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Abstract. We consider a particular discretization of the harmonic oscillator which
admits an orthogonal basis of eigenfunctions called Kravchuk functions possessing
appealing properties from the numerical point of view. We analytically prove the
almost second-order convergence of these discrete functions towards Hermite func-
tions, uniformly for large numbers of modes. We then describe an efficient way
to simulate these eigenfunctions and the corresponding transformation. We finally
show some numerical experiments corroborating our different results.

1. Introduction

Let us consider the harmonic oscillator operator, for x ∈ Rd,

(1) H = −∆ + |x|2.
We are interested in discretizing this operator on a uniform grid hZd where h > 0
denotes the stepsize of the grid. The harmonic oscillator appears in a lot of natural
contexts, in particular as a fundamental model in quantum mechanics, and its well-
known spectral properties in the whole space Rd make it a primary example of
unbounded operators on Hilbert spaces.

Hermite functions are eigenfunctions of the operator H. They are given by the
expressions, for d = 1,

(2) ψn(x) :=
1

π
1
4 2

n
2

√
n!
e−

x2

2 Hn(x), n ≥ 0,

where Hn(x) are the Hermite polynomials defined by the relation

(3) Hn+1(x) = 2xHn(x)− 2nHn−1(x), H0 = 1,

with Hn = 0 for n < 0. The set {ψn}n∈N forms a basis of L2(R) satisfying the relation

∀n,m ∈ N,
∫
R
ψn(x)ψm(x)dx = δn,m,

where δn,m denotes the Kronecker symbol, and

Hψn = (2n+ 1)ψn.
1
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Any function of L2(R) can thus be written

(4) f =
∑
n≥0

cn(f)ψn, cn(f) =

∫
R
f(x)ψn(x)dx,

and we can generalize these properties to any dimension d by tensorization. The
Hermite functions can also be expressed using the raising an lowering operators

L = ∂x + x, and R = −∂x + x

for which we have (Lf, g)L2(R) = (f,Rg)L2(R) for any functions f ang g, and

H =
1

2
(RL+ LR), Lψn =

√
2nψn−1, and Rψn =

√
2n+ 2ψn+1.

The discretization of the operator H poses the question of the transfer of the pre-
vious properties to discrete operators in a global perspective of geometric numerical
integration or for robustness and stability arguments. For example the use of discrete
Fourier transform will induce naturally a truncation on a large grid which has in gen-
eral serious drawbacks. The same phenomenon appears in the classical discretization
by finite differences. Also, the eigenvalues of the operator will be distorted in ways
that are difficult to estimate, see for instance [14, 4]. It is also not clear at all if the
natural hierarchy given by the operators L and R is preserved by space discretization.

Another option would be to use spectral methods and Gauss-Hermite quadrature,
but the computations of the roots of Hermite polynomials as well as the associated
quadrature weights appears to be quite computationally expensive in practice [6, 12],
and moreover, the solution is not evaluated on a standard regular grid hZ making
delicate the possible combination with other type of operator discretization.

The goal of this paper is to revitalize, amongst all possible discretizations by finite
differences, the operator and functions associated with the Kravchuk polynomials,
named after the Ukrainian mathematician Mikhailo Pylypovych Kravchuk1. These
polynomials are well documented in the existing literature, see in particular [11],
and they appear in discrete quantum mechanics [9], digital signal processing [13],
and coding theory [8], or probability in the context of multinomial distribution [5].
However, to the best of the authors knowledge, none of these properties has yet been
exploited in the context of numerical analysis of quantum systems, while several
important features make them a priori very appealing and worth deserving more
elaborate studies. Let us summarize the main advantage of the Kravchuk functions
denotes by ϕn,h and defined on a regular grid hZ for h > 0:

1Note that a writing difference subsists in the literature between "Kravchuk" or "Krawtchouk"
polynomials, which both refer to the same mathematical object. We adopt in this paper the tran-
scription "Kravchuk" as commonly employed in most physical contexts, contrary to the transliter-
ation "Krawtchouk" he may have used when writing in french, which seems to be mostly adopted
in the combinatorics and probabilistic literature.
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• They diagonalize on a regular grid a discrete tridiagonal operator Hh similar
to the classical order 2 finite difference scheme.
• The eigenvalue associated with the Kravchuk functions are exactly the one
of the Harmonic oscillator: Hhϕn,h = (2n + 1)ϕn,h. This isospectral diago-
nalization, which is usually a feature reserved to spectral methods, is very
promising in particular in the numerical approximation of nonlinear evolution
equations of Schrödinger form where discrete resonances are essential.
• The Kravchuk functions form an orthonormal set defined on a discrete finite
grid for the standard discrete scalar product.
• They uniformly approximate the Hermite functions when h → 0, and thus
the Hermite coefficients.
• Finally, the computation of the Kravchuk coefficients corresponding to the
Hermite coefficients (the Kravchuk transform) can be reduced to the multi-
plication by the exponential of a skew hermitian tridiagonal matrix.

Each of these point would deserve complete numerical and analytical study, but we
believe that the use of these polynomials could be particularly appealing in nonlinear
situations, for ground states computing, or for equations coupled with operators
naturally defined on regular grid. As a very first example of result, we consider in
Section 6 the discretization of the time dependent Schrödinger equation

i∂tψ = Hψ

by the Kravchuk operator, and we obtain a global convergence in time as an im-
mediate consequence of the isospectral nature of the discretization and our uni-
form bounds. In Theorem 4 we show that if f is a given smooth function, and
ψ(t, x) = e−itHf , then we can construct a solution ψh(t) to the equation

(5) i∂ψh = Hhψh

such that
‖πhψ(t, ·)− ψh(t, ·)‖`2(hZ) ≤ ε(h)

where ε(h)→ 0 in a way depending on the smoothness of f , but where this estimate
holds uniformly in time. We also note that the solution of (5) can be obtained by
the computation of the exponential of a skew-hermitian tridiagonal matrix, which
can be easily done by using Padé approximations, see for instance [10].

2. Main results

Let N ∈ N∗ be an even integer and h =
√

2N−
1
2 . We define the scaled Kravchuk

polynomials by the relation

(6) kn+1,h(x) = 2xkn,h(x)− 2n

(
1− h2

(n− 1

2

))
kn−1,h(x), k0,h = 1,
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with the convention kn,h = 0 for n < 0 (we will moreover prove that kn,h = 0 for
n > N). We denote the finite set

(7) Ah := hZ ∩
[
−1

h
,

1

h

]
,

and we consider the discrete Hilbert space `2(hZ) defined through the norm

‖u‖2
`2(hZ) = h

∑
a∈hZ

|u(a)|2

induced by the scalar product

〈u, v〉`2(hZ) = h
∑
a∈hZ

u(a)v(a)

for u, v : hZ→ C. We define the Kravchuk functions, for a ∈ hZ,

(8) ϕn,h(a) = αn,hkn,h(a)
√
ρh(a)

where, with Nh2 = 2 and k = 1
h2

+ a
h
for a ∈ Ah,

(9) ρh(a) =
1

h2
2
h2

Γ(1 + 2
h2

)

Γ(1 + 1
h2

+ a
h
)Γ(1 + 1

h2
− a

h
)

=
1

h2N

(
N

k

)
with the Γ function satisfying Γ(1 + n) = n!, and ρh(a) = 0 for a /∈ Ah, and

(10) αn,h =
1

hn
√
n!

√
Γ(1 + 2

h2
− n)

Γ(1 + 2
h2

)
=

1

hn

√
(N − n)!

N !n!
.

We define the following discrete operator: for all a ∈ Ah and u ∈ `2(hZ),

(11) Hhu(a) = − 1

h2

√
(1 + ah+ h2)(1− ah)u(a+ h)

− 1

h2

√
(1− ah+ h2)(1 + ah)u(a− h) +

(
1 +

2

h2

)
u(a),

and the lowering and raising operators

(12)

∣∣∣∣∣∣∣∣
Ln,hu(a) =

(
nh− 1

h
+ a

)
u(a) +

1

h

√
(1− ah)(1 + ah+ h2)u(a+ h),

Rn,hu(a) =

(
nh− 1

h
+ a

)
u(a) +

1

h

√
(1 + ah)(1− ah+ h2)u(a− h)

and Hh(a) = Lnf(a) = Rnu(a) = 0 for a ∈ hZ\Ah. Then we have the following
result, which gathers and rephrases informations that can be found in [11, 15].
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Theorem 1. We have for all h such that N = 2
h2
∈ N∗, and all 0 ≤ n,m ≤ N ,

(13)

∣∣∣∣∣∣∣∣∣∣

Hhϕn,h = (2n+ 1)ϕn,h

〈ϕn,h, ϕm,h〉`2(hZ) = δnm

Ln,hϕn,h =
√
n(2− nh2 + h2)ϕn−1,h

Rn,hϕn,h =
√

(2− nh2)(n+ 1)ϕn+1,h.

and the operator relations
(14)∣∣∣∣∣ 〈Rn,hu, v〉`2(hZ) = 〈u, Ln,hv〉`2(hZ),

1
2
(Rn−1,hLn,h + Ln+1,hRn,h) = (1− ah− nh2)Hh + ((2n+ 1)ah+ (n+ 1)nh2) Id.

We give a complete proof of this result (up to some calculations that are left to
the reader) in order to make the paper as self contained as possible.

