21+ p21) + a5

d—1
3

32 32 (p22+1+p22) +(<J2d+€p2d 55 Q2z+1+Q2z
i=1

2.1 Approximation on bounded time intervals

Lemma 2.2 Let F(r,z) be the complex functiof2.9) of 7 € T and z € C™*+*. For :° ¢ C™*¢ and
e € (0,e0), let z(t) = (z1(t), 22(t)) be the solution 0{2.9)

= F(t/e,z), z(0)=2z"eCmd
andlet Z = (Z(t), Z2(t)) be the solution of the average systétril 1)
Z=(F\(2Z), Z(0)=2"ecmtd

Assume that for alkg , the solutionsz(¢) and Z(t) exist until a time7" > 0 and remain uniformly (w.r.t.
¢ ) bounded. Then there exist a constaritdepending onl’, po and ¢y such that

vt (0,7), |lz1(t) = Zi(®)]| + pl22(t) — Z2(1)]| < Ce. (2.15)
Proof. The arguments being standard, we only sketch he proof. We hav
t—7 = F(t/e,2) — (F)(Z)
= (F)(2) = (F)(2) + F(t/e, z) = (F)(2).

Now there exists a function/(r,2) = (Ji(7, 2), Jo(7,2)) from T x C™*?¢ to C™*+¢ such that for all
7€T and z € C™*4,
F(r,2) = (F)(2) = 0:J (7, 2),

where, usingZ.9), we have that||J(7, 2)|| < Cp for a constantC' depending on bounds og, and on
1o - It follows that

F(t)e,z) — (F)(z) = z—:%(J(t/z—:, 2)) — ed.J(t/e, ) - F(t/e, 2),
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and we find for allt € (0,7)

2~ Z(t) = e (t]e, 2)—J (0, 2°)+ /O ((F>(z(s))—<F>(Z(s))—£82J(s/£,z(s))-F(s/E,z(s)))ds

and this yields the result using the Gronwall Lemma, owinghfact that the functionZ — (F)(Z) is
uniformly Lipschitz with respect ta . [ ]

Solving 2.11) thus provides us with am -close approximation of the solution d.@) over finite time.
Going back toY -variables, and as a straight consequence of Le@\&ave obtain the following

Corollary 2.3 For all ¢ € (0,¢0), assume that the solutiong(t) = (y1(t),y2(t)) of (2.3 and Z(t) =

(Z1(t), Zo(t)) of (2.11) with the same initial valuesy!, ) € C™+4 | exist until atimeT" > 0. Define the
function Y (t) = (Y1(t), Ya(t)) = (Z1(t), e~/ Z5(t)) . Then there exists a constafit depending onT’

and ¢ such that for all timet € (0,7") and all € € (0,¢) ,

lya (8) = Ya()l] + ™2 [ly2(t) = Ya(t)]] < Ce. (2.16)

Note that we do not require the assumpti@rb) of bounded energy to hold true to derive this result.

2.2 Hamiltonian and adiabatic invariants over long-time intervals

Quite remarkably, the adiabatic invariants of the origisydtem are now exactly preserved along the exact
solution of systemZ.11).

Theorem 2.4 Let Z(t) = (Z1(t), Z2(t)) be the exact solution of the averaged Hamiltonian syggi).
Then, the quantity
d
1Z2)* =) 1224,
i=1

which can be interpreted as an adiabatic invariant, is preed as long as the solution exists, i.e.

1Z2(®)[ = 1 Z20)]]-
Proof. Let X = R(Z;). We have

d * ? 2 1S r7% —1i8
aHZ2||2:2%(ZQZ2):2N§R<%/O e Z5g2(X, uR(e Zg))ds),

where Z; denotes the vectofZ;)” . Noticing that

d —1i8 1d —18 18 r7 o ~1 —18 18 r7 (. —1S8
&éﬁ( Zy)) = 3 ds —(e ¥ Zy+ e Zy) = _25(6 z— € Zy) =SY(e ¥ Zs), (2.17)
it is straightforward to obtain
d 2 o —1is aU —is _ 1 —is s=2m _
=127 = / Z 221) gy (X HR(E 22))ds = [U(X. pR(e z)| =0
]

The following lemma considers the boundedness of the exdatian of (2.11), under the assumption
that U is a Lyapunov function.



Lemma 2.5 Let £ > 0 be given, and fors € (0,59), let (y7,%9) be initial values inC™+? satisfying
(2.5). Assume that the solutio = (Z;(t), Z»(t)) of (2.11) with initial values (Z(0), Z2(0)) = (vY,v9)
exists until a timeT" > 0, possibly infinite, and remains bounded by a const&nt

Ve € (0,20), VO <t < T, |Z(¥)|| < B.

