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Abstract. We study the dynamics of perturbations around an inhomogeneous stationary state of
the Vlasov-HMF (Hamiltonian Mean-Field) model, satisfying a linearized stability criterion (Pen-
rose criterion). We consider solutions of the linearized equation around the steady state, and prove
the algebraic decay in time of the Fourier modes of their density. We prove moreover that these
solutions exhibit a scattering behavior to a modified state, implying a linear Landau damping effect
with an algebraic rate of damping.

1. Introduction

In this paper we consider the Vlasov-HMF (Hamiltonian Mean-Field) model. It is an ideal toy
model that keeps several features of more complex kinetic equations, such as the Vlasov-Poisson
system. It is moreover rather easy to do numerical simulations and analytic calculations on it, and it
has thus received much interests in the physics literature (see [2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 19]).
This model exhibits also analogies with the Kuramoto model of coupled oscillators in its continuous
limit [11, 21, 23]. A long time analysis of the Vlasov-HMF model around spatially homogeneous
stationary states has been performed in [22], where a nonlinear Landau damping result is proved in
Sobolev regularity. In this paper, we consider the case of inhomogeneous steady states and study
the long time behavior of the linearized equation.

The Vlasov-HMF equation, with an attractive potential, reads

(1.1)

∣∣∣∣∣∣∣∣∣∣∣

∂tf(t, x, v) + {f,H[f ]} (t, x, v) = 0,

H[f ](t, x, v) =
v2

2
− φ[f ](t, x),

φ[f ](t, x) =

∫
T×R

cos(x− y)f(t, y, v)dydv,

with (t, x, v) ∈ R×T×R, where T = R/Z, and where

(1.2) {f, g} = ∂xf∂vg − ∂vf∂xg

is the Poisson bracket. It is rather easy to prove that this equation is globally well-posed, in Sobolev
regularity for instance, using standard tools for transport equations associated with a divergence-
free vector field.
The potential can be also expressed as the following trigonometric polynomial

(1.3) φ[f ](x) = C[f ] cos(x) + S[f ] sin(x),
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with

C[f ] =

∫
T×R

cos(y)f(y, v)dydv and S[f ] =

∫
T×R

sin(y)f(y, v)dydv,

where we use the normalized Lebesgue measure on the torus1.
The previous equation possesses stationary solutions of the form

(1.4) η(x, v) = G (h0(x, v)) , h0(x, v) =
v2

2
−M0 cos(x), M0 > 0.

for some function G : R → R. The constant M0 (called the magnetization) has to fulfill the
condition

(1.5) M0 = C
[
G

(
v2

2
−M0 cos(x)

)]
.

Up to translation x 7→ x+x0, these are essentially the only stationary solutions, see Section 6 where
examples of couple (M0, G) satisfying the previous condition and the necessary stability condition
ensuring damping effects are studied.

For such a stationary states, if we seek solution of (1.1) under the form f(t, x, v) = η(x, v) +
r(t, x, v) with initial condition r(0, x, v) = r0(x, v), we obtain the equation

∂tr(t, x, v)− {η, φ[r]} (t, x, v) + {r,H[η]} (t, x, v)− {r, φ[r]} (t, x, v) = 0.

In this paper, we will retain the linear part of this equation, namely the linearized equation around
η, given by

(1.6) ∂tr(t, x, v)− {η, φ[r]} (t, x, v) + {r, h0} (t, x, v) = 0.

The goal of this paper is the analysis of the long time behavior of this equation.
In the homogeneous case M0 = 0 where the steady steady states η depends only on the velocity

variable v, the situation both for the linear and nonlinear equation has been widely studied for

general Vlasov equations. In this case, h0(x, v) = v2

2 the flow of the Hamiltonian h0 is trivially
calculated: without the potential term φ[r] in (1.6), the solution is given explicitly by r(t, x, v) =
r0(x − tv, v) and gives rise to damping effect (see Landau [31]) implying a weak convergence of
r(t, x, v) towards the average of r0 with respect to x. It then turns out that under a stability
condition on η called the Penrose condition, then the flow of the full linear equation (1.6) behaves
like the transport part for large times. This is well expressed as a scattering result where g(t, x, v) :=
r(t, x + tv, v) is shown to converge for large times towards a smooth function g∞(x, v) depending
on r0(x, v). With this result in hand, the weak limit of r(t, x, v) can be identified when t → +∞.
The scattering convergence rate depends on the regularity of the solution and is expected to be
typically exponential for Gevrey or analytic functions and polynomial in time for finite Sobolev
regularity. This linear scattering under a Penrose condition is the starting point of the nonlinear
results of [34, 8, 24] showing that this scattering behavior persists in nonlinear equations. These
result were proven for Gevrey initial data and general Vlasov equation including in particular the
Vlasov-Poisson system. For the Vlasov-HMF a similar result can be proved under Sobolev regularity
in the homogeneous case, see [22]. The question of Landau damping in Sobolev regularity for the
Vlasov-Poisson system has been recently addressed, for instance in [7, 36], where Landau damping
results are proved in a weakly collisional regime, or in [9, 27, 28, 10] in the case of unconfined
systems.

In the non-homogeneous case M0 > 0 studied in this paper, the situation has been recently
investigated (in particular in the physics literature see [3, 4] and in [20]). In this paper, we propose

1the Lebesgue measure on [−π, π] divided by the length of the torus 2π
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to follow the same strategy as in the homogeneous case where the free flow x 7→ x+ tv is replaced
by the flow ψt(x, v) of the Hamiltonian h0, associated with the ordinary differential equation

(1.7)

{
ẋ = ∂vh0(x, v) = v

v̇ = −∂xh0(x, v) = −M0 sin(x),

which is the classical dynamical system for the motion of a Pendulum. The flow ψt is globally well
defined and symplectic. In particular it preserves the Poisson bracket

∀ t ∈ R, {f, g} ◦ ψt(x, v) = {f ◦ ψt, g ◦ ψt}(x, v).