The second result concerns the approximation of the Hermite function and Hermite
operator by the Kravchuk functions. We introduce the natural projection fromH1(R)
to `2(hZ) defined by

(πhf)(a) = f(a),

as f has a continuous representative, and we introduce the weighted Sobolev spaces
associated with the domain of the Harmonic oscillator operator

Σn(R) :=
{
ψ ∈ L2(R)

∣∣ ‖ψ‖Σn(R) := ‖ψ‖Hn(R) + ‖|〈x〉nψ‖L2(R) <∞
}

for n ≥ 0, with 〈x〉2 = 1 + x2.

Theorem 2. We have the following error estimates:

(i) There exists constants C and N0 such that for all N ≥ N0 and h =
√

2N−
1
2 ,

and for all g ∈ Σ5(R), we have

‖πh ◦Hg −Hh ◦ πhg‖`2(hZ)
≤ Ch2‖g‖Σ5(R).

(ii) For all δ ∈ (0, 1) and σ ≥ 0, there exists constants C and N0 such that for
all N ≥ N0 and h =

√
2N−

1
2 ,

(15)
∥∥∥∥〈a〉σ (ρh(a)− 1√

π
e−a

2

)∥∥∥∥
`2(hZ)

≤ Ch2−δ,

and the uniform estimate

(16) ∀n ≤ 1

3
δ| log h|, ‖〈a〉σ(ϕn,h − πhψn)‖

`2(hZ)
≤ Ch2−δ.
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The previous proposition shows that for asymptotically large modes n . | log h|,
the Hermite coefficients2 cn(f) = (f, ψn)L2 are well approximated by the discrete
Kravchuck coefficients

cn,h(f) = 〈πhf, ϕn,h〉`2(hZ) = h
∑
a∈Ah

ϕn(a)f(a).

Our last result, which was already noted in [2], shows that these coefficients can
be calculated at a cost equivalent to the evaluation of the exponential of a unitary
tridiagonal matrix of size N :

Theorem 3. Let N ∈ N∗, h =
√

2N−
1
2 , and for k ∈ {0, . . . , N}, let us set

φn(k) = ϕn,h(a), a = −1

h
+ hk.

Then we have
cn,h(f) =

∑
k

φn(k)F (k) ⇐⇒ C = LF

with F (k) = hf(a), C = (cn,h(f))Nn=0, F = (f(k))Nk=0 and

(17) L =


φ0(0) φ0(1) . . . φ0(N)
φ1(0) φ1(1) . . . φ1(N)
...

...
. . .

...
φN(0) φN(1) . . . φN(N)

 .

Then we have

(18) L = e
iπ(N+1)

4 De−
iπ
4
AD∗

with
(19)

D =


1 (0)

ei
π
2

. . .

(0) ei
πN
2

 , and A =


N + 1 −β1 (0)

−β1 N + 1
. . .

. . .
. . . −βN

(0) −βN N + 1

 ,

where for all 1 ≤ k ≤ N

βk =
√
k (N − k + 1).

2We conjecture that the condition n . | log h| can be replaced by n . h−δ but this would require
a subtle analysis of the asymptotics of the Kravchuk functions, yet to be performed.
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Note that in practice the matrix-vector multiplication by the exponential of a
unitary tridiagonal matrix, can be easily done by using Padé approximations [10].
The complete analysis of this transform from the numerical point of view, as well as
combination with highly oscillatory situations, will be the subject of further studies.

3. Discrete orthogonal Kravchuk polynomials

In this section, we give some fundamental properties of the discrete difference
theory in order to introduce the Kravchuk polynomials. Some of the statements
we give in the following are also proven for a larger class of discrete orthogonal
polynomials in the book of A.F. Nikiforov, S.K. Suslov and V.B. Uvarov [11], however
they use there an heavier formalism that we try to avoid here for clearness and
conciseness purposes.

We first introduce some notations. Recall that in the following, N ∈ N∗ and h are
linked by the formula h =

√
2N−

1
2 , and we write XN = {0, . . . , N}. We define the

application τh : XN → Ah (see (7)) by the formula

τh(k) = h

(
k − N

2

)
= h

(
k − 1

h2

)
.

We also define the binomial distribution function on the grid XN

(20) Π(k) =
1

2N

(
N

k

)
=

1

2N
N !

k!(N − k)!
,

and we extend this function to Z by setting Π(k) = 0 for k /∈ XN . The Kravchuk
polynomials we consider above are of the form

αn,hkn,h(a) =
1

dn
Kn(τ−1

h (a), N), with τ−1
h (a) =

1

h2
+
a

h
,

where Kn(k,N), n = 0, . . . , N are the standard Kravchuk polynomials, and where
the constant dn is equal to

(21) dn =
1

2n

√
N !

n!(N − n)!
,

so that

(22) kn,h(a) =
1

αn,hdn
Kn(τ−1

h (a), N) = hn2nn!Kn(τ−1
h (a), N).

We describe now the properties of the Kravchuk polynomials Kn(k,N).
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3.1. Discrete difference operators. Let us recall some classical properties of dif-
ference operators. We give only some hints for the proof which are essentially based
on polynomial and difference calculus that are mostly left to the reader.

Let f : Z→ C, we define the operators D+ and D− from CZ to CZ by the formula

D+f(k) = f(k + 1)− f(k), and D−f(k) = f(k)− f(k − 1).

They satisfy the following properties, for k ∈ Z, and f, g ∈ CZ,∣∣∣∣∣∣∣∣∣∣
D+f(k) = D−f(k + 1),

D+D−f(k) = D−D+f(k) = f(k + 1) + f(k − 1)− 2f(k),

D+ [f(k)g(k)] = f(k)D+g(k) + g(k + 1)D+f(k),

D− [f(k)g(k)] = f(k − 1)D−g(k) + g(k)D−f(k).

We can also prove the discrete Leibniz rule

(23) Dn
+ [f(k)g(k)] =

n∑
j=0

(
n

j

)
Dj

+f(k)Dn−j
+ g(k + j).

where Dn
+ is the n-th composition of the operator D+. This formula can be proved by

induction using the previous relation for the derivative of products, and the Pascal
formula for the binomial coefficients. The following result is also easy to prove:

Proposition 1. Let P : Z → C be a polynomial of order n. Then D+P and D−P
are polynomials of order n− 1 or less.

Eventually, the binomial distribution (20) satisfies the following property (called
Pearson equation, see [11]):

(24) ∀k ∈ Z, D+ (kΠ(k)) = (N − 2k)Π(k).

3.2. Kravchuk polynomials. The Kravchuk polynomials (see [15]) are given by
the following formula: for all k ∈ XN ,

(25) Kn(k,N) =
1

2n

n∑
j=0

(−1)n−j
(
k

j

)(
N − k
n− j

)
,

where
(
k
j

)
= k(k−1) . . . (k−j+1)/j! for k ≥ j ≥ 1 and

(
k
0

)
= 1. Note that Kn(k,N)

can be seen as the n-th coefficient of the polynomial

(26) Fk,N(X) =

(
1 +

X

2

)k (
1− X

2

)N−k
=

N∑
n=0

Kn(k,N)Xn.
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Proposition 2. For a polynomial P ∈ R [X], we denote by lc(P ) ∈ R its leading
coefficient. Then, for all 0 ≤ n ≤ N , Kn( · , N) is a polynomial of degree n, with
leading coefficient

lc(Kn) =
1

n!
.

Proof. The proof directly comes from the fact that for all 0 ≤ j ≤ k,

Pj(k) :=

(
k

j

)
=

1

j!
k(k − 1) . . . (k − j + 1)

is a polynomial of degree j in k with leading coefficient 1/j!, and

Qj(k) :=

(
N − k
n− j

)
=

1

(n− j)!
(N − k)(N − k − 1) . . . (N − k − n+ j + 1)

is a polynomial of degree n− j in k, with leading coefficient (−1)n−j/(n− j)!. Then
we have

lc(Kn) =
1

2n

n∑
j=0

(−1)n−jlc(Pj)lc(Qj) =
1

2n

n∑
j=0

1

j!(n− j)!
=

1

n!
,

which gives the result. �

For instance, the first polynomials are given by

K0(k,N) = 1, K1(k,N) = k − N

2
and K2(k,N) =

1

2
k2 − N

2
k +

N(N − 1)

8
.

Directly from the explicit formula (25), we can prove the following:

Proposition 3. For all k, n ∈ {0, . . . , N},

Kn (N − k) = (−1)nKn(k),

and

(27) (−1)n2n
(
N

k

)
Kn(k) = (−1)k2k

(
N

n

)
Kk(n).

Finally, the polynomials Kn( · , N) satisfy the following difference equation:

Proposition 4. For all k, n ∈ {0, . . . , N}, Kn( · , N) satisfies the equation

(28) kD+D−Kn(k) + (N − 2k)D+Kn(k) = −2nKn(k)

Proof. We only give the main points. First this equation is equivalent to

(N − k)Kn(k + 1)− (N − 2n)Kn(k) + kKn(k − 1) = 0
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for all 0 ≤ k ≤ N . Differentiating equation (26) with respect to X, we get that

F ′k,N+1(X) = −k
2
Fk−1,N(X) +

N + 1− k
2

Fk,N(X).