Then we have the estimate

Ve € (0,0), YO <t < T, || Zo(t)||* = || Z2(0)]|* < 2¢E. (2.18)
Moreover there exists a constant such that
Ve € (0,e0), YVt > 0, |[Kc(t/e; Z(t)) — Kc(0; Z(0))] < Ce (2.19)

where K¢ (t/e, Z) is the Hamiltonian(2.7) associated with the non-averaged sys{@r)

Proof. Inequality .18 is a consequence of the previous theorem and of the condifibounded energy
(2.5. As Z(t) is the exact solution ofX11), the Hamiltonian functionZ.12) is preserved:

Wt > 0, (Ko)(Z(1) = (Kc)(Z2(0)).
Hence, we have
Kel(t/e; Z(t) — Ke(0; 2(0)) = Kc(t/s; Z(t) — (Kc)(Z(t)) — (Kc(0; Z(0)) — (Ke)(2(0))). (2.20)
By definition of K¢ (2.7) and of (K¢) (2.12), we have for ally ¢ C*¢ and allt > 0,

2T
Kc(t/=Y) — (Ke)(Y) = 2URMY), pR(e"/°Ys)) — l/O UR(Y1), uR(e™*Yz))ds  (2.21)

s
Using the boundedness d¢f(¢) and estimateZ.18), we easily obtain for alt > 0 and s € (0, 27) ,
UR(Z1(1), iR (™= Z5(1))) = UR(Z1(1)), uR(e™"* Zo(1)))| < 2M pv/2¢E,
where M = max||VoU| over the compact sefZ ¢ C™+?|||Z| < B}. Plugging this inequality into
(2.21) and @.20 then yields the result. [ ]
We can now pull the averaged solutidfi(¢) back to the original variables. This leads to the following

Theorem 2.6 For ¢ € (0,0), let (39,49) € C™*? be such that conditio(2.5) holds true independently
of e. Assume that the solutiol (t) = (Z1(t), Za(t)) of (2.11) with initial values (v?,v3) exists until a
time 7' > 0, possibly infinite, and is uniformly bounded with respect:t& (0,¢y). ConsiderY(t) =
(Y1(t), Ya(t)) = (Z1(t),e /% Zy(t)) : there exists a constanC > 0 such that for all timet and all
€€ (0750) )
1Y2())I* = [Y2(0)|* < 2¢E (2.22)

and

[He(Y1(t), Ya(t) — He(Y1(0), ¥2(0))] < Ce, (2.23)

where Hc denotes the Hamiltonia(2.4).

Proof. Estimate 2.22) is an immediate consequence of Theoizrh In oder to showZ.23), we write

He(Yi(t),Ys(t) = HZ?g(t)H

+K(C(t/€7 Zl(t)>Z2(t)) (224)

so that .23 appears as a consequencei§). [ ]



2.3 Semi-discrete solution

The results of the previous subsection motivate the seanch humerical approximation of the averaged
equations 2.11) in place of the non-averaged onegs3d]. The first step towards this objective is the dis-
cretization of integrals contained in equatiosl(l) . Given that the integrands are periodic functions, it
is well-known that Riemann sums are particularly suitedtfat. We shall thus consider the sequence of
problems associated with the Hamiltonians
g N-1
K (21, 22) = IS0 + < ZO U(R(21), p(e™
n—=

27L7r

22)), (2.25)

for Z = (Z1,7,) € C™*¢, which are approximations of Hamiltoniatic)(Z1, Z») , see 2.12. The
corresponding system reads

N—
. 1 2nm
AR Nz (R, (e 2)),

2n7r 27L7r

zy = w— ¢ N92< 1), pR(e™" N 23 ))-

(2.26)

In the sequel, we assume that the smooth funciiofx) = U(z1,z2) is analytic in the sense that, for a
given constantB , there exist constant& and R such that

|a
Vae Nt vz e RmTe with ||z]| < B, ‘g—aU(x) <alK Rl (2.27)
4
where || = a1 + -+ apmig and ! = aq! - apag! If = (aq,. .., Qmra) -

2.3.1 Approximation over bounded time intervals

We estimate here the difference on finite time intervals betwthe solutionsZ (¢) of (2.11) andZ™ (¢) of

(2.26).

Lemma 2.7 Assume that/ satisfies(2.27) and let (y?,%9) € C™+? . Suppose that for alk € (0,¢) , the
solutions Z(¢) of (2.11) with initial values (y9,42), and ZN(t) = (ZN(t),Zz¥ (), N > 1, of (2.2
with the same initial values exist until a timi > 0. Suppose in addition that these solutions are uniformly
bounded with respect te and IV, i.e.

Ve € (0,e0), VN > 1,Vt € (0,T), sup(|ZV@)],I1Z®)]) < B, (2.28)

for B a constant (possibly depending only @h and on the initial values). Then, for a sufficiently small
€0 , there exists a constar@ depending only ori” and B such that

1Z1(t) = ZT O]l + n~ 1 Za(t) = 25 ()] < Ou™. (2.29)



Proof. Let F(1,Z) be defined byZ.9), and foralln =0,...,N —1,let s, = %T" . We have

Zy— 2 = (F)(Z) — (R )(Z7)
2m
Z—/ a(R(ZY), uR(e " Zy)) S—Z_ Z g1 (R(Z]), pR(e™ ™" Z37)).

For z; € R™ and z, € C?, the functions — h(s,z1, 22) = g1(z1, R(e *2)) is 27 -periodic and can be
expanded as a Fourier series

zks
h(s,x1,22) g hi(z1, 20)e™s,
keZ

with smooth coefficientshy (1, z2) . Noth that, asU is real-valued, we havéi_j, = hy, forall k € Z.
Now, we get

1 N—-1 ' 1 o '
N O RN R 2) - o [ R, (e 2 ds
n=0

27T 0
L Nl
iksn
Z hi (R(ZN), p 2z )N Z [
kez\{0} n=0
Since N N
1 Z giksn _ L Z Q2imnk/N _ 0 if k/N¢Z, (2.30)
N e N e 1 if k/Ne€Z,

the previous sum reduces to

2 Z 3? jN IUZ2 ))

JEN*

Forall £ € Z , we have

~ 1 2 —iks —1is
hk(x17ﬂz2):__ e 31U(9€17M§R(€ 2'2)>d3'