Note that for a given function f(x, v), the function (t, x, v) 7→ f(t, x, v) = f(ψt(x, v)) solves the
equation ∂tf = {f, h0} and r ◦ ψ−t is the solution of the free flow in (1.6).

In this paper, we shall prove that under appropriate assumptions on η (of Penrose type) and r0 (a
natural orthogonality condition), the solution of the linear equation (1.6) also exhibit a scattering
behavior: g = r ◦ ψt converges towards a function g∞, implying that the coefficients S[r(t)] and
C[r(t)] decay in time, with algebraic rates of damping which depends on the regularity of the initial
data and on the behavior of the function in the vicinity of the origin (x, v) = (0, 0) (the center of
the “eye” of the pendulum).

The main ingredient of the proof is the use of action-angle variables (θ, a) for the integrable flow
(1.7) and for which the flow ψt can be calculated ψt(θ, a) = θ+ω(a)t for some frequency function ω.
We will use this “explicit” formula (up to the knowledge of elliptic functions) to prove that ψt gives
rise to damping effect and that for smooth functions ϕ, the function of the form ϕ ◦ ψt has a weak
limit that can be nicely expressed in terms of action-angle variables, and with a convergence rate in
time t depending on the “flatness” of ϕ and of the observable near the origin. This last particularity
reflects the singularity of the action-angle change of variable. The full statement of this result is
given in Theorem 2.2 which is proven in Section 7 and requires the use of precise asymptotics of
Jacobi elliptic functions. This makes the proof seemingly technical, but the arguments are in fact
simple for a reader familiar with this literature (we make a crucial use of many formulas in the
book [12]).

With this result in hand, our main results give the decay of the functions S(t) and C(t) and the
convergence of g = r◦ϕt, (and weak convergence of r, see Theorem 2.4 and Corollary 2.5) under an
orghogonality assumption for r0 well expressed in action-angle variable, and a Penrose condition
on η, (2.13).

We then conclude by showing the existence of stationary states η i.e. of couple (M0, G) satisfying
(1.5)) fulfilling the stability condition and relate it with more classical stability condition from the
physics literature [3] that was also used in [32] conditioning the nonlinear orbital stability of the
inhomogeneous steady states of Vlasov-HMF. Strikingly enough, the key argument relies on explicit
formulae in the action-angle change of variable and the direct verification that some terms do not
vanish from known Fourier expansions of elliptic functions that can be found in [12]. Note finally
that the extension of our scattering result to the nonlinear case remains for the moment an open
question.

2. Statements of the main results

We now fix the notations and give the main results. The first part shows the dispersive effect of
the flow of the Pendulum, and the second part gives the main application for the long time behavior
of the linear equation (1.6).

2.1. Damping in action-angle variables. As a one-dimensional Hamiltonian system, the system
associated with the Hamiltonian h0(x, v) is integrable. We will need relatively precise informations
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about the corresponding action-angle change of variable. Let us split the space into three charts
U+, U− and U◦ as follows:

U+ = {(x, v) ∈ T×R | v > 0 and h0(x, v) > M0},
U− = {(x, v) ∈ T×R | v < 0 and h0(x, v) > M0}, and

U◦ = {(x, v) ∈ T×R |h0(x, v) < M0}.
(2.1)

We have that h0(x, v) ≥ −M0 and the center of the “eye” U◦ corresponds to the point (x, v) = (0, 0)
which minimizes h0. The set

{(x, v) ∈ T×R | h0(x, v) = M0}

will usually be called the “separatix”. Let us first recall the following Theorem:

Theorem 2.1. Setting h(x, v) = v2

2 −M0 cos(x), then for ∗ ∈ {±, ◦}, there exists a symplectic
change of variable (x, v) 7→ (ψ, h) from U∗ to the set

V∗ := {(ψ, h) ∈ R2 |h ∈ I∗, ψ ∈ (−r∗(h), r∗(h))},

where r∗(h) is a positive function, I± = (M0,+∞) and I◦ = (−M0,M0) such that the flow of the
pendulum in the variable (ψ, h) is h(t) = h(0) and ψ(t) = t+ ψ(0).
Moreover, there exists a symplectic change of variables (ψ, h) 7→ (θ, a) from V∗ to

W∗ = {(θ, a) ∈ R2 | θ ∈ (−π, π), a ∈ J∗} = T× J∗,

with J± = ( 4
π

√
M0,+∞) and J◦ = (0, 8

π

√
M0) such that

θ(ψ, h) = ω∗(h)ψ, and ∂ha(h) =
1

ω∗(h)
=

π

r∗(h)
,

so that the flow of the pendulum in the variables (θ, a) in W∗ is a(t) = a(0) and θ(t) = tω∗(a(0)) +
θ(0).