We evaluate the coefficients of the monomial Xn in the previous expression, and we
find

(29) (n+ 1)Kn+1(k,N + 1) = −k
2
Kn(k − 1, N) +

N + 1− k
2

Kn(k,N).

On the other hand, using the definition of the polynomials, we have

Kn(k + 1, N + 1) = Kn(k,N)− 1

2
Kn−1(k,N).

Shifting N to N − 1 into this last expression, we have

(30) Kn(k + 1, N) = Kn(k,N − 1)− 1

2
Kn−1(k,N − 1).

In the same way, we get that

Kn(k,N + 1) = Kn(k,N − 1) +
1

2
Kn−1(k,N),

so shifting N to N − 1 we obtain

(31) Kn(k,N) = Kn(k,N − 1) +
1

2
Kn−1(k,N − 1).

Substracting equation (30) to equation (31), we get that

(32) Kn(k,N)−Kn(k + 1, N) = Kn−1(k,N − 1).

Finally, going back to equation (29), shifting n to n− 1, N to N − 1 and multiplying
by 2, we have

2nKn(k,N)− (N − k)Kn−1(k,N − 1) + kKn−1(k − 1, N − 1) = 0,

so using equation (32) for both Kn−1 we get that

2nKn(k,N)−(N−k) (Kn(k,N)−Kn(k + 1, N))+k (Kn(k − 1, N)−Kn(k,N)) = 0.

Simplifying this equation, we get the result. �

Using (24) we get the following Sturm-Liouville difference equation. From now on
we will often omit the N in the notation for the Kravchuk polynomial, and write
Kn(k) = Kn(k,N).

Corollary 1. For all 0 ≤ n ≤ N , Kn satisfies the equation

(33) D+ [kΠ(k)D−Kn(k)] = 2nΠ(k)Kn(k).
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Proof. We multiply equation (28) by Π(k) and we use the Pearson equation (24), so
that

kΠ(k)D+D−Kn(k) + (N − 2k)Π(k)D+Kn(k)− λnKn(k)Π(k)

= kΠ(k)D+D−Kn(k) + D−Kn(k + 1)D+ [kΠ(k)]− λnKn(k)Π(k)

= D+ [kΠ(k)D−Kn(k)]− λnKn(k)Π(k) = 0.

�

We also have the following orthogonality property:

Proposition 5. For 0 ≤ n,m ≤ N , we have

(34)
N∑
k=0

Kn(k)Km(k)Π(k) = δn,md
2
n,

with the normalization constant dn given by (21).

Proof. The proof consists in expanding the relation[(
1− X

2

)(
1− Y

2

)
+

(
1 +

X

2

)(
1 +

Y

2

)]N
= 2N

(
1 +

XY

4

)N
using (26). �

The following formula will explain the specific form of the Kravchuk transform:

Proposition 6. For 0 ≤ n,m ≤ N ,
N∑
k=0

2kKk(n)Km(k)e
i(k−m)π

2 = 2
N
2 e

inπ
4 e−

iπN
4 Km(n,N).

Proof. The proof consists in expanding the relation(
1− X

2

)N (
1 + i

1 +X/2

1−X/2

)n(
1− i1 +X/2

1−X/2

)N−n
= (1 + i)n(1− i)N−n

(
1 + i

X

2

)n(
1− iX

2

)N−n
,

by using the definition of the Kravchuk polynomials. �

We finally give the three-term recurrence relation for the Kravchuk polynomials:

Proposition 7. For all n ∈ N∗ and for k ∈ XN , we have

(35) (n+ 1)Kn+1(k) =

(
k − N

2

)
Kn(k)− N − n+ 1

4
Kn−1(k).
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Proof. We denote by an and bn the leading coefficients in the expansion

Kn(k) = ank
n + bnk

n−1 + . . . ,

and we have (see for instance [11, p. 44])

an =
1

n!
, and bn = − N

2(n− 1)!
.

Let us now remark that

deg

(
Kn+1 −

an+1

an
kKn

)
≤ n,

This shows that

Kn+1 −
an+1

an
kKn =

n∑
l=0

clKl,

and by taking the weighted discrete scalar products with weight Π(k) and using (34),
we can prove that cl = 0 for l < n− 1 as deg(kKl) < n. We obtain a relation of the
form

kKn = αnKn+1 + βnKn + γnKn−1,

whose coefficients αn, βn and γn can be found by the formulas

αn =
an
an+1

, βn =
bn
an
− bn+1

an+1

, γn =
an−1

an

d2
n

d2
n−1

by standard computations, which gives the result. �

We are now going to prove the discrete counterpart of the classical Rodrigues for-
mula for Kravchuk polynomials, as it will be useful for the derivation of the lowering
and raising operators. We first need to introduce some notations and properties in
the following lemma, which is a consequence of the formula for the discrete derivative
of products:

Lemma 1. Let n, m ≥ 0, and k ∈ Z. We denote

Πm(k) = Π(k +m)
m∏
j=1

(k + j), K(m)
n = Dm

+Kn and µ(m)
n = 2n− 2m.

Then, for all k ∈ Z, K(m)
n satisfies the following Sturm-Liouville difference equation:

D+

[
kΠm(k)D−K

(m)
n (k)

]
+ µ(m)

n Πm(k)K(m)
n (k) = 0.

Proof. Differentiating equation (28), we get that

D+

[
kD−K

(1)
n (k)

]
+ D+

[
(N − 2k)K(1)

n (k)
]

+ λnK
(1)
n (k) = 0,
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which simplifies in

kD+D−K
(1)
n (k) + (N − 2k − 1)D+K

(1)
n (k) + (λn − 2)K(1)

n (k) = 0.

Applying m times this computation, we can prove by induction that ∀m ≥ 0, that
K

(m)
n satisfies the following difference equation:

kD+D−K
(m)
n (k) + (N − 2k −m)D+K

(m)
n (k) + (λn − 2m)K(m)

n (k) = 0.

We are now going to show that Πm satisfies a Pearson-type equation. In fact,

D+ [kΠm(k)] = (k + 1)Π(k + 1 +m)
m∏
j=1

(k + 1 + j)− kΠ(k +m)
m∏
j=1

(k + j)

=
1

2N

(
m∏
j=1

(k + j)

)[
(k + 1 +m)

(
N

k + 1 +m

)
− k
(

N

k +m

)]

=
1

2N

(
m∏
j=1

(k + j)

)[
(N − k −m)

(
N

k +m

)
− k
(

N

k +m

)]
= (N − 2k −m)Πm(k).

We then just have to reproduce the computation of the proof of Corollary 1 to get
the result. �

Proposition 8. (Rodrigues formula). For k ∈ XN , we have

(36) Kn(k)Π(k) =
(−1)n

2nn!
Dn

+

[
Π(k)

n−1∏
j=0

(k − j)

]
.

Proof. With the previous notations, it is a direct consequence of Lemma 1 to see
that

Πm(k)K(m)
n (k) = − 1

µ
(n)
m

D+

[
kΠm(k)D−K

(m)
n (k)

]
= − 1

µ
(n)
m

D−
[
Πm+1(k)K(m+1)

n (k)
]
.

By induction we get that

Π(k)Kn(k) =
n−1∏
j=0

(
− 1

µ
(n)
j

)
Dn
−
[
Πn(k)K(n)

n (k)
]
.

As Kn is polynomial of degree n, K(n)
n = 1

n!
is a constant, so we calculate directly,

Π(k)Kn(k) = cnDn
−Πn(k) =

(−1)n

2nn!
Dn

+

[
Π(k)

n−1∏
j=0

(k − j)

]
,

which gives the result. �
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Corollary 2. For all n ∈ N and k ∈ XN ,

2(n+ 1)Kn+1(k) = (n+ 2k −N)Kn(k)− kD−Kn(k).

Proof. With cn = (−1)n

2nn!
, by the Rodrigues formula, we have that

Kn+1(k)Π(k) = cn+1Dn+1
− Πn+1(k) = cn+1Dn

− [D+Πn+1(k − 1)] .

Noticing that we can compute

D+Πn+1(k−1) = D+

[
Π(k + n)

n+1∏
j=1

(k − 1 + j)

]
= D+ [kΠn(k)] = (N−2k−n)Πn(k),

we see that

Kn+1(k)Π(k) = cn+1Dn
− [(N − 2k − n)Πn(k)]

= cn+1Dn−1
− [(N − 2k − n)D−Πn(k)− 2D−Πn(k − 1)]

= cn+1

(
(N − 2k − n)Dn

− [Πn(k)]− 2nDn−1
− [Πn(k − 1)]

)
as we can prove easily by induction. Since

D−Kn(k) = K(1)
n (k − 1) =

cn
kΠ(k)

Dn−1
− [Πn(k − 1)] ,

we obtain
Kn+1(k) =

cn+1

cn
(N − 2k − n)Kn(k)− cn+1

cn
D−Kn(k)

which shows the result. �

3.3. Kravchuk functions. We now define the Kravchuk functions (φn)n, such that
for all k ∈ XN ,

(37) φn(k) =
1

dn
Kn(k)

√
Π(k),

and φn(k) = 0 elsewhere. From (34) we immediately get that the sequence (φn)n is
orthogonal for the discrete scalar product on XN :

Proposition 9. For all 0 ≤ n,m ≤ N ,

〈φn, φm〉`2(Z) =
N∑
k=0

φn(k)φm(k) = δn,m.