Expanding the right hand side in € (0, \/—) we findfor k > 1,

hi(x1, pze) =
k-1 n 27 k
1 K —zks n —is —is
—%gm ; HOFU (1,0) (R(e™2), -+, R(e™™20)) ds + & "1 Bk(e1,622), (2.31)
where

1 /2 . . .
Ry(x1,82) = %/ e M0 5U (11, ER(e™22)) (R(e™22), -+, R(e 22)) ds
0

for some0 < ¢ < . In formula @.31), the integrand is a homogeneous polynomial of degrége — 1) <
n < k—1 in ¢ multiplied by e~ , and hence, its average ovfl, 27] is equal to zero. Fok = jN



with 7 > 1 we deduce using2(28 and @.27)
7 Ny . oN N Ne N uBYN
iRz | = L IR 2,628 < K (1)

where K and R depend onT . Plugging this estimate into the previous one, we conclinde for p
sufficiently small,

N-1 2w

1 —18; 1 —15

N D AR (e 2)) = o [ nOR(ZY), e 2)) ds| < O
n=0

where C' depends onV and 7" and hence
120 = 2 < 1{F)(Z) = ()20 + O,

Estimate 2.29 then follows from Gronwall Lemma. The counterpart f@p can be obtained in a similar
way. [ |

Combining this result with Corollarg.3yields easily the following

Theorem 2.8 Assume thail/ satisfies(2.27), and let (37, 9) € C™*?. Forall ¢ € (0,¢0) , assume that
the solutiony(t) = (y1(t),y2(t)) of (2.3) with initial values (y{,v9) exists until a timeT" > 0. Assume
moreover that the solutiorZ™ (t) = (ZN(t), ZN(t)) of (2.26 with N > 2 and with the same initial
values, exists until time&’. Eventually, suppose that these solutions are uniformlynded, i.e. satisfy
(2.28 for ¢ € (0,¢0) . Define the functiony ™ (t) = (Y{¥(t), Y (1)) = (ZN(t), e~/ ZN (t)) . Then for

sufficiently smalleg , there exists a constan®’ depending onl” and ¢, but independent onV > 2, such

that for all time ¢t € (0,7") and all € € (0,¢),

ly1 () — Y (8)]] + e 2 |ya(t) — Y5V (1)]| < Ce. (2.32)

2.3.2 Hamiltonian and adiabatic invariants over long-timeintervals

Strictly speaking, the adiabatic invariants @fX1) are not any longeexactinvariants of 2.26). However,
we still are in the very favourable situation where the datity energies remain almost constant over long
intervals of time and it turns out that this result is of priimportance for our approach.

Theorem 2.9 Assume thatl/ satisfies(2.27). For all € € (0,e¢), let ZN(t) = (ZN(t), Z¥(t)) be the
exact solution 0f(2.26) with initial values (y{,v9) satisfying(2.5). Suppose that the solutiong™ (¢) exist
until a time 7" > 0, possibly infinite, and that there exists a constdftindependent ot and N > 3,
such that

vo<t<T, |Z™(t)| <B. (2.33)

Then there exist positive constants and C' depending only on®Z and B such that for alle € (0,¢q),
N >3

¥t < min ( T), 123017 = 1257 (0)]?| < Ce*. (2.34)

0
(NeN/2=2
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Proof. Let X(t) =R(Z](t)) andfor0 <n < N-—1,let s, = 2 . Using @.17), we obtain for all time

Y= w22

N-1
= 9 <z ! Z e (Z)* 9o (X, uR(e ZS"Zév)))a

n=0

2dt”

2

- —1s ou —1s
> S(ue nZé\,fj)ax—T(XaﬂéR(e "Z3))
7]

2l

3

j=1

=
- O

_ 1 d —is 7N
- N nZ:;) dSU(X”LL%(e Z2 ))

S=Sp
For fixed z; € R™, 2, € C?, the functions — f(s,x1,29) = U(x1,R(e"*22)) is 27 -periodic and can
be expanded as a Fourier series

zks
(5,21, 22) § fr(xr, z0)e™s,

keZ

with smooth coefficientsfy.(z1, z2) . As U is real valued,f_j, = f;, forall k € Z, f_ = fi. . Hence, we
get

N-1
d —is AW L iks
d_ U(X, uR(e ™" 23")) = E (Zk‘)fk(X,MZéV)N E etton,

kEZ =0

||Pﬁ2

N
and, using 2.30),
) H2—2ZJN S(fin(Xnz2d)). (2.35)

Now, as in the proof of Lemma.7, estlmatesZ.SS) and @.27) imply

N ZN JN
ij(X7#Z§)‘ = (j ‘R]N (X,62)| < K <%>

Owing to bound 2.33), we can assume thab is such that for allu € (0, /o) ,
N
plZN 1
R 2’

N N
2l <CN <@> (2.36)

for some constantC depending onK . Now, for given numbers: and r» > 1, the exact solution of the
ODE % = ax" is given by

and hence we get fron2(35

d
‘5”22

x(t) = zo(1 — xg_l(r — Dat) 7T,

so thatfort < 1(z{~'(r — 1)a)~!, we havez(t) < 2z, . Applying this estimate withh = CNpV R~
r=N/2>1 and zy = 2FEe, we can show fromZ.5) and @.36) that there exists a constantindependent

11



of ¢ and N such that

N

Plugging this estimate int®(36), we obtain similarly the existence of constamtsand C' such that
N
. C,
vt<min (o) 12701 - 12570 < ¢e.