This Theorem is explicit in the sense that the changes of variables express in terms of Jacobi
elliptic functions. As θ is a variable in a fixed torus, Fourier series in variable θ are well defined on
each set W∗ corresponding to U∗. For a given function f(x, v) we can define the restriction f∗ of f
to the set U∗, and the Fourier coefficients

(2.2) f∗` (a) =
1

2π

∫ π

−π
f∗( x(θ, a), v(θ, a))e−i`θdθ, ` ∈ Z, a ∈ J∗

where x(θ, a) and v(θ, a) are given by the change of variable on U∗. Note that for given functions
f and ϕ, we have the decomposition

(2.3)

∫
U∗

f(x, v)ϕ(x, v)dxdv =
∑
`∈Z

∫
J∗

f∗` (a)ϕ∗−`(a)da,

for all ∗ ∈ {◦,±}. Finally, let us notice that the Jacobian of the change of variable h 7→ a(h) is
∂ha(h) = 1

ω∗(h) , and we have in particular

(2.4)

∫
J∗

f∗` (a)ϕ∗−`(a)da =

∫
I∗

f∗` (a(h))ϕ∗−`(a(h))
1

ω∗(h)
dh.

We will usually write f∗` (h) for the quantity f∗` (a(h)), and several times consider functions f as
depending on (x, v), (θ, h) and (θ, a) by keeping the same notation. For example a stationnary
state η depends only on h and hence on a and will be written η = G(h) or η = G(a).
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In fact the singularities of the relevant functions in action-angle variables are better expressed in
variables (θ, h), which are not symplectic, but on which integrals and flow of the system are easy
to calculate. Moreover, in this case,

f∗0 (a) =
1

2π

∫ π

−π
f∗(x(θ, h), v(θ, h))dθ

can be seen as an average of f on the isocurve {(x, v) |h0(x, v) = h}, while ψ is the arclength on
this curve, the jacobian 1

ω∗(h) appearing in the standard co-area formula, which is another way to

see (2.3)-(2.4).
The notations C∗` (a) and S∗` (a) will be used for the Fourier coefficients of the functions

θ 7→ cos(x(θ, a)) and θ 7→ sin(x(θ, a)),

respectively, and both restricted to U∗. These coefficients can be calculated explicitly using elliptic
functions (see Propositions 7.5 and 7.12), and we shall write

(2.5) cos(x(θ, a)) =
∑
`∈Z

C∗` (a)ei`θ and sin(x(θ, a)) =
∑
`∈Z

S∗` (a)ei`θ,

for (θ, a) ∈ J∗ × (−π, π).
Before stating our first result, let us fix some notations. We use the classical notation 〈v〉 = (1 +

|v|2)1/2, for any v ∈ Rd, and for a two-dimensional integer α = (α1, α2) ∈ N2, we set |α| = α1 +α2.
We shall also write ∂αx,v for the operator acting on functions f : T×R→ C by the formula

∂αx,vf(x, v) = ∂α1
x ∂α2

v f(x, v).

In section 7 we prove the following result:

Theorem 2.2 (Dispersive effect of the pendulum flow). Consider f(x, v) and ϕ(x, v) two functions
such that

max
|α|≤m

‖〈v〉µ∂αx,vf(x, v)‖
L∞
≤ Cm,µ and max

|α|≤M
‖∂αx,vϕ(x, v)‖

L∞
≤ CM ,

for some m, M and µ > 2. Let p and q be defined by

p = max{n ≥ 1, ∂αx,vf(0, 0) = 0, ∀α, 1 ≤ |α| ≤ n},
q = max{n ≥ 1, ∂αx,vϕ(0, 0) = 0, ∀α, 1 ≤ |α| ≤ n},

with the convention that these number are 0 is the corresponding sets are empty. Then, if

m ≥ 5 + p+
p+ q

2
and M ≥ max

(
7 + q +

p+ q

2
,m+ 2

)
,

there exists C > 0 such that for all t ≥ 0, we have∣∣∣∣∣∣
∫
T×R

f(x, v)ϕ(ψt(x, v))dxdv −
∑
∗∈{±,◦}

∫
J∗

f∗0 (a)ϕ∗0(a)da

∣∣∣∣∣∣ ≤ C

〈t〉
p+q
2

+2
.

Let us explain this Theorem as follows: the starting point of the proof is the Fourier expansion
(2.3), which yields∫

T×R
f(x, v)ϕ(ψt(x, v))dxdv =

∑
∗∈{±,◦}

∑
`∈Z

∫
J∗

f∗` (a)ϕ∗−`(a)eit`ω∗(a)da

=
∑
∗∈{±,◦}

∑
`∈Z

∫
I∗

f∗` (h)ϕ∗` (h)eit`ω∗(h) 1

ω∗(h)
dh.
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Now we can use a stationary phase argument by integrating with respect to h to gain a decay with
respect to t. Typically, this kind of analysis depends on the possible cancellation of ∂hω∗(h). In
our case, the situation seems to be very favourable, as ∂hω∗(h) never approaches zero, as shown in
Section 7. The stationary phase argument also relies on cancellations of f`∗ and ϕ∗` at the boundary
points, and there the problems come from the singularities of the action-angle variables.
We can distinguish two zones, starting with the separatix h ∼ M0. In this case, the action-angle
variables induce logarithmic singularities. Essentially it means that the Fourier coefficients f∗` , ϕ

∗
`

involve logarithmic singularities near h = M0. However, near this point, ω∗(h) also exhibits a
logarithmic singularity, and it can be shown that ∂hω∗(h) goes to infinity fast enough to ensure a
decay in time which is essentially driven by the regularity of f and ϕ. So the problems are not at
the separatix.
Near the point h = −M0, the situation is more delicate: in this zone, the pendulum Hamiltonian is
essentially a perturbation of the Harmonic oscillator, for which no damping is expected (ω∗ being
constant). However, we can prove that ∂hω∗(h) does not vanish near this point. But this is not
enough: indeed the action-angle variable of the harmonic oscillator involves algebraic singularity
of order

√
h+M0. This explains why the rate of decay of the integral with respect to the time

is mainly driven by the behavior of f and ϕ near (0, 0) which corresponds of a local behavior of

f◦` (h)ϕ◦−`(h) in (h+M0)
p+q
2 , yielding the main contribution for the decay in the previous Theorem.