Several properties of the Kravchuk polynomials can of course be easily passed to
the Kravchuk functions and we omit the proof of the following formulas:
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Proposition 10. For all 0 ≤ k, n ≤ N ,

(−1)kφn(k) = (−1)nφk(n);

and for all 0 ≤ m,n ≤ N ,

φm(n)e
inπ
4 e−

iπN
4 =

N∑
k=0

φk(n)φm(k)e
i(k−m)π

2 .

3.4. Kravchuk oscillator. As Hermite functions for the harmonic oscillator, Kravchuk
functions are eigenfunctions for a particular discrete operator denoted H, which also
admits a ladder operator description that we explicit in the following.

Proposition 11. (Kravchuk oscillator on Z). We define the operator H for
f ∈ `2(Z) by

Hf(k) =
√

(k + 1)(N − k)f(k + 1) +
√
k(N − k + 1)f(k − 1)−Nf(k),

for k ∈ XN , and Hf(k) = 0 if k /∈ XN . Then

Hφn = −2nφn.

Proof. It comes directly from multiplying equation (28) by d−1
n

√
Π(k), and noticing

that formally

Π(k)

Π(k + 1)
=

k + 1

N − k
and

Π(k)

Π(k − 1)
=
N − k + 1

k
.

�

Proposition 12. (Lowering and raising operators).
We define the operators L and R acting on `2(Z) by∣∣∣∣∣ Lf(k) = (k −N)f(k) +

√
(N − k)(k + 1)f(k + 1),

Rf(k) = (k −N)f(k) +
√
k(N − k + 1)f(k − 1),

for k ∈ XN , Lf(k) = Rf(k) = 0 if k /∈ XN , and we denote

Ln = L+ nId and Rn = R+ nId,

for all n ≥ 0. Then, for all 0 ≤ n ≤ N , we have

(38) Lnφn =
√
n(N − n+ 1)φn−1 and Rnφn =

√
(N − n)(n+ 1)φn+1.

In particular, for all 1 ≤ n ≤ N , we have

Rn−1Lnφn = n(N − n+ 1)φn and Ln+1Rnφn = n(N − n+ 1)φn.
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Proof. We compute

dnRnφn(k) = (k + n−N)Kn(k)
√

Π(k) +
√
k(N − k + 1)Kn(k − 1)

√
Π(k − 1)

= (k + n−N)Kn(k)
√

Π(k) + k
√

Π(k)Kn(k − 1)

= (n+ 2k −N)Kn(k)
√

Π(k)−
√

Π(k)kD−Kn(k)

= −2(n+ 1)Kn+1(k)
√

Π(k)

using Corollary 2, so

Rnφn(k) = −2(n+ 1)
dn+1

dn
φn+1(k) =

√
(N − n)(n+ 1)φn+1(k).

The calculation for the operator Ln is entirely similar. �

Proposition 13. (Self-adjointness of H).
For all n ≥ 0, the operators Ln and Rn are adjoint, namely for all u, v ∈ `2(Z),

〈Rnu, v〉`2(Z) = 〈u,Lnv〉`2(Z).

In particular, the operator H is self-adjoint.

Proof. We compute

〈Rnu, v〉 =
N∑
k=0

(k −N + n)u(k)v(k) +
N∑
k=0

√
k(N − k + 1)u(k − 1)v(k).

In order to make the change of variable k 7→ k + 1, we need to remark that the
quantity √

k(N − k + 1) = 0 when k = 0

and √
(k + 1)(N − k) = 0 when k = N,

so we can rewrite the secund sum
N∑
k=0

√
k(N − k + 1)u(k − 1)v(k) =

N∑
k=1

√
k(N − k + 1)u(k − 1)v(k)

=
N−1∑
k=0

√
(k + 1)(N − k)u(k)v(k + 1)

=
N∑
k=0

√
(k + 1)(N − k)u(k)v(k + 1).

The proof forH is a consequence of the factorization ofH of the next proposition. �
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Proposition 14. (Factorization of H).
For all 0 ≤ n ≤ N and k ∈ XN , we have

Rn−1Ln = (k + n− 1−N) (H + nId) + nkId

and
Ln+1Rn = (k + n+ 1−N) (H + nId) + (nk +N)Id,

and therefore

1

2
(Rn−1Ln + Ln+1Rn)

= (k + n−N)(H− 1) +

(
(n+ 1)(k + n−N) + nk +

N

2

)
Id.

Proof. We compute

Ln+1Rnf(k) = (k + n+ 1−N)Rnf(k) +
√

(N − k)(k + 1)Rnf(k + 1)

= (k + n+ 1−N)(k + n−N)f(k) + (k + n+ 1−N)
√
k(N − k + 1)f(k − 1)

+ (k + 1 + n−N)
√

(N − k)(k + 1)f(k + 1) + (N − k)(k + 1)f(k)

= (k + n+ 1−N) (H + nId) f(k) + k(k + n+ 1−N)f(k) + (k + 1)(N − k)f(k)

= (k + n+ 1−N) (H + nId) f(k) + (N + nk)f(k).

We compute Rn−1Lnf(k) the same way:

Rn−1Lnf(k) = (k + n− 1−N)Lnf(k) +
√
k(N − k + 1)Lnf(k − 1)

= (k + n− 1−N)(k + n−N)f(k) + (k + n− 1−N)
√

(k + 1)k(N − k)f(k + 1)

+ (k + n− 1−N)
√

(N − k + 1)kf(k + 1) + (N − k + 1)kf(k)

= (k + n− 1−N) (H + nId) f(k) + k(k + n+ 1−N)f(k) + (k + 1)(N − k)f(k)

= (k + n− 1−N) (H + nId) f(k) + nkf(k).

and thus

1

2
(Rn−1Ln + Ln+1Rn) = (k + n−N) (H + nId) +

(
nk +

N

2

)
Id

= (k + n−N)(H− 1) + (n+ 1)(k + n−N)Id +

(
nk +

N

2

)
Id.

�
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3.5. Kravchuk functions and Kravchuk oscillator on hZ. Theorem 1 is now a
consequence of the previous results, using (22). For instance, we get that for all n,
m ≥ 0,

h
∑
a∈hZ

Kn(τ−1
h (a))Km(τ−1

h (a))ρh(a) = δn,md
2
n,

as we have ρh(a) = 1
h
Π(τ−1

h (a)), see (9). We can also check that with formula (37),
we have

ϕn,h(a) =
1√
h
φn(τ−1

h (a)).

This directly gives that

h
∑
a∈hZ

ϕn,h(a)ϕm,h(a) = δn,m.

Then we define for f ∈ `2(hZ),∣∣∣∣∣∣
Hhf(a) = (−H + 1)f ◦ τ−1

h (a),
Ln,hf(a) = hLnf ◦ τ−1

h (a),
Rn,hf(a) = hRnf ◦ τ−1

h (a),

and from the expression of these operators in variable a, we deduce (11) and (12),
and Theorem 1 follows. Eventually, Proposition 7 shows that for all n ∈ N∗, and for
all a ∈ hZ,

(n+ 1)Kn+1(τ−1
h (a)) =

a

h
Kn(τ−1

h (a))− 1

4
(N − n+ 1)Kn−1(τ−1

h (a)).

As kn,h(a) = hn2nn!Kn(τ−1
h (a)), we calculate that for all n ∈ N∗ and a ∈ hZ,

kn+1,h = 2akn,h − 2n

(
1− h2

(n− 1

2

))
kn−1,h,

which is (6).

4. Convergence of Kravchuk oscillator

We first show some inequalities between discrete and continuous Sobolev spaces,
which will be needed for the proof of Theorem 2.

Lemma 2. Let g ∈ H1(R), then πhg ∈ `2(hZ) and

(39) ‖πhg‖`2(hZ) ≤ 2‖g‖H1(R)

as soon as h ≤
√

2.



DISCRETE QUANTUM HARMONIC OSCILLATOR AND KRAVCHUK TRANSFORM 19

Proof. Let a = jh ∈ hZ with j ∈ Z. We take x ∈ [a, a+ h]. As g ∈ H1(R), we can
write that

(πhg)(a) = g(x)−
∫ x

a

∂xg(y)dy,

so taking the square on this equation, and by Cauchy-Schwarz inequality and Young’s
inequality for products, we see that

|πhg(a)|2 ≤ 2|g(x)|2 + 2(x− a)

∫ a+h

a

|∂xg(y)|2 dy.

Then, integrating (with respect to dx) between a and a+1 and summing over a ∈ hZ,
we obtain that

h
∑
a∈hZ

|πhg(a)|2 ≤ 2

∫
R
|g(x)|2dx+ h2

∫
R
|∂xg(y)|2 dy,

so
‖πhg‖2

`2(hZ) ≤ 2‖g‖2
L2(R) + h2‖g‖2

Ḣ1(R)
,

hence we get the results as soon as h ≤
√

2. �

Remark 1. Note that in our case, as h =
√

2/N with N ≥ 1, we always fulfill the
condition h ≤

√
2.

We now state a lemma that will be useful in the proof of Theorem 2:

Lemma 3. For all α, β ∈ N and n such that α+β ≤ n− 1, there exists C such that
we have for all g ∈ Σn(R) with n ∈ N∗,

‖aβπh∂αx g‖`2(hZ) ≤ C‖g‖Σn(R).