This completes the proof. [ ]

Theorem 2.10 Assume thatU satisfieg2.27). For N >3 and ¢ € (0,¢), let ZV () = (Z]¥ (t), ZY (1))

be the exact solution of2.26) with initial values (37, 9) satisfying(2.5). Assume thatZ™V(¢) exists until
atime T > 0, possibly infinite, and satisfi€2.33 for a constantB independent ot and N . Define the
functions YN (t) = (ZN(t),e"/¢ZN(t)) . Then there exist positive constantg and C' such that for all
e €(0,e0) andall N > 3,

N
. C
Vit < min (WJ%/Q_Q,T), YV @)1 = 1YY (07| < Ce?, (2.37)
and N
. C
¥Vt < min (WJQ/Q_Q,T), [He(Y{Y (1), Y3" (1) — He (4}, 99)| < Ce, (2.38)

where Hc is the Hamiltonian(2.4).

Proof. The firstinequality follows from previous theorem. UsirZg44) and the preservation of Hamiltonian
(2.25, we obtain that

a0y (0) + MO — 128 )

He(YY (1), Y5 (1)) — He(y?, y3) = 2(AU)(¢) — 2 .

)

where
1 = 2
_ N —it/e N _ —i2nT N
AU U<§R(Z1 ), uR(e Zs > N > U( uR(e ™~ Z, )),

NZ(( )R 23)) = U (R(ZY), mR(e ™ 20)) ).

According to previous theorem, as long &3< min (#M,T), the solution ZV (¢) remains bounded
pue
and satisfies the estimates 33 and @.34). Hence, as in the proof of Lemn2a5, we can show that

,_.

3

N
. C
for a constantC' independent of NV and ¢ . We now get the result using@.(34). [ ]

12



2.4 Fully-discrete solution

We consider now the time discretization .26 by a symplectic method. We denote gV (Z) =
(FN(Z),F)(Z)) the right-hand side of%26) and, for a given step sizé& > 0, by ®Y(-) a symplectic
integrator of orderr applied to this system. Finally, we define the numerical agipnation as the sequence

20 =40 = (49,48) € C™H, (2:39)
zNn — N (ZNn=1 " pn > 1. (2.40)

Theorem 2.11 Assume thatU satisfies(2.27), and let hg > 0. Forall € € (0,£9) and h € (0, hp), let
ZNn = (zN" ZN™) be the numerical solution given by a symplectic integratgf applied to the system
(2.26) with stepsizeh and initial values (y¢,v9) satisfying(2.5).
Assume thatZ¥" is well-defined for alln > 0 and is bounded by a constai independent o, A,
N>3andn>0:
Yn>0, |ZY¥"| <B. (2.41)

Then for hy sufficiently small, there exist positive constangsand C' depending only on® and B such
that forall £ € (0,9), N >3 and h € (0, hp),

N

C N,n 2 N,0),2
Vnh < ;ﬂvz—:i](\)f/z—z’ 012,17 = 12,717 | < Ce. (2.42)

Proof. For the sake of symplicity, we consider here the case of thipaomt rule. For a general symplectic
method, we can adapt the proof along the lined-Hif\ly06, Thm. 1V.2.2]. Sequence(40 thus becomes

ZN,TL+1 — ZN,TL + hFN (ZN,TH-I/Q)’
where foralln, ZNn+1/2 .= (zNn+14 ZzNn) /5 Premultiplying the second component of g, ™ /%)*

leads to , )
1Z2m 2 = || 2% 4 2n(zy Ry BN (2N,

As in the proof of Theorerd.9, from bound 2.41) we can derive the estimate
Nn+1/2
ullz ")

<OhN |2 7 (2.43)

I°
R

v 2 0, (27— )z
valid for some constant$ and C' depending onU and B (compare with 2.36)). Using .33 again and
the hypothesis orV , we easily see that there exists a constarguch that

YN >3,Yn >0, | 232 < (14 he)|| 2N
As a consequence, far < hy sufficiently small, there exists a constamt> 0 such that
vn > 0, [ Z8 Y < 2 (1 Va2 )

and finally

n
2 2 N—2
Vn >0, [|1Zy T <112y 0 e AN aN Y112,
p=0

13



Now, recall that||Z2"°||®

inequality, we thus have

HZéV’nHH2 < 2Feexp (nhuNaN(élE)N_zsN/Q_l) )

< 2E¢ and assume that fop = 0, ..., n, we have| Z)"?||* < 4Ee . Using last

so that for
nh ,uNaN(ZlE)N_QEN/Z_l <log?2 (2.44)

we have || Z)""1||> < 4Ee . This proves by induction that for at satisfying .44, || Z2""*!| = O(y) .
Eventually, plugging this bound int@ 43 shows that there exists a constant>- 0 depending only onB ,
E, U and hg such that for alln. satisfying @.44),

Nyn+12 N,02
12247 = 123007 | < nhpNaleNr2,

Lemma 2.12 Under the hypotheses of the previous theorem, there exsgiv@oconstantshy, ¢ and C',
depending only onZ, B and U such that for alle € (0,£9), N >3 and h € (0, hg) ,

Vnh < exp(c/h), ‘Kév(ZN’") — K(]CV(ZNvO)| < Ch"
where r is the order of the symplectic integrator, and Whev(%v(Z) is the discretized Hamiltonia(2.25).