Theorem 2.2 will be a straightforward consequence of Propositions 7.7 and 7.14, proven in section
7.

2.2. Linear damping. As explained above, our main result is expressed as a scattering result with
the strong convergence of g = r ◦ ψt and by using the previous Theorem, the weak convergence of
r. The next proposition gives the equation satisfied by g and fixes some notations used later. This
Proposition will be proved at the beginning of section 3.

Proposition 2.3. Let r(t, x, v) be the solution of the linearized equation (1.6). Then the function

(2.6) g(t, x, v) = r(t, ψt(x, v)) = r ◦ ψt(x, v)

satisfies the equation

(2.7) ∂tg = C(t){η, cos(X ◦ ψt)}+ S(t){η, sin(X ◦ ψt)}.

where X : T×R→ T denotes the projection X(x, v) = x, and where

(2.8) C(t) = C[r(t)] = C[g ◦ ψ−t] =

∫
T×R

cos(X(y, w))g(t, ψ−t(y, w))dydw

and

(2.9) S(t) = S[r(t)] = S[g ◦ ψ−t] =

∫
T×R

sin(X(y, w))g(t, ψ−t(y, w))dydw.

Moreover, the coefficients C(t) and S(t) satisfy the following Volterra integral equations

(2.10) C(t) = FC(t) +

∫ t

0
C(s)KC(t− s)ds and S(t) = FS(t) +

∫ t

0
S(s)KS(t− s)ds,
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with

(2.11)

FC(t) =

∫
T×R

cos(X ◦ ψt(y, w))r0(y, w)dydw,

FS(t) =

∫
T×R

sin(X ◦ ψt(y, w))r0(y, w)dydw,

KC(t) = 1{t≥0}

∫
T×R
{η, cos(X)} cos(X ◦ ψt), and

KS(t) = −1{t≥0}

∫
T×R
{η, sin(X)} sin(X ◦ ψt).

For a function F (t), we define its Fourier transform by

F̂ (ξ) =

∫
R

F (t)e−itξdt.

Theorem 2.4 (Linear damping). Let η(x, v) = G(h0(x, v)) with G a decreasing function that
satisfies the assumption

(2.12) max
n≤10

∥∥∥〈y〉µG(n)(y)
∥∥∥
L∞(R)

≤ Cµ,

with µ > 2, and assume that there exists κ > 0 such that

(2.13) min
Im(ξ)≤0

|1− K̂C(ξ)| ≥ κ and min
Im(ξ)≤0

|1− K̂S(ξ)| ≥ κ.

Let us assume that the initial perturbation r0 satisfies

max
|α|≤m

‖〈v〉ν∂αx,vr0(x, v)‖
L∞
≤ Cm,ν ,

for some ν > 2, and where

m ≥ 5 +
3p

2
,

with
p = max

{
k ≥ 1, ∂αx,vr

0(0, 0) = 0, ∀1 ≤ |α| ≤ k
}
.

Then, if r0 satisfies the orthogonality condition

(2.14)
∑
∗∈{±,◦}

∫
J∗

C∗0 (a)(r0)∗0(a)da = 0,

there exists C > 0 such that for all t ≥ 0

|C(t)| ≤ C

〈t〉max(3, p+5
2

)
and |S(t)| ≤ C

〈t〉2
.

We shall call assumption (2.13) the Penrose criterion, by analogy with the stability conditions
of the same name in the homogeneous case.

Let us remark that the orthogonality condition (2.14) is propagated by the flow of the linear
equation (2.7) and therefore natural to impose. Indeed by using the action-angle variables given
by Theorem 2.1, we have that η = G(h) is in fact a function of h and hence of a only. Hence the
equation (2.7) in symplectic variables (θ, a) can be written

∂tg = C(t){G(a), cos(x(θ + tω(a), a))}+ S(t){G(a), sin(x(θ + tω(a), a))}
Since G(a) depends only on a, we get from the above equation that

∂tg
∗
0(t, a) = ∂t

∫
T

g∗(t, θ, a) dθ = 0, a ∈ I∗, ∗ ∈ {±, ◦}.
7



As g∗0(t, a) = r∗0(t, a), this shows that that the orthogonality condition (2.14) is propagated along
the flow of (1.6).

As a corollary of Theorem 2.4, we get a scattering result for the solution g of (2.7) and the weak
convergence of r(t, x, v) = g(t, ψ−t(x, v)) the solution of (1.6) towards an asymptotic state r∞(x, v)
that depends only on h0(x, v).

Corollary 2.5. Under the assumptions of Theorem 2.4 with p = 0, we obtain that:

• There exists g∞(x, v) and a constant C such that when t→ +∞, we have

(2.15) ‖g(t)− g∞‖L1
x,v
≤ C

〈t〉
.

• There exists r∞(x, v) that depends only on h, that is to say r∞(x, v) = r∗∞(h) for (x, v) ∈ U∗
and ∗ ∈ {±, ◦}, such that for every test function φ, we have that∫

T×R
r(t, x, v)φ(x, v) dxdv →t→+∞

∫
T×R

r∞(x, v)φ(x, v) dxdv.

2.3. About the Penrose criterion. Written in this form, the Penrose criterion (2.13) is difficult
to check, but we can relate it to a more classical condition that was found in [32] or [3] to ensure
orbital stability of inhomogeneous stationary states in the nonlinear equation.
First we shall prove that the verification of Penrose criterion (2.13) at the frequency ξ = 0 is
sufficient, by proving the following Theorem.