Proof. We first recall a classical lemma from functional analysis, whose complete
proof can be found in [7] or [3]: for all α, β ∈ N such that α + β ≤ n, we have

‖xα∂βxg‖L2(R) ≤ C‖g‖Σn(R)

for some constant C independent of g. It naturally follows that if α + β ≤ n − 1,
then

(40) ‖xβ∂αx g‖H1(R) ≤ C‖g‖Σn(R).

as
∂x
(
xβ∂αx g

)
= βxβ−1∂αx g + xβ∂α+1

x g.

Combining the fact that
πh
(
xβ∂αx g

)
= aβπh∂

α
x g

with equation (40) and Lemma 2, we then get the result. �
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Proof of Theorem 2. Let g ∈ Σ5(R) and a ∈ hZ, we have

(πhHg)(a) = −g′′(a) + a2g(a),

(g′′ ∈ H3(R) well admits a continuous representative), and

(Hhπhg)(a) = − 1

h2

√
(1 + ah+ h2)(1− ah)g(a+ h)

− 1

h2

√
(1− ah+ h2)(1 + ah)g(a− h) +

(
1 +

2

h2

)
g(a)

if a ∈ Ah = hZ ∩
[
− 1
h
, 1
h

]
, and Hhπhg(a) = 0 elsewhere. We first compute that

(1∓ ah+ h2)(1± ah) = 1 + h2(1− a2 ± ah),

and we denote

R±h (a) := 1 +
h2

2

(
1− a2 ± ah

)
−
√

1 + h2 (1− a2 ± ah)

for all a ∈ Ah, and R±h (a) := 0 elsewhere. We have

(Hhπhg − πhH)(a) = g′′(a)−∆hg(a)− (a2 − 1)g(a)

+
1

h2
R−h (a)g(a+ h) +

1

h2
R+
h (a)g(a− h)

− (1− a2 + ah)g(a− h)− (1− a2 − ah)g(a+ h),

where

∆hu(a) =
u(a+ h) + u(a− h)− 2u(a)

h2
.

Hence, by a triangular inequality, we get that

‖πhHg −Hhπhg‖`2(hZ) ≤ S1 + S2 + S3 + S4 + S5,

with

S2
1 = h

∑
a∈hZ

|g′′(a)−∆hg(a)1Ah(a)|2 ,

S2
2 = h

∑
a∈hZ

∣∣∣∣(a2 − 1)

(
g(a)− g(a+ h) + g(a− h)

2
1Ah(a)

)∣∣∣∣2 ,
S2

3 = h
∑
a∈Ah

∣∣∣∣ahg(a− h)− g(a+ h)

2

∣∣∣∣2 ,
S2

4 = h
∑
a∈Ah

∣∣∣∣g(a+ h)

h2
R−h (a)

∣∣∣∣2 and S2
5 = h

∑
a∈Ah

∣∣∣∣g(a− h)

h2
R+
h (a)

∣∣∣∣2 .
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We first look at S1, and we split the sum over Ah and hZ\Ah, so that

S2
1 = h

∑
a∈Ah

|g′′(a)−∆hg(a)|2 + h
∑
a/∈Ah

|g′′(a)|2 .

For all a ∈ Ah, as g ∈ H5(R) ↪→ C4(R) by Taylor formula we get that

g(a+ h) = g(a) + hg′(a) +
h2

2
g′′(a) +

h3

6
g(3)(a) +

∫ a+h

a

(a+ h− s)3

6
g(4)(s)ds

and

g(a− h) = g(a)− hg′(a) +
h2

2
g′′(a)− h3

6
g(3)(a)−

∫ a

a−h

(a− h− s)3

6
g(4)(s)ds,

hence by direct cancellations

g′′(a)− g(a+ h) + g(a− h)− 2g(a)

h2

= − 1

6h2

(∫ a+h

a

(a+ h− s)3g(4)(s)ds−
∫ a

a−h
(a− h− s)3g(4)(s)ds

)
.

By the standard inequality |a− b|2 ≤ 2(|a|2 + |b|2), we infer that

|g′′(a)−∆hg(a)|2

=
1

18h4

(∣∣∣∣∫ a+h

a

(a+ h− s)3g(4)(s)ds

∣∣∣∣2 +

∣∣∣∣∫ a

a−h
(a− h− s)3g(4)(s)ds

∣∣∣∣2
)
,

so by Cauchy-Schwarz inequality we get, for instance for the first integral, that∣∣∣∣∫ a+h

a

(a+ h− s)3g(4)(s)ds

∣∣∣∣2 ≤ (∫ a+h

a

(a+ h− s)6

)(∫ a+h

a

|g(4)(s)|2ds

)
=
h7

7

∫ a+h

a

|g(4)(s)|2ds,

and the same way,∣∣∣∣∫ a+h

a

(a− h− s)3g(4)(s)ds

∣∣∣∣2 ≤ h7

7

∫ a

a−h
|g(4)(s)|2ds

so finally, as Ah ⊂ hZ,

(41) h
∑
a∈Ah

|g′′(a)−∆hg(a)|2 ≤ h
∑
a∈hZ

1

18h4

h7

7

∫ a+h

a−h
|g(4)(s)|2ds ≤ h4

63
‖g(4)‖2

L2(R)
.
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On the other hand, as |a| ≥ 1/h,∑
a/∈Ah

|g′′(a)|2 =
∑
a/∈Ah

1

|a|4
|a|4|g′′(a)|2 ≤ h4

∑
a/∈Ah

|a|4|g′′(a)|2 ≤ Ch3‖a2g′′(·)‖2
`2(hZ),

using the fact that hZ\Ah ⊂ hZ, so

(42)

h∑
a/∈Ah

|g′′(a)|2
 ≤ Ch4‖g‖2

Σ5(R)

using Lemma 3, as in particular ‖a2g′′(·)‖2
`2(hZ) ≤ C‖g‖2

Σ5(R). Finally, combining
estimates (41) and (42), as ‖g(4)‖L2(R) ≤ C‖g‖Σ5(R), we get that

S1 ≤ Ch2‖g‖Σ5(R).

In the same vein, we see that

S2
2 = h

∑
a∈Ah

∣∣∣∣(a2 − 1)

(
g(a)− g(a+ h) + g(a− h)

2

)∣∣∣∣2 + h
∑
a/∈Ah

|(a2 − 1)g(a)|2.

First, for a ∈ Ah, as from Taylor formula

g(a+ h) = g(a) + hg′(a) +
∫ a+h

a
(a+ h− s)g′′(s)ds

g(a− h) = g(a)− hg′(a)−
∫ a
a−h(a− h− s)g

′′(s)ds,

we have

g(a)− g(a+ h) + g(a− h)

2
= −

∫ a+h

a

(a+ h− s)g′′(s)ds+

∫ a

a−h
(a− h− s)g′′(s)ds.

Estimating for instance the first integral, we naturally get that∣∣∣∣∫ a+h

a

(a+ h− s)g′′(s)ds
∣∣∣∣2 ≤ (∫ a+h

a

(a+ h− s)2ds

)(∫ a+h

a

|g′′(s)|2ds

)
≤ h3

3

∫ a+h

a

|g′′(s)|2ds

from Cauchy-Schwarz inequality, so

h
∑
a∈Ah

|a2 − 1|2
∣∣∣∣g(a)− g(a+ h) + g(a− h)

2

∣∣∣∣2 ≤ h4
∑
a∈Ah

〈a〉2
∫ a+h

a−h
|g′′(s)|2ds

from the standard inequality |a2 − 1|2 ≤ 2(1 + |a|2) = 2〈a〉2. Let a ≥ h. If s ∈
[a, a+ h], we naturally get that 〈a〉2 ≤ 〈s〉2, so

〈a〉2
∫ a+h

a

|g′′(s)|2ds ≤
∫ a+h

a

〈s〉2|g′′(s)|2ds.
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If s ∈ [a− h, a], we can write that

1 ≤ 1 + (a− h)2 ≤ 1 + s2,

so
1 + a2 ≤ 1 + s2 + 2ah− h2 ≤ 3 + s2 ≤ 3〈s〉2

as a ≤ 1/h and 0 < h ≤ 1, so

〈a〉2
∫ a

a−h
|g′′(s)|2ds ≤ 3

∫ a

a−h
〈s〉2|g′′(s)|2ds.

As this bound is obvious for a = 0 and entirely symmetrical for a ≤ −h, we finally
get that(

h
∑
a∈Ah

∣∣∣∣(a2 − 1)

(
g(a)− g(a+ h) + g(a− h)

2

)∣∣∣∣2
) 1

2

≤ Ch2

(∑
a∈Ah

∫ a+h

a−h
〈s〉2|g′′(s)|2ds

) 1
2

≤ Ch2‖g‖Σ4(R) ≤ Ch2‖g‖Σ5(R).

Now, for a /∈ Ah, we write that

|a2g(a)− g(a)|2 ≤ 2
(
|a2g(a)|2 + |g(a)|2

)
,

so as for S1 we have

h
∑
a/∈Ah

|a2g(a)|2 = h
∑
a/∈Ah

1

a4
|a|4|a2g(a)|2 ≤ h5

∑
a/∈Ah

|a4g(a)|2

≤ h4‖a4g(·)‖2
`2(hZ) ≤ h4‖g‖2

Σ5(R,

and
h
∑
a/∈Ah

|g(a)|2 = h
∑
a/∈Ah

1

a4
|a2g(a)|2 ≤ Ch4‖g‖Σ5(R)

from Lemma 3. So finally we well have

S2 ≤ Ch2‖g‖Σ5(R).