Proof. Assumption 2.27) and definition 2.25 imply that KéV(Z) satisfies analytic estimates of the form
(2.27) for some constants independent &h and . The statement thus follows from classical results in
backward error analysis (see for instane@\\V06, Chap. IX] and references therein). [ ]

Going back to the original variables, we can define the apprations YV by the formula
Vn>0, YN =2zN" and v =eminh/E g (2.45)
Combining previous results with Theoretrl 0, we then immediately get the following

Theorem 2.13 Assume that the hypotheses of Thea?ehi hold true for i = /¢ and defineY ™", n > 0
by relation(2.45. Then, for hy sufficiently small, there exist positive constantscy, C depending only
on E and B such thatforalle € (0,9), N >3 and h € (0, hy),

Cév N2 N,0;2 2
Vnh < Nz “|Y2 B Saa | |§ Ce”, (2.46)
and N
Vnh < inf (%,exp(%)), |He (V™) — Ho (YY) < Cle +h7) (2.47)

where r is the order of the symplectic integrator, arfdc the hamiltonian(2.4).
Remark 2.14 With the previous notations, it is clear that Theor2rf extends straightforwardly to the fully

discretized solutiony ™", the error in the equatiorf2.32 being of order O(s + k") over bounded time
intervals.
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3 Extension to the multi-frequency case

In this section, we consider the extension of previous tedol the case where different frequencies are
present in the system. The equations are simila2 tf) (the only difference being thag{ is now replaced by
amatrix 1A4:

3} = gi(@1,22) = —ViU(z1,22),
X9 + E_2A Tro = gg(l‘l,wg) = —VgU(xl,xg),
where z; € R™ and z, € R?, and whereA is a d x d symmetric positive definite matrix with positive
eigenvalueswy, .. .,wy . Similarly to (2.2), we assume that the initial values dependsom such a way that
HAx &
Ve € (0,¢0), 7+ 2] + [|45]* < B.

. . 1 .
Introducing variablesy; = z1 + i@:; and yo = 7/11/23:2 +iy/eA71/24, | system B.1) can be rewritten
g

as (compare.3))

o= S +igi(R(yr), pA™Y2R(ya)),
Y2 = —z;y2 +ipA g2 (R(y1), pA R(y2)),
with Hamiltonian
o 2 \\A1/2y2|]2 —1/2
He(yr,y2) = [IS(y)ll” + — T 2U (R(y1), pA™ =R (y2)). (3-3)
The condition on the initial values now takes the form
H 1/2 0||2
ISE)I? + < 2F. (3.4)
The equations can be simplified further by introducing= y; and z, = e’%Ayg
Z1 = %(21) + igl(%(zl) ,uA 1/23?( te 22))
. .oqta —1/2 1/2 (35)
Zp = ipe’="A 92(R(z1), pA™ /"R (e 2)
and are then associated to the non-autonomous (complexijtbiaiam
Ke(t/e;21,22) = [|S(21) |7 + 2U(R(z1), VAT R(e " 29))). (3.6)

As in the caseA = Id , we can write 8.5) in the form @.8) with a vector field (7, z) defined by 8.5) and
consider the corresponding averaged syst2rhl, where the averaging operat¢f’) is now defined by

(F)(Z) = lim —/ F(r,Z)d (3.7)

T—>oo
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The averaged system we consider can hence be written as

T
2 = () +itm o [ a2 pAT R 2y,
— 00 0

- 1 (T 4 (3.8)
Zy = Z“Tlﬂﬂof/o AT 2 g0 (R(Z1), pATV 2R (e754 Z5)ds.
This is once again a Hamiltonian system associated with drailtbnian
1T isA 4—
() (21, 22) = (2| + 2 Jim £ [ UOR(Z0). e 472 2) (3.9)

Note that after a possible change of unknowns and of functionwe can assume that the matrix is
diagonal In the sequel, the eigenvalues df are assumed to satisfy a non-resonnance condition acgordin
to the following

Definition 3.1 For a given set of frequencies = (w1, ...,wy) € R?, the resonance modulé is defined
as
M={aeZajwi +...+agws = 0}.

The vector of frequencies is said to non-resonant outsidé1 if

3y,v >0, VacZ\M, |a-w|>5|al™. (3.10)
The orthogonal of the resonant module is defined by

t={BeZ!Vae M, aif+ -+ agfa = 0}

If the eigenvalues ofd satisfy such an assumption, then the lingit7 can be identified in terms of Fourier
coefficients of the integrand with indices i :

Lemma 3.2 Consider a functionG' of 6 = (61,...,6;) € T? and assume that it is analytic in a domain
T + i[—p, p]* where p > 0. Besides, assume that ¢ R? is non-resonant outsideM . Finally, for
a € 74, defineG(a) as the a -Fourier coefficient ofG . Then for all 6, € T, we have

J— ia-@o
Jim o / G(0p + tw)d a;MG(a)e : (3.11)

Proof. Itis clear that for all timet > 0,

Gl +tw) = Y Gla)e™® + 3~ G(a)ei ot

keM kezZA\M
Integrating fromt¢ = 0 to ¢t = 7', and using .10, we immediatly get
2 .
za@ v
‘—/ Glto+ te)dt = 3 Gla)e™®| < 22 3 fal’(Gla).
keM a€Zi\M

The analyticity of G guarantees that th@(a) 's are exponentially decreasing with respectdd, ensuring
the convergence of the series in the right-hand side. Tliwskhe result with a rate of convergencelofr” .
[ |
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From a numerical point of view, the identification of the nesoce moduleM is far from obvious in general.
For this reason, we rely o3(8) rather than a discretization in space.