Theorem 2.6. Let η be a state defined by (1.4), and assume that G satisfies the regularity assump-
tion (2.12). Assume moreover that G′ < 0 and

(2.16) 1− K̂C(0) > 0 and 1− K̂S(0) > 0.

Then the Penrose criterion (2.13) holds true.

Let us now define the following notion of stability (see also [3, 32]).

Definition 2.7. A state η(x, v) = G(h0(x, v)) defined by (1.4) is said to be linearly stable if

(2.17) 1 +

∫
R×T

G′(h0(x, v)) cos2(x)dxdv −
∑
∗∈{±,◦}

∫
J∗

G′(h0(a))C∗0 (a)2da > 0.

For regular and decreasing profile G, we first show that this condition is equivalent to the previous
one:

Proposition 2.8. Let η be a state defined by (1.4). Assume that G satisfies the hypothesis (2.12),
and that G′ < 0. Then (2.16) holds true if and only if η is stable in the sense of Definition 2.7.

Finally, we exhibit examples of stable stationary states given by Maxwell-Boltzmann distribution,
under some condition on the coefficients of the Gaussian:

Proposition 2.9. Let α > 0 and β > 0 such that α2β < 2
π , then there exists M0 > 0 satisfying

(1.5) such that

η(x, v) = αe
−β

(
v2

2
−M0 cos(x)

)
,

is a stable stationary states in the sense of Definition 2.7.
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2.4. Organization. In section 3, we collect and prove some results concerning Volterra integral
equations, and use them to prove the linear damping Theorem 2.4 by assuming Theorem (2.2)
giving the dispersive effect of the flow of the Pendulum. In section 4, we prove the scattering result
corollary 2.5. Section 5 is dedicated to the Penrose criterion, and we prove there Theorem 2.6
and Proposition 2.8. In section 6 we exhibit examples of inhomogeneous stationary states which
are stable in the sense of definition 2.7 and prove Proposition 2.9. Finally, section 7 contains all
the technical results that we shall need concerning angle-action variables, and we prove there the
dispersion Theorem 2.2.

3. Proof of the linear damping Theorem 2.4

We begin with the derivation of the Volterra equation (2.10). The proof then consists in showing
that the kernels KC and KS have sufficient decay in time, which, with the Penrose criterion and a
Paley-Wiener argument will yield a control of the decay in time of C(t) and S(t) by the one of the
source terms FC(t) and FS(t), and the latter will be guaranteed by Theorem 2.2.

In all the remainder of the paper, we will often use the notation A . B to denote an inequality
of the form A ≤ CB for some constant C depending only on the assumptions made in the section
of the proof but not on A or B.
Proof of Proposition 2.3. Let us first prove (2.7). If r solves (1.6), the function g defined in
(2.6) satisfies

∂tg(t, x, v) = {r, h0}(t, ψt(x, v)) + {η, φ[r]} (t, ψt(x, v))− {r, h0} (t, ψt(x, v))

= {η, φ[g ◦ ψ−t]}(t, ψt(x, v)).

Hence as η is invariant by the flow ψt, g solves

∂tg(t, x, v) = { η, φ[g ◦ ψ−t] ◦ ψt}(t, x, v).

Since ψt preserves the volume,

φ[g ◦ ψ−t] ◦ ψt(x, v) =

∫
T×R

cos(X ◦ ψt(x, v)− y)g(t, ψ−t(y, w))dydw

=

∫
T×R

cos(X ◦ ψt(x, v)−X(y, w))g(t, ψ−t(y, w))dydw

= cos(X ◦ ψt(x, v))C(t) + sin(X ◦ ψt(x, v))S(t),

with C(t) = C[g ◦ ψ−t] = C[r(t)] and S(t) = S[g ◦ ψ−t] = S[r(t)], which proves (2.7).
We deduce that

g(t, x, v) = r0(x, v) +

∫ t

0
C(s){η, cos (X ◦ ψs)}+ S(s){η, sin (X ◦ ψs)}ds.

Using this formula and the fact that ψt preserves the Poisson bracket, we calculate that

C(t) =

∫
T×R

cos(X(y, w))g(t, ψ−t(y, w))dydw =

∫
T×R

cos(X(y, w))r0(ψ−t(y, w))dydw

+

∫ t

0
C(s)

∫
T×R

cos(X){η, cos(X ◦ ψs−t)}ds

+

∫ t

0
S(s)

∫
T×R

cos(X){η, sin(X ◦ ψs−t)}ds.

Note that the flow ψt is reversible with respect to the transformation ν(x, v) = (x,−v), that is we
have ψt ◦ ν = −ν ◦ψ−t. But as the Hamiltonian is even in x, the flow is also reversible with respect
to (x, v) 7→ (−x, v). Hence the transformation µ(x, v) := (−x,−v) satisfies ψt ◦µ = µ ◦ψt, and this
transformation preserves the Poisson bracket and is an isometry. Let us apply this to the last term
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in the previous equation. We thus have for any σ ∈ R∫
T×R

cos(X){η, sin(X ◦ ψσ)} =

∫
T×R

cos(X ◦ µ){η, sin(X ◦ ψσ)} ◦ µ

=

∫
T×R

cos(X){η, sin(X ◦ µ ◦ ψσ)} = −
∫
T×R

cos(X){η, sin(X ◦ ψσ)} = 0,

as X ◦ µ = −X. For the same reason, we have∫
T×R

sin(X){η, cos(X ◦ ψσ)} = 0.