Now, looking at S3, we use the fact that, from the same Taylor formula and
Cauchy-Schwarz inequality as before, we have

ah
g(a− h)− g(a+ h)

2

= −ah2g′(a)− ah

2

(∫ a+h

a

(a+ h− s)g′′(s)ds+

∫ a

a−h
(a− h− s)g′′(s)ds

)
,
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so ∣∣∣∣ahg(a− h)− g(a+ h)

2
+ h2ag′(a)

∣∣∣∣2 ≤ Ch5|a|2
∫ a+h

a−h
|g′′(s)|2ds

≤ Ch3

∫ a+h

a−h
|g′′(s)|2ds

as |a| ≤ 1/h for all a ∈ Ah, so

S3 =

(
h
∑
a∈Ah

∣∣∣∣ahg(a− h)− g(a+ h)

2

∣∣∣∣2
) 1

2

≤

(
h
∑
a∈Ah

|ah2g′(a)|2
) 1

2

+ Ch2‖g′′‖L2(R) ≤ Ch2‖g‖Σ5(R).

It now remains to bound S4 and S5 in terms of ‖g‖Σ5(R). As these two sums are
symmetric, we will only show how to control S4 in the following. Let us first analyze
the behavior of the function

R−h (a) = 1 + h2(1− a2 − ah)/2−
√

1 + h2(1− a2 − ah) = f(h2(1− a2 − ah))

where f(x) = 1 + 1
2
x−
√

1 + x. We have that f ′′(x) = 1
4
(1 +x)−

3
2 which is uniformly

bounded on R, and moreover f(0) = f ′(0) = 0, from which we deduce that |f(x)| ≤
Cx2. Hence

h
∑
a∈Ah

∣∣∣∣g(a+ h)

h2
R−h (a)

∣∣∣∣2 ≤ h
∑
a∈Ah

∣∣g(a+ h)h2(1− a2 − ah)
∣∣2

≤ h4h
∑
a∈hZ

∣∣g(a)〈a〉2
∣∣2 ≤ Ch4‖g‖2

Σ5(R),

which ends the proof of Theorem 2. �

5. Convergence of Kravchuk functions

The aim of this section is to prove the second part of Theorem 2.

5.1. Convergence of the binomial law. We first prove (15). We define the pro-
jection of the Gaussian function x 7→ e−x

2 on the grid hZ by

ρ : a ∈ hZ 7→ e−a
2

.

By definition we have, using (9) and the definition (20) with N = 2
h2
,

ρh(a) =
1

h
ΠN

(
τ−1
h (a)

)
=

1

h41/h2

Γ
(
1 + 2

h2

)
Γ
(
1 + 1

h2
+ a

h

)
Γ
(
1 + 1

h2
− a

h

) ,
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where Γ denotes the usual Gamma function such that Γ(n + 1) = n! for integers.
The Stirling asymptotics (see for instance [1, 6.1.42, p.257]) yields

(43) log Γ(z) =

(
z − 1

2

)
log(z)− z +

1

2
log(2π) +R0(z) with |R0(z)| ≤ c0

〈z〉
.

for some constant c0. This asymptotic yields in particular the Stirling formula

n! = Γ(1 + n) '
√

2πnnne−n.

This shows that

log ρh(a) = − log h− 2

h2
log 2 + log Γ

(
1 +

2

h2

)
− log Γ

(
1 +

1

h2
+
a

h

)
− log Γ

(
1 +

1

h2
− a

h

)
= − log h− 2

h2
log 2 +

(
2

h2
+

1

2

)
log

(
1 +

2

h2

)
−
(

1 +
2

h2

)
+

1

2
log(2π)

−
(

1

h2
+
a

h
+

1

2

)
log

(
1 +

1

h2
+
a

h

)
+

(
1 +

1

h2
+
a

h

)
− 1

2
log(2π)

−
(

1

h2
− a

h
+

1

2

)
log

(
1 +

1

h2
− a

h

)
+

(
1 +

1

h2
− a

h

)
− 1

2
log(2π)

+R0

(
1 +

2

h2

)
−R0

(
1 +

1

h2
+
a

h

)
−R0

(
1 +

1

h2
− a

h

)
,

so we can write that

log ρh(a) = −1

2
log(2π)− log h− 2

h2
log 2

−
(

1 +
2

h2

)
+

(
1 +

1

h2
+
a

h

)
+

(
1 +

1

h2
− a

h

)
+

(
2

h2
+

1

2

)[
log 2− 2 log h+ log

(
1 +

h2

2

)]
−
(

1

h2
+
a

h
+

1

2

)[
−2 log h+ log(1 + ah+ h2)

]
−
(

1

h2
− a

h
+

1

2

)[
−2 log h+ log(1− ah+ h2)

]
+R0

(
1 +

2

h2

)
−R0

(
1 +

1

h2
+
a

h

)
−R0

(
1 +

1

h2
− a

h

)
,
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and thus

log ρh(a) = 1− 1

2
log(π) +

(
2

h2
+

1

2

)
log

(
1 +

h2

2

)(44)

−
(

1

h2
+
a

h
+

1

2

)
log(1 + ah+ h2)−

(
1

h2
− a

h
+

1

2

)
log(1− ah+ h2)

+R0

(
1 +

2

h2

)
−R0

(
1 +

1

h2
+
a

h

)
−R0

(
1 +

1

h2
− a

h

)
.(45)

Let us estimate this term first in the regime |a| ≤ h−δ with δ ∈ (0, 1). In this case,
we have

1

h2
± a

h
=

1

h2
(1 +O(h1−δ)) ≥ ch−2,

for h small enough. This shows that in the previous expression, the terms with R0

can be estimated with (43) and are of order O(h2). We also have |h2 ± ah| ≤ Ch2

and thus we can expand the log terms by using log(1 + x) = x − x2

2
+ O(|x|3) and

we obtain

log ρh(a) = 1− 1

2
log(π)

+

(
2

h2
+

1

2

)(
h2

2
− h4

4
+O(h6)

)
−
(

1

h2
+
a

h
+

1

2

)(
ah+ h2 − 1

2
(ah+ h2)2 +O(h6)

)
−
(

1

h2
− a

h
+

1

2

)(
−ah+ h2 − 1

2
(−ah+ h2)2 +O(h6)

)
+O(h2)

and thus

log ρh(a) = 1− 1

2
log(π) + 1 +O(h2)

−
(

1

h2
+
a

h
+

1

2

)(
ah+ h2 − 1

2
a2h2 − ah3

)
−
(

1

h2
− a

h
+

1

2

)(
−ah+ h2 − 1

2
a2h2 + ah3

)
,
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yielding

log ρh(a) = 2− 1

2
log(π) +O(h2)

−
(
a

h
+ a2 + ah+ 1 + ah+

h2

2
− 1

2
a2 − 1

2
a3h− 1

4
a2h2 − ah− a2h2

)
−
(
−a
h

+ a2 − ah+ 1− ah+
h2

2
− 1

2
a2 +

1

2
a3h− 1

4
a2h2 + ah− a2h2

)
or

log ρh(a) = 2− 1

2
log(π)− 2

(
a2 + 1− 1

2
a2 − 5

4
a2h2

)
+O(h2)

= −1

2
log(π)− a2 +O(h2−δ).

We thus obtain that∣∣∣∣ρh(a)− 1√
π
e−a

2

∣∣∣∣ ≤ Ch2−δe−a
2

, a ∈ hZ ∩ [−h−δ, h−δ],

from which we deduce that

h
∑

a∈hZ,|a|≤h−δ
〈a〉2σ

∣∣∣∣ρh(a)− 1√
π
e−a

2

∣∣∣∣2 ≤ Ch4−2δh
∑

a∈hZ,|a|≤h−δ
〈a〉2σe−a2

≤ Ch4−2δh
∑
a∈hZ

〈a〉2σe−a2 ≤ Cσh
4−2δ.

Now from (44), we have that for |a| ≥ h−δ and β > 0, by using the fact that the R0

terms are uniformly bounded in h,

log eβa
2

ρh(a) = βa2 +

(
2

h2
+

1

2

)
log

(
1 +

h2

2

)
+O(1)

−
(

1

h2
+
a

h
+

1

2

)
log(1 + ah+ h2)−

(
1

h2
− a

h
+

1

2

)
log(1− ah+ h2).
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In the case a ∈ [h−δ, h−1], we write a = h−1(1− b), b ∈ [0, h1−δ] and obtain

log eβa
2

ρh(a) =
β

h2
(1− b)2 −

(
2− b
h2

+
1

2

)(
log 2 + log

(
1− b

2
+
h2

2

))
−
(
b

h2
+

1

2

)
log(b+ h2) +O(1)

=
β

h2
(1− b)2 − 1

h2

(
2 log 2 +O

(
h1− δ

2

))
=

1

h2

(
β − 2 log 2 +O(h1−δ) ≤ 0

for β = 1 < 2 log 2 and h small enough. By symmetry, we deduce that

∀ a ∈ [h−δ, h−1], |ρh(a)| ≤ e−a
2

Hence

h
∑

a∈hZ∩[h−δ,h−1]

〈a〉2σ|ρh(a)|2 ≤ h
∑

a∈hZ∩[h−δ,h−1]

〈a〉2σe−2a2

≤ e−βh
−δ
h

∑
a∈hZ∩[h−δ,h−1]

〈a〉2σe−a2 ≤ Cσe
−βh−δh = O(h2).