In the following, we will not address the question of conearge of the exact solution over bounded time
intervals for it is very similar to the single frequency ca®¢e will rather focus on adiabatic invariance and
discretization of the averaged system, since these aspdutst significant differences.

3.1 Hamiltonian and adiabatic invariants

A straightforward calculation shows th§td!'/2Z(t)»||?> remains invariant along the exact solution 8fg):
Noticing that

d —1sA o 1d —1sA 1SA 77
dsgﬁ(ﬁ Zg) = 5 ds (6 Zz +e Z2)
1

_ _iiA(e—isAzz _ eisAZ2)
= AS(e " 2Z),
we indeed obtain (with the notatioX = R(Z;))
d 1/2 2 % A
d_tHA Zs||* = 2R(Z5AZy),
T
=24 lim l/ %(iZ;AlﬂeiSAgg(X,p%(e_iSAA_lﬂZg))ds),
T—oo 1’ 0

T
— 9 lim ~ / S(pe A AY2 Zo)VoU (X, uR(e A A2 Z2,)) ds,
0

T—oo T
=2 lim 1 [U(X pR(eAAT2 7 ))] SZT: 0
T—oo T ’ 2 s=0 '

However, there are additional structural properties is Hituation: according taB[GG89, there exist
further adiabatic invariants foB(1) provided condition §.10) holds. It turns out that, for3(8), there exist
corresponding invariants which are linear combinatiorhefascillatory energie$Zs ;|2 .

Theorem 3.3 Assume thatJ is analytic (compare.27) and thatw is non-resonant outsidé\1 . Then, for
any 3= (B1,...,084) in M=+, the quantity
d
I5(Z2) = Zﬁj|Zz,j|2
j=1

is invariant along the solutionZ (¢t) = (Z:(t), Z»(t)) of (3.9).

Proof. System 8.8) is Hamiltonian with potential( Kc)(Z) given by 3.9). The main ingredient of the
proof is again a Fourier expansion of the integrand function

s — U(R(Z1), pR(e 4 AY2 Z,)),

17



for given (Z1, Zs) . As before , we setX = R(Z;) and introduce the variableg, ¢) € R% x T¢ defined

by
-1/2

R , Zo i1,
Vi=1,....d { o= pwy U2yl (3.12)
;= Arg(Z2;),

and the functionA : RY x T¢ — R? defined by
A(r,0) = (rl cosf,...,74C0S Hd).

We can then write 4
U(X, pR(e™ A2 23)) = (Ux 0 A)(r, ¢ — sw) (3.13)

where Ux (Z,) = U(X, Z3) . Using @.27), it is easy to see that the functich— (Ux o A)(r, ) is analytic
in a domain containingl'® x [—p, p]? for somep > 0. Lemma3.2hence allows to identify the time average
of function (3.13, so that Hamiltonian3.9) reads

(Ke)(Z1,2Z2) = IS(Z)))* +2 Y Ux o A(r, a)e™™?
aeM

where Um(r, «) denotes then -Fourier coefficient of(Ux o A)(r,0) . The differential equations for
Zy are now of the form, forj = 1,...,d,

: O(Kc)
Zy; = —i2Clz 7
2,j 972, (%1, 22)
OUxoA) Or; . — @,
= —2i —— + i (UxoA)—= tod
a;\/l < 8’1‘]‘ 8227]' J ale')
O(Ux 0 A) pw; "2, Ay 22
= —i aj (Ux oA : g
oz;/i( or; 22,41 i U )!Z2,j\2)

where we have omitted the argumerits «) in the Fourier coefficients. A¢/ is real-valued, we have for
all a € Z% andr e R?,

U?o\A(r, —a) = Um(r, Q).

Hence,

R(ZojZ2;) = —2 Z a; %(Um)(r, a)em'(b)
aEM

where (M, M_) is a symmetric partition ofM such thate € M ifand only if (—«) € M_ . Finally,
we obtain

d
d 1 .
qis(Z2) = 5251%(224224)
j=1
d —_— .
= - 2 (Xae)3(vxen)) =0,
aeM4 =1
as 8 € M= . This shows the result. [ |
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Using the same procedure as in previous sections, we cantbiledellowing result (compare Theorem
2.10:

Theorem 3.4 Assume thatv is non-resonant outsideM . For ¢ € (0,¢), let (y9,49) € C™*4 satisfy
conditions(3.4) with £ > 0 independent ot . Let Z(t) = (Zi(t), Z2(t)) be the exact solution of3.9)
with initial values (3?,49) . Assume thatZ(t) exists for all time, and is uniformly bounded with respect to
e € (0,¢9) . Define the functiony (t) = (Y (t), Ya(t)) = (Z1(t), e~/ Zy(t)) . Then there exists a constant
C > 0 such that for all timet and all £ € (0,¢9),

1AY2Ya(8)]1* = [ AV2Y2(0)|® < 2¢E

and
|He(Y1(t),Y2(t)) — He(y?,9)| < Ce,

where H¢ denotes the Hamiltonia¢8.3). Moreover , we have for all time > 0,
I3(Ya(t)) = I5(Y2(0)).