Now using the identities η ◦ ν = η and X ◦ ν = X, and the evenness of the cosine function, we have∫
T×R

cos(X){η, cos(X ◦ ψs−t)} = −
∫
T×R

cos(X ◦ ν){η, cos(X ◦ ψs−t ◦ ν)}

= −
∫
T×R

cos(X){η, cos(X ◦ (−ν) ◦ ψt−s)} = −
∫
T×R

cos(X){η, cos(X ◦ ψt−s)}.

Integrating by parts that last integral yields then∫
T×R

cos(X){η, cos(X ◦ ψs−t)} =

∫
T×R

cos(X ◦ ψt−s){η, cos(X)}.

Using the oddness of the sine function, we have by similar manipulations∫
T×R

sin(X){η, sin(X ◦ ψs−t)} = −
∫
T×R

sin(X ◦ ψt−s){η, sin(X)}.

This ends the proof.

As a preliminary, we shall first use Theorem 2.2 in order to get the decay rates of the kernels.
We shall prove the following result.

Proposition 3.1. Let η(x, v) = G(h0(x, v)) with G a decreasing function that satisfies the assump-
tion (2.12) with µ > 2. Then there exist a constant C such that

(3.1) |KC(t)| ≤
C

〈t〉3
and |KS(t)| ≤ C

〈t〉2
.

Proof. In view of the expression (2.11) or KC(t) we apply Theorem 2.2 with the functions f(x, v) =
{η, cos(X)} (x, v) and ϕ = cos(X(x, v)) for which we have p = 1 and q = 1. As we have that for all
∗ ∈ {◦,±},

(3.2) f∗0 (h) =
1

2π

∫ π

−π
f∗(x(h, θ), v(h, θ))dθ =

ω∗(h)G′(h)

2π

∫ π

−π
∂θ(cos(x(h, θ)))dθ = 0.

Theorem 2.2 then yields |KC(t)| . 1
〈t〉3 . Concerning KS(t), it suffices to apply Theorem 2.2 with

the functions {η, sin(X)} (x, v) and sin(X(x, v)). We have this time p = q = 0, and S∗0(h) = 0 for all
∗ ∈ {◦,±} (see (7.25) and (7.39)). Hence the application of Theorem 2.2 yields |KS(t)| . 1

〈t〉2 . �

To study the coefficients C(t) and S(t), we shall use general results on Volterra integral equations
written under the form

(3.3) y(t) = K ∗ y(t) + F (t), t ∈ R

where K, y, F vanish for t ≤ 0. Let us first recall the following Paley-Wiener result on Volterra
integral equations (Theorem 4.1 of [25], see also [21, 35]).

Lemma 3.2 (Paley-Wiener). Assume that K ∈ L1(R) is such that

min
Im(ξ)≤0

|1− K̂(ξ)| ≥ κ.
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Then there exists a unique resolvent kernel R ∈ L1(R+) which vanishes for t ≤ 0 such that

(3.4) R(t) = −K(t) +K ∗R(t).

Note that using R, the solution of (3.3) can be written as

(3.5) y(t) = F (t)−R ∗ F (t).

We shall then use the following corollary.

Corollary 3.3. Under the assumptions of Lemma 3.2, the following holds:

i) There exists C > 0 such that

(3.6) ‖y‖L∞ ≤ C‖F‖L∞ .

ii) If 〈t〉2K ∈ L∞ and 〈t〉2F ∈ L∞, then there exists C > 0 such that

|〈t〉2y‖L∞ ≤ C‖〈t〉2F‖L∞ .

iii) If 〈t〉3K ∈ L∞ and 〈t〉αF ∈ L∞ for α ∈ [2, 3] , then

‖〈t〉αy‖L∞ ≤ C‖〈t〉αF‖L∞ .

Proof. To get i) it suffices to use (3.5) and the Young inequality.
Let us prove ii). We first observe that

t
1
2 y(t) = K ∗ (t

1
2 y) +

∫ t

0
(t

1
2 − s

1
2 )K(t− s)y(s) ds+ t

1
2F.

By using i), we obtain that

(3.7) ‖t
1
2 y‖L∞ . ‖y‖L∞ sup

t

∫ t

0
(t

1
2 − s

1
2 )|K(t− s)|ds+ ‖〈t〉

1
2F‖L∞ . ‖〈t〉

1
2F‖L∞ .

Next, we can write that

ty(t) = K ∗ (ty) +

∫ t

0
(t

1
2 − s

1
2 )K(t− s) s

1
2 y(s) ds+ t

1
2

∫ t

0
(t

1
2 − s

1
2 )K(t− s)y(s) ds+ tF.

Consequently, by using i) and the assumptions on K, we obtain that

‖ty‖L∞ . sup
t

(∫ t

0

(t− s)
1
2

〈t− s〉2
ds

)
‖〈t〉

1
2 y‖L∞

+ sup
t

(
t
1
2

∫ t

0

(t− s)
1
2

〈t− s〉2
1

〈s〉
1
2

ds

)
‖t

1
2 y‖L∞ + ‖〈t〉F‖L∞

and by (3.7),

(3.8) ‖ty‖L∞ . ‖〈t〉F‖L∞ .

Note that we have used that

t
1
2

∫ t

0

(t− s)
1
2

〈t− s〉2
1

〈s〉
1
2

ds .
1

〈t〉
3
2

∫ t

t
2

1

〈s〉
1
2

ds+

∫ t
2

0

1

〈t− s〉
3
2

ds . 1.