As the same bounds holds for the Gaussian e−a2 , we obtain the result.

5.2. Convergence of the Kravchuk functions. We now prove (16). Recall that
the Hermite polynomials are defined by the relation

(46) Hn+1(x) = 2xHn(x)− 2nHn−1(x), H0(x) = 1,

while the scaled Kravchuk polynomials are defined by the relation

Kn+1,h(x) = 2xKn,h(x)− 2n

(
1− h2

(n− 1

2

))
Kn−1,h(x), K0,h(x) = 1.

The Hermite functions are then defined by the formula

ψn(x) :=
1

π
1
4 2

n
2

√
n!
e−

x2

2 Hn(x),

and let us recall that Cramér’s inequality states that

∀x ∈ R, ∀n ≥ 0, |ψn(x)| ≤ π−
1
4 ,

which shows in particular that

(47) ∀x ∈ R, ∀n ≥ 0, |Hn(x)| ≤ e
x2

2 2
n
2

√
n!.
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Lemma 4. For any given N and h =
√

2N−
1
2 , we denote by (kn,h)n the Kravchuk

polynomials given by the relation (6). We then have the following bounds: there exists
C such that for all N and h =

√
2N−

1
2 , for all δ ∈ (0, 1),

(48) ∀n ≤ 1

3
δ| log h|, ∀x ∈ R, |Hn(x)− kn,h(x)| ≤ Ch2−δe

x2

2 2
n
2

√
n!

and

(49) ∀n ≤ 1

3
δ| log h|, ∀x ∈ R, |kn,h(x)| ≤ Ch−δe

x2

2 2
n
2

√
n!.

Proof. We first remark that (48) and (47) imply (49), so we only need to prove (48).
Let us define

H(x, t) =
∑
n≥0

tn

n!
Hn(x) and Kh(x, t) =

∑
n≥0

tn

n!
kn,h(x).

Multiplying (46) by tn

n!
we can prove that the function H(t, x) satisfies the equation

∂tH(t, x) = (2x− 2t)H(t, x) and we obtain the classical relation

H(x, t) = e2xt−t2 ,

valid for all x ∈ R and t ∈ C. Moreover, relation (6) yields∑
n≥0

tn

n!
kn+1,h(x) = 2xkh(x, t)− 2

∑
n≥0

n
tn

n!
kn−1,h(x) + h2

∑
n≥0

n(n− 1)
tn

n!
kn−1,h(x)

or

∂tKh(x, t) = 2xKh(x, t)− 2tKh(x, t) + h2t2
∑
n≥2

tn−2

(n− 2)!
kn−1,h(x)

= 2xKh(x, t)− 2tKh(x, t) + h2t2∂tKh(x, t),

and we find
(1− h2t2)∂tKh(x, t) = (2x− 2t)Kh(x, t)

from which we deduce that

Kh(x, t) = exp

(∫ t

0

2x− 2s

1− h2s2
ds

)
= exp

(
2x

1

h

∫ ht

0

1

1− s2
ds

)
exp

(
1

h2

∫ ht

0

−2s

1− s2
ds

)
= exp

(
2x

1

h
artanh(ht)

)
exp

(
1

h2
log(1− (ht)2)

)
=

(
1 + ht

1− ht

) x
h (

1− h2t2
) 1
h2 .
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Remark 2. This formula shows in particular that for n > N , the Kravchuk polyno-
mials vanish.

This shows that for t ∈ C, |t| ≤ R with R > 1, we have for h small enough

|H(x, t)−Kh(x, t)| = |e2xt−t2||1− e2x( 1
h

artanh(ht)−1)e
1
h2

log(1−(ht)2)+t2|

= |e2xt−t2||1− e2x(O(h2|t|3)+O(h2|t|4)|

≤ Ch2(|x|R3 +R4)e2|x|R+R2

.

By Cauchy estimates on the disk |t| ≤ R, we obtain

∀n ∈ N, |Hn(x)− kn,h(x)| ≤ n!R−nCh2(|x|R3 +R4)e2|x|R+R2

.

We take R2 = n. This yields using Stirling expansions

e−
x2

2 |Hn(x)− kn,h(x)| ≤ Ch2(|x|n
3
2 + n2)nne−nn

1
2n−

n
2 e2|x|

√
n+ne−

x2

2

≤ Ch2(|x|n
3
2 + n2)n

n
2 e−nn

1
2 e−

1
2

(x−2
√
n)2+3n.

Now we remark that

|x|e−
1
2

(x−2
√
n)2 ≤ |x− 2

√
n|e−

1
2

(x−2
√
n)2 + 2

√
ne−

1
2

(x−2
√
n)2 ≤ C

√
n

for n ≥ 1. Hence we have

e−
x2

2 |Hn(x)− kn,h(x)| ≤ Ch22
n
2 n

n
2 e−

n
2 n

1
4

(
n

1
4n22−

n
2 e−

n
2 e3n

)
≤ Ch22

n
2

√
n!(n

9
4 e( 5

2
− 1

2
log 2)n)

≤ Ch22
n
2

√
n!e

5
2
n

and this yields the result as e
5
2
n ≤ e−

5
6
δ log h ≤ h−δ. �

Now let us recall that the Kravchuk functions are given by the formula

ϕn,h(a) :=
1

dnhn2nn!
kn,h(a)

√
ρh(a) =

1

hn

√
(N − n)!

N !n!
kn,h(a)

√
ρh(a)

=
1

hn
√
n!

√
Γ(1 + 2

h2
− n)

Γ(1 + 2
h2

)
kn,h(a)

√
ρh(a).
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Using (43), we have

log
Γ(1 + 2

h2
− n)

Γ(1 + 2
h2

)
=

(
2

h2
− n+

1

2

)
log

(
1 +

2

h2
− n

)
− 1− 2

h2
+ n+

1

2
log(2π)

−
(

2

h2
+

1

2

)
log

(
1 +

2

h2

)
+

2

h2
+ 1− 1

2
log(2π)

+R0

(
1 +

2

h2
− n

)
−R0

(
1 +

2

h2

)
−R0(1 + n)

and thus

log
Γ(1 + 2

h2
− n)

Γ(1 + 2
h2

)
=

(
2

h2
− n+

1

2

)(
log 2− 2 log h+ log

(
1− h2 (n− 1)

2

))
+ n−

(
2

h2
+

1

2

)(
log 2− 2 log h+ log

(
1 +

h2

2

))
+R0

(
1 +

2

h2
− n

)
−R0

(
1 +

2

h2

)
.

Now let us assume that n ≤ h−β, we can write that

log
Γ(1 + 2

h2
− n)

Γ(1 + 2
h2

)
= n− n log 2 + 2n log h− (n− 1)− 1 +O(h2−β),

and thus we have √
Γ(1 + 2

h2
− n)

Γ(1 + 2
h2

)
=
hn

2
n
2

(1 +O(h2−β)).

Hence we have for n ≤ h−β,

ϕn(a) =
hn

2
n
2

(1 +O(h2−β))
1

π
1
4hn
√
n!
kn,h(a)

√√
πρh(a)

=
1

2
n
2 π

1
4

√
n!
kn,h(a)

√√
πρh(a)(1 +O(h2−β)).

By using the previous bound, we thus obtain the result.

6. Time-dependent scheme

We consider now the time-dependent discrete Schrödinger equation

(50) i∂tψ = Hhψ,
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with ψ(0, ·) = ψ0 ∈ `2(hZ). We define

E(ψ) =
1

h

∑
a∈Ah

(
−
√

(1− ah+ h2)(1 + ah) Re(ψ(a)ψ(a− h)) + |ψ(a)|2
(

1 +
h2

2

))
= 〈ψ,Hhψ〉`2(hZ),

where Ah is defined in (7). We first show the conservation of mass and energy
property of the discrete harmonic oscillator:

Proposition 15. For all t ∈ R,

(51) ‖ψ(t)‖`2(hZ) = ‖ψ0‖`2(hZ) and E(ψ(t)) = E(ψ0).

Proof. We multiply (50) by ψ and we sum over hZ:∑
a∈hZ

iψ(a)∂tψ(a) =
∑
a∈hZ

(
− 1

h2

√
(1 + ah+ h2)(1− ah)ψ(a+ h)ψ(a)

− 1

h2

√
(1− ah+ h2)(1 + ah)ψ(a− h)ψ(a) +

(
1 +

h2

2

)
|ψ(a)|2

)
1− 1

h
≤a≤ 1

h
,

so

i
1

2

d

dt

(∑
a∈hZ

|ψ(a)|2
)

= − 1

h2

∑
a∈Ah

(√
(1 + ah+ h2)(1− ah)ψ(a+ h)ψ(a)

)
−
∑
a∈hZ

(√
(1− ah+ h2)(1 + ah)ψ(a− h)ψ(a)

)
+

(
1 +

h2

2

) ∑
a∈Ah

|ψ(a)|2.