3.2 Semi-discrete solution

The specificity of the integrand in the definition of the Haomian K¢ (Z;, Z2) allows to refine Lemma
3.2 Similarly to the proof of Lemma&.7, we set for6 € T*, z; € R™ and z, € C¢,

h(0, 21, 2) = Uy, pR(e 0 A7 22))

where e~ A=1/22, is the vector with componentsaa‘wfwj_lﬂng ,for j=1,....d. For a € Z4, the

Fourier coefficient )
7 _ —ia-0
(o, 21, 29) = @) /Tde h(0,x1,z2)dO

can be expanded with respect foc (0, /) asin @.31). By using the same argument as in the proof of
Lemmaz2.7, under the assumptio2.27), we have for bounded:; and z; , and for all o € 7

e, 21, 22)| < e(Cpl|z2])® (3.14)

where |a| = |ai| + - - - + |ag| and for some constants and C' depending on bounds om; and z; and
onU.

In the following, we define the functiog : [0,1] — R by {(u) = ¢ T and ¢ :[0,1] — R, the
filter function, by ¢ = &£/|I¢|| L, (0,1) -

Lemma 3.5 Assume thatv is non resonant outsideV , and that U satisfies(2.27). Assume thatB is
a given constant. Then there exist positive constant> 0, «, p and C such that for all 7" > 0,
e (0,,/€0) and Z = (Z1, Z») suchthat||Z| < B,

1 T P
T @(T)Kc(&Zl?Zz) — (Kc)(Z1, Z2)| < Cul||Zs| exp(—KT?), (3.15)

0

where K¢ (s, Z1, Z2) is the time-dependent Hamiltoni§B.6) and (K¢)(Z1, Z2) the averaged Hamiltonian
(3.9.
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Proof. The proof of this result relies on a combination of techn&gused in CCC™ 05] with estimate
(3.14 on the Fourier coefficient of the integrand definiffc) . The fact thatZ, is bounded ensures the
convergence of the series, providegl is sufficiently small. [ ]

The next stage in the discretization @K ¢) consists in approximating the integr&.{5. To this aim, we
take T' = N§, where § is a small parameter. We assume thatis non-resonant oustsidé1 and we
require thaty obeys the following non-resonnance condition

1— ei6a~w

5 > a7 (3.16)

Jy, v >0 YaeZN\M, ‘

Note that if w is non-resonant outsidé1 , then for §; > 0, the set ofd < dy satisfying this condition is
open and dense 0, dp) . Its measure is of sizégJrl for somea > 0 (see for instanceHLWO06, Chap.
X]).

Lemma 3.6 Assume thatv is non-resonant outside\ , and let § be such tha{3.16) holds true. Assume
that U satisfieg2.27) and let B be a given constant. Then there exist positive constagnisx. , p. and
C, suchthatforallN >3, € (0,\/29) and Z = (Z, Z>) suchthat||Z| < B

N-l N§
1 n 1
— —)Kc(nbd, Z1,23) — — K Z1,Z5)d <  C,ul|lZ —kNP*), (3.17
SNT;O(’D(N) (C(na 1 2) NS 0 (C(S, 1, 2) S < IU,H 2” eXp( K ) ( )

where Sy = ij;ol ¢(n/N) and where K¢ (s, Z1, Z,) is the time dependent Hamiltonig3.6) and
(Kc)(Z1, Z2) the averaged Hamiltonia(B.9).

Proof. The proof is very similar to the proof of Theorem 2 iI@CC™ 05] and is therefore omitted. Note
that in estimate3.17), the constants depend an, but are uniformly bounded ia € (0, dg) . [ |

In the following, we consider the solutio™ (t) = (ZV (t), Z¥ (t)) of the system associated with the
discretized Hamiltonian

N-1
1
KcN(Zy, Zs) = e Z @(%)Kc(mg, 7y, Z3), (3.18)
n=0

for some ¢ satifying condition 8.16). Proceeding as in Subsecti8rl, and using similar calculations as in
previous Lemma, we can prove that for a bounded solufidn(t) , we have (using the fact that; > 0)

d 2
EIIAmZéV(t)H ‘ < CullAV2Z) (1) exp(—KN*)

for some constantg, C' and «, provided thatw is non-resonant outsidé1 , and thate is sufficiently
small. From this equation and provided thaf' (0) = (37, J) satisfies 8.4), we obtain

Vt>0, [|AY2ZY ()] < C(eY? + tpexp(—rNP))
for some constant” > 0. Eventually,

Vi <exp(kN?), |[|AY2ZY @0)|]7 — |AY22Y (0))% | < Ce.
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Under the same assumptions, and using this result, we absctihat for all 3 € M+
Vt <exp(kNP), |Ig(Z (1)) — I5(ZY(0)| < Ce,
with a possibly modified constar®” (which now depends o ).

Theorem 3.7 Assumew is non-resonant outsidéV , and let 4 be such tha{3.16) holds true. Supposé&’
satisfies(2.27) and let N > 1. For all € € (0,50), let ZV(t) = (ZN(t), Z¥ (t)) be the exact solution
of the Hamiltonian system associated w18 with initial values (y9,9) satisfying(3.4). Eventually,
assume that solutiong ™ (¢) exist for all time and satisfy| Z™V (t)|| < B for a constantB independent of

¢ and N . Define the functiond ™ (t) = (ZN(t),e~"/¢Z} (t)) . Then there exist positive constants p
and C dependingory, U, E and B such that for alle € (0,e9) and N > 1

vt < exp(kN7), [[|AV2Y3 (07 — [ AV2YSY (0)[P] < Ce,

and
vt < exp(N*), [He(Y (1), Y3 (8) — He(Vi¥(0), Y3 (0)] < Ce,

where H¢ is the hamiltonian(3.3). Moreover, for all 3 € M, there exist constant: , p and C such
that V¢ < exp(kNP)
15 (YN (8), Y3V (1) — 15(yi, y9)| < Ce.