We then estimate t2y, and for that we write

t2y = K ∗ t2y + F2
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where by similar manipulations as above, the source term F2 may be estimated as follows

|F2| . t
1
2

((
〈·〉

1
2 |K|

)
∗ (〈·〉|y|)

)
+
(
〈·〉

1
2 |K|

)
∗
(
〈·〉

3
2 |y|
)

+ t
((
〈·〉

1
2 |K|

)
∗
(
〈·〉

1
2 |y|
))

+ t
3
2

(
〈·〉

1
2 |K|

)
∗ (|y|) + t2|F |.

By using again i) and (3.7), and similar arguments as above, we obtain that

‖t2y‖L∞ . ‖〈t〉
3
2 y‖L∞ + ‖〈t〉2F‖L∞ .

To conclude, we can use first the interpolation inequality

‖〈t〉
3
2 y‖L∞ . ‖〈t〉y‖

1
2
L∞‖〈t〉

2y‖
1
2
L∞ .

Then we apply the Young inequality: for any δ > 0,

‖〈t〉y‖
1
2
L∞‖〈t〉

2y‖
1
2
L∞ ≤

‖〈t〉y‖L∞
2δ

+
δ‖〈t〉2y‖L∞

2
.

Choosing δ small enough, we conclude that

‖t2y‖L∞ . ‖〈t〉y‖L∞ + ‖〈t〉2F‖L∞
and the result follows by using (3.8).

To prove iii), we can use the same arguments. We first write

ty = K ∗ (ty) + F1

with
F1(t) = tF + (tK) ∗ y.

Since tK ∈ L1, we get by using (3.6) that

‖ty‖L∞ . ‖F1‖L∞ . ‖〈t〉F‖L∞ .
Next, we write

t2y = K ∗ t2y + F2, F2 = (tK) ∗ ty + tF 1

and by Young’s inequality

‖F2‖L∞ . ‖tK‖L1‖ty‖L∞ + ‖t2F‖L∞ + ‖t((tK) ∗ y)‖L∞ . ‖tF‖L∞ + ‖t2F‖L∞ + ‖t((tK) ∗ y)‖L∞ .
It remains to see that

|(tK) ∗ y| .
∫ t

0

1

〈t− s〉2
1

〈s〉
‖〈t〉y‖L∞ds .

1

〈t〉
‖ty‖L∞ ,

such that
‖F2‖L∞ . ‖〈t〉2F‖L∞ .

We conclude by using again (3.6) that

‖t2y‖L∞ . ‖〈t〉2F‖L∞ .
t3y is estimated in the same way as above. �

We shall then apply the Corollary to the two Volterra equations (2.10) to prove Theorem 2.4,
starting with the one satisfied by C(t). Note that by using Proposition 3.1, and the Penrose criterion
(2.13), we get that the kernel KC matches the assumptions of Corollary 3.3 iii). To estimate FC(t)
given by (2.11), we can apply Theorem 2.2 (using the orthogonality condition (2.14)) with the
functions ϕ = cos(X(x, v)) and f = r0(x, v), for which we have p ≥ 0 and q = 1. Now without

further assumptions this implies that FC(t) . 1
〈t〉α with α = p+5

2 . Therefore the application of

Corollary 3.3 to the first Volterra equation of (2.10) yields the estimate on C(t) claimed in Theorem
2.4.
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In the case of the second Volterra equation of (2.10), satisfied by S(t), we estimate FS(t) given
in (2.11) by using Theorem 2.2 with the functions ϕ = sin(X(x, v)) and f = r0(x, v) for which we
have p ≥ 0 and q = 0. This yields the estimate |FS(t)| . 1

〈t〉α with α = 2 + p
2 . As the kernel KS

falls under the scope of Corollary 3.3 ii), the estimate on S(t) claimed in Theorem 2.4 follows.

4. Proof of the scattering result Corollary 2.5

Let us first study the asymptotic behavior of g, and define g∞(x, v) by

(4.1) g∞(x, v) = r0(x, v) +

∫ +∞

0

(
C(s) {η, cos(X)} ◦ ψs(x, v) + S(s) {η, sin(X)} ◦ ψs(x, v)

)
ds.

Note that the above integral is convergent in L1
x,v. Indeed, by using that ψs is measure preserving

and Theorem 2.4 giving decay estimates for C(s) and S(s) we get that

‖C(s) {η, cos(X)} ◦ ψs(x, v) + S(s) {η, sin(X)} ◦ ψs(x, v)‖L1
x,v
.

1

〈s〉2
.

As

g(t, x, v) = r0(x, v) +

∫ t

0

(
C(s) {η, cos(X)} ◦ ψs(x, v) + S(s) {η, sin(X)} ◦ ψs(x, v)

)
ds,

this also yields that

(4.2) ‖g(t)− g∞‖L1
x,v
.
∫ +∞

t

1

〈s〉2
ds .

1

〈t〉
,

which proves the first part of the statement. Now, let us study the weak convergence of r(t, x, v).
Let us observe that for every test function φ(x, v), we have by volume preservation that∫

T×R
r(t, x, v)φ(x, v) dxdv =

∫
T×R

g(t, x, v)φ(ψt(x, v))dxdv

=

∫
T×R

g∞(x, v)φ(ψt(x, v))dxdv +O
(

1

〈t〉

)
=: I(t) + +O

(
1

〈t〉

)
.

By using the expression (4.1), and the fact that ψs is invertible and preserves the volume, we obtain
that

(4.3) I(t) =

∫
T×R

r0(x, v)φ(ψt(x, v)) dxdv +

∫ +∞

0

(
C(s)

∫
T×R
{η, cos(X)}φ(ψt−s(x, v)) dxdv

+S(s)

∫
T×R
{η, sin(X)}φ(ψt−s(x, v)) dxdv

)
ds.