By a change of variable a 7→ a−h in the first part of the middle sum of the previous
equation, we see that∑

a∈Ah

(√
(1 + ah+ h2)(1− ah)ψ(a+ h)ψ(a)

+
√

(1− ah+ h2)(1 + ah)ψ(a− h)ψ(a)
)

=
∑
a∈Ah

(
ψ(a)ψ(a− h) + ψ(a− h)ψ(a)

)√
(1− ah+ h2)(1 + ah)

= 2
∑
a∈Ah

Re
(
ψ(a)ψ(a− h)

)√
(1− ah+ h2)(1 + ah),

so multiplying the previous equation by h and taking the imaginary part, we get the
mass conservation. The second statement is classical using the symmetry of Hh. �
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Now we are going to analyze time-dependent scheme (50) and compare it with
solutions of the corresponding equation i∂tψ = Hψ for the harmonic oscillator.
Using (4) recall that if f ∈ L2(R), then we can decompose f on the Hermite-Gauss
basis (ψn)n∈N by

f(x) =
∑
n≥0

cnψn(x)

for all x ∈ R, with

cn = 〈f, ψn〉L2(R) =

∫
R
f(x)ψn(x)dx,

so that the solution of i∂tψ = Hψ with initial condition ψ(0, ·) = f can be written,
for all t ≥ 0,

ψ(t, ·) = e−itHf =
∑
n≥0

cne
−i(2n+1)ψn

We now denote by u := (πhf)1Ah the projection of f on Ah, then we can decompose
u on the finite basis (ϕn,h)0≤n≤nmax of `2(Ah), where nmax ∈ N∗ is a fixed integer:

u(a) =
∑
n≥0

cn,hϕn,h(a)

for all a ∈ Ah, where the scalars (cn,h)0≤n≤nmax are defined through the relation

cn,h = 〈u, ϕn,h〉`2(hZ) = h
∑
a∈hZ

u(a)ϕn,h(a).

Then, as in the continuous case, we can express the solution ψh of (50) by

ψh(t, ·) =
nmax∑
n=0

cn,he
−i(2n+1)tϕn,h.

Theorem 4. Assume that f is smooth. Then there exists C such that for all s,
there exists Cs such that for all h sufficiently small and all nmax ∈ N such that
1
4
δ| log h| ≤ nmax ≤ 1

3
δ| log h|, for all t ≥ 0,

‖πhψ(t, ·)− ψh(t, ·)‖`2(hZ) ≤ Ch2−δ +
Cs

| log h|s

for all δ > 0.



34 QUENTIN CHAULEUR AND ERWAN FAOU

Proof. We directly compute, for all a ∈ Ah, with the notation λn = 2n+ 1,

πhψ(t, a)− ψh(t, a) =
∑
n≥0

cne
−iλntψn(a)−

nmax∑
n=0

cn,he
−iλntϕn,h(a)

=
∑

n≥nmax+1

cne
−iλntψn(a) +

nmax∑
n=0

e−iλnt (cnψn(a)− cn,hϕn,h(a))

so that
‖πhψ(t, ·)− ψh(t, ·)‖`2(hZ) ≤ E1 + E2 + E3,

where

E1 :=

∥∥∥∥∥ ∑
n≥nmax+1

cne
−iλntψn(a)

∥∥∥∥∥
`2(hZ)

, E2 :=
nmax∑
n=0

|cn − cn,h|‖ψn‖`2(hZ)

and

E3 :=
nmax∑
n=0

|cn,h|‖ψn − ϕn,h‖`2(hZ).

We assume that the first term is smooth in the sense that it belongs to all space
Σs(R), s ≥ 0. Classically, this is equivalent to say that the coefficients cn decay like
CN〈n〉−N for all N , with constant depending on N . This shows that for all s, there
exists Cs such that

E1 ≤ Cs〈nmax〉−s ≤
Cs

| log h|s

as | log h| . nmax. In order to bound E2, by definition of cn and cn,h we see that

|cn,h − cn| ≤
∣∣〈f, ψn〉L2(R) − 〈u, ψn〉`2(hZ)

∣∣+
∣∣〈u, ψn − ϕn,h〉`2(hZ)

∣∣ ,
where ∣∣〈u, ψn − ϕn,h〉`2(hZ)

∣∣ ≤ ‖u‖`2(hZ)‖ψn − ϕn,h‖`2(hZ) ≤ Cnmaxh
2−δ‖f‖L2(R)

for all δ > 0 by using (16), and because nmax ≤ 1
3
δ| log h|. The error E3 is estimated

similarly, by noticing that

|cn,h| ≤ ‖u‖`2(hZ)‖ϕn,h‖`2(hZ) ≤ Cnmax‖f‖H1(R),

so E3 = O
(
h2−δ).

�

Remark 3. The error term in log h could be refined by a better frequency estimate
in (16), like for example n ≤ h−δ but this would require a better bound for the
asymptotics of the Kravchuk functions which is out of the scope of this work.
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7. Kravchuk Transform

We now prove Theorem 3, which can also be found in [2]. For a vector x ∈ RN+1,
we define the transformation x̃ = Kx by the formula

x̃k =
N∑
j=0

ei
π
2

(j−k−N/2)φk(j)xj

for all 0 ≤ k ≤ N , corresponding to the multiplication by the matrix

K = e−
iπN
4 ×

φ0(0) e
iπ
2 φ0(1) . . . e

iπ(N−1)
2 φ0(N − 1) e

iπN
2 φ0(N)

e−
iπ
2 φ1(0) φ1(1) . . . e

iπ(N−2)
2 φ1(N − 1) e

iπ(N−1)
2 φ1(N)

...
...

. . .
...

...

e−
iπN
2 φN(0) e−

iπ(N−1)
2 φN(1) . . . e−

iπ
2 φN(N − 1) φN(N)

 .

Recall that here φn(k) denote the functions (37) corresponding to the function ϕn,h
after scaling. With the notation (17) and (19), we obtain

K = e−
iπN
4 D∗LD.

As a direct consequence of the fact that the (φn)0≤n≤N are orthogonal, we get that
the matrix L and K are unitary:

K∗K = L∗L = Id.

Proposition 16. The matrix K satisfies

K = e
iπ
4 e−

iπ
4
A,

where A is the matrix defined in (19).

Proof. We are going to show that both matrices K∗ and e−
iπ
4 e

iπ
4
A have the same

image on a particular basis of RN+1, the basis formed by the N + 1-vectors vn :=
(φn(0), φn(1), . . . , φn(N))> for 0 ≤ n ≤ N . We first compute that for all 0 ≤ k ≤ N ,

(Avn)k = (N + 1)φn(k)−
√
k(N − k + 1)φn(k − 1)−

√
(k + 1)(N − k)φn(k + 1),

hence from Proposition 11 we get that

(Avn)k = (2n+ 1)φn(k),
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so the matrix A is diagonal in the basis (v0, v1, . . . , vn), and

e−
iπ
4 e

iπ
4
Avn = e−

iπ
4

∑
k≥0

1

k!

(
iπ

4

)k
(2n+ 1)k vn = e−

iπ
4 e

iπ
2 (n+ 1

2)vn

= ei
nπ
2 vn.

On the other hand, using Proposition 10, we compute

(K∗vn)m =
(
e
iπN
4 D∗L∗Dvn

)
m

= e
iπN
4

N∑
k=0

φn(k)φk(m)ei
k−m

2
π = ei

n
2
πφn(m),

so

K∗ = e−
iπ
4 e

iπ
4
A

and we get the result. �

8. Numerical simulations of Kravchuk functions

In this section we are going to present some plots and numerical simulations of
some of the previous properties of the Kravchuk functions (ϕn,h)n. First we illustrate
the convergence result (15) on the grid XN for N = 50. We plot both functions ρh
and ρ/

√
π in Figure 1. We observe than even if the number of space discretization

points is rather low, the accuracy of the approximation of the Gaussian function is
pretty good. This is highlighted by Figure 2, where we plot the `2(hZ), the `∞(hZ)
and the h1(hZ) norms3 of the difference ρh− ρ/

√
π in logarithmic scale with respect

to N = 2/h2, and we get a leading coefficient of −1 for these three lines, which
corresponds to the O(h2−δ) for δ > 0 as small as we want in (15).

In the same way, we illustrate Theorem 2 by plotting (ϕn,h)1≤n≤6 with N = 50 and
comparing these functions to the first Hermite functions (ψn)1≤n≤6 in Figure 3, then
by computing the `2(hZ), `∞(hZ) and h1(hZ) errors of the differences ϕ10,h−ψ10 for
n = 10 in logarithmic scale, where we observe a convergence in − log(N) which well
corresponds to the O(h2−δ) for δ > 0 of Theorem 2.

Acknowledgments. Q.C. is supported by the Labex CEMPI (ANR-11-LABX-
0007-01).

3The h1(hZ) norm is defined by ‖u‖2
h1(hZ) = ‖v‖2

`2(hZ + 〈v,∆hv〉`2(hZ) where ∆h is the discrete
Laplacian.
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Figure 1. Convergence of the binomial law ρh to the Gaussian ρ/
√
π.

Figure 2. `2(hZ), `∞(hZ) and h1(hZ) convergence error of the bino-
mial law ρh to the Gaussian ρ/

√
π.
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