Proof. The proof combines all previous arguments. The conservaticthe Hamiltonian is a consequence
of the conservation oKéV and of equations3(15 and @.17). [ ]

3.3 Fully discrete solution

Finally, we consider the approximation of the solutigi (¢) of (3.18 by a symplectic integratod)hN . For
n > 1, we define the numerical solutiod™'" as the sequence

gNO yoeCm+d,
zNn = eN(zZNn= n > 1.

Proceeding as in the proof of Theoreth1(1) and using similar arguments than before, we can show that
under the assumptions of Theor&n?, we have for sufficiently smalh < hy (compare 2.42))

Vnh <exp(kN?),  |[|AYV2ZY"? = AV2 2007 | < ce

for some constants, p and C' independent ofN and . Combining this estimate with the result given
by the Backward error analysis, we can show the following

Theorem 3.8 Under the hypotheses of Theorén?, we define the approximatiow V", n > 0 by the
relation (2.49. Then, for hy sufficiently small, there exist positive constants p, ¢ and C such that for
all €€ (0,e9), N>3,andh € (0, hp),

Vnh < exp(sN?), |[|AV20V0|" — A2V | < Ce,
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and
C

h
where r is the order of the symplectic integrator, arfdc Hamiltonian(2.4). Moreover, if 5 € M* | there
exist positive constants , p and C' such

Vnh < exp(rN?), |T5(Y"") — Io(Y0)| < Ce.

Vnh < inf (exp(kN”),exp(-)), |H(C(Y2N’") - H(C(Y2N’O)| <C(e+h")

4 Numerical experiments

4.1 Single-frequency case: the FPU problem

We take over the Fermi-Pasta-Ulam proble2nl@ and solve it with the numerical scheme of sectibi
(i.e. we solve equation(26) for N = 4 with the implicit midpoint rule). For comparison purposése
parameterm and the initial conditions considered are taken fra#h\[VO6], pp. 22. On Figured and2,
we have plotted (from left to right and from top to bottom) thexillatory energiesl;, 7 = 1,2,3 and the
Hamiltonian (shifted by a constant value0.8 ) along the numerical solution obtained far= = 27 3 i

w! w?w’?w

with w = 50. Note that we have considered here the problem in its ofifgmaulation with Hamiltonian

25 T T T T T T T T T 25
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Figure 1: Numerical energies for the Fermi-Pasta-Ulamlgrab i = Z; (left) and h = ?)—g (right)

(2.13 and not the “averaged” equations with Hamiltoni@anl#). Several conclusions can be drawn from
this experiment:

e The total oscillatory energy (in red with constant valugis almost perfectly conserved, in agreement
with the theory which asserts that symplectic methods pvesguadratic invariants.

e The Hamiltonian of the problem is also very well preserveédscillates within a band of widtla , as
predited by Theorer.10

e The exchange of oscillatory energies between the stifhgpris adequatly reproduced, even for very
large stepsizes. This is remarkably better than some otk#rads proposed in the litterature (see the
method of Garcia-Archilla et alJASSS99for instance (method (C) page 481 &fl[W06)).
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Figure 2: Numerical energies for the Fermi-Pasta-Ulamlerob », = 2% (left) and i = 2= (right)
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Figure 3: Deviation of the total oscillatory energy and ewbthe Hamiltonian for the FPU-problem

e There is no resonnance for the valuesfofconsidered. Figur8 shows the errors on the Hamiltonian
and the deviation of the total oscillatory energy vergus for a large spectrum of values (froih to
57 ). Though these curves have been carefully computed witinéfisiant number of points/ is kept
constant equal t@.2 and w varies), no resonance occurs. This is also in contrast witst lexisting
methods, where at least one of the too energies explodegaffiicydar values ofir .

4.2 Multi-frequency case: a toy-problem from HLWO06]

We now consider a Hamiltonian of the form

. 1 . . 1
H(z,d) = 5 <Hw1H2 + ||2]1? + 6—2|]Ax2H2> + Uy, x2), (4.1)
where A = diag(A1, A1, A2, A\3) = diag(1,1,v/2,2) and

1 1
Ulx) = (c+xa1+ 22+ 223+ 7332,4)4 + éx%xgl + Eac%,
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with ¢ = 0.05 and v = 2.5. Following BGG89, one can show that the system has the following adiabatic
invariants: the total oscillatory energlyr = I + I + I3 + I, and the energied; + I, + I, and I3 in
accordance with the resonance module ($#8/06]). On Fig. 4 we have reproduced the experiment of
[HLWO6] pp. 518-519 withe = 70~! and h = 10, using the method described in previous section with
T =80 and N = 120. It can be observed that the qualitative behaviour of thetes@lution is once again
very well reproduced. For a larger stepsize= 1, the oscillatory energies are still preserved, although th
energy exchange is not as accuratly reproduced.
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Figure 4: Oscillatory energies along the numerical sotutd (4.1) for T'= 80, N = 120 and h = 10e
(left) and h = 1 (right)

5 Conclusion

Both theoretical and experimental results demonstratestblging the averaged equations with a suitable
one-step method makes sense. The resulting numericaligeehis both robust and qualitatively correct.
However, one could argue that it is far from efficient: whil&autschi-type method typically requires one
evaluation ofg per step, our method necessitates ud® more : this may seem unacceptable. Neverthe-
less, one should keep in mind that, on the one hand, theseutatigns can be performed fully jparallel

on a multi-processor machine, and on the other hand, thagizes up tol00 larger can be used.
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