Now, thanks to Theorem 2.2, we obtain that∫
T×R

r0(x, v)φ(ψt(x, v))dxdv →t→+∞
∑
∗∈{±,◦}

∫
J∗

(r0)∗0(a)φ∗0(a)da =

∫
T×R

r∞(x, v)φ(x, v)dxdv,

with r∞(x, v) the angle average of r0(θ, a),

r∞(x, v) = (r0)∗0(h) =
1

2π

∫
(−π,π)

r0(x(θ, h), v(θ, h))dθ, h ∈ I∗, ∗ ∈ {±, ◦}.

Next, we observe that {η, cos(X)}∗0 = {η, sin(X)}∗0 = 0. Consequently, by using again Theorem 2.2,
we obtain that∣∣∣∣∫

T×R
{η, cos(X)}φ(ψt−s(x, v)) dxdv

∣∣∣∣+

∣∣∣∣∫
T×R
{η, sin(X)}φ(ψt−s(x, v)) dxdv

∣∣∣∣ . 1

〈t− s〉2
.
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Consequently, we find that∣∣∣∣∫ +∞

0

(
C(s)

∫
T×R
{η, cos(X)}φ(ψt−s) dxdv + S(s)

∫
T×R
{η, sin(X)}φ(ψt−s) dxdv

)
ds

∣∣∣∣
.
∫ +∞

0

1

〈s〉2
1

〈t− s〉2
ds .

1

〈t〉2
.

and using (4.3) this concludes the proof of corollary 2.5.

5. Penrose condition: Proofs of Theorem 2.6 and Proposition 2.8

5.1. Proof of Theorem 2.6. Let us start with the study of KC (see (2.11)). With the assumption
on the profile function G, Proposition 3.1 shows that KC ∈ L1(R+) ∩ L2(R+). We have

K̂C(ξ) =
1

2π

∫ ∞
−∞

KC(t)e
itξdt =

1

2π

∫
T×R

∫ ∞
0

eitξ{η, cos(X)} cos(X ◦ ψt)dxdvdt,

which defines a continuous function on the set {ξ ∈ C | Im(ξ) ≤ 0} holomorphic on the set
{Im(ξ) < 0}.

(i) As d
dt cos(X ◦ ψt) = {cos(X), h0} ◦ ψt, for ξ 6= 0, we have after integration by part and using

estimate (3.1)

K̂C(ξ) = − 1

2iξπ
KC(0)− 1

iξ

1

2π

∫ ∞
0

eitξ
∫
T×R
{η, cos(X)}{cosX,h0} ◦ ψtdxdvdt.

To analyze the second term, we can use Theorem 2.2 with the functions f = {η, cos(X)} and
ϕ = {cosX,h0} = − sin(x)v for which we have p = q = 1. As noted in (3.2) the average f0(a)
vanishes and hence the integrand is O( 1

〈t〉3 ) by using Theorem 2.2. This shows that for {Im(ξ) ≤ 0}
and ξ 6= 0 we have

|K̂C(ξ)| .
1

|ξ|
.

Hence there exists B > 0 such that for |ξ| ≥ B, |1− K̂C(ξ)| > 1
2 .

(ii) Moreover, as η = G(h0), and as h0 is invariant by the flow, we have that

KC(t) = 1{t≥0}

∫
T×R

G′(h0) cos(X){h0, cos(X)} ◦ ψ−tdxdv

= 1{t≥0}
d

dt

∫
T×R

G′(h0) cos(X) cos(X ◦ ψ−t)dxdv = 1{t≥0}
d

dt
QC(t),

with

QC(t) =

∫
T×R

G′(h0) cos(X ◦ ψt) cos(X)dxdv −Q0.

where

Q0 =
∑
∗∈{±,◦}

∫
J∗

G′(h0(a))|C∗0 (a)|2da,

where C∗0 (a) ∈ R is given in (2.5) (see (7.24) and (7.38) for explicit expressions). By applying
Theorem (2.2) with the functions f = G(h0) cosX and ϕ = cosX, we obtain with this definition
of Q0 that

|QC(t)| .
1

〈t〉3
.

Hence we can write

K̂C(ξ) =

∫ +∞

0
e−itξ

d

dt
QC(t)dt = −QC(0) + iξ

∫ +∞

0
e−itξQC(t)dt,
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where by the previous estimate the time integral is well defined and uniformly bounded in {Im(ξ) ≤
0}. The assumption (2.16) can actually be restated as

1− K̂C(0) = 1 +QC(0) = κ0 > 0.

Hence, by continuity, there exists A > 0 such that for |ξ| ≤ A, we will have |1− K̂C(ξ)| > κ0
2 .

(iii) Now let us express QC(t) in action-angle variables. We have

QC(t) = −Q0 +
1

2π

∑
∗∈{◦,±}

∫
J∗×(−π,π)

G′(h0(a)) cos(X ◦ ψt(θ, a)) cos(x(θ, a))dθda

By using for (θ, a) ∈ J∗× (−π, π) the identity ψt(θ, a) = θ+ tω∗(a) and the Fourier expansion (2.5)
for the cosine function, and by definition of Q0 we infer that

QC(t) = −Q0 +
1

2π

∑
∗∈{◦,±}

∑
`,`′∈Z

∫
J∗×(−π,π)

G′(a)C∗` (a)C∗`′(a)eit`ω∗(a)ei(`+`
′)θdθda

=
∑
∗∈{±,◦}

∑
6̀=0

∫
J∗

G′(a)|C∗` (a)|2eit`ω∗(a)da,

Now we calculate that for Im(ξ) < 0,

K̂C(ξ) = −QC(0) +
∑
∗∈{±,◦}

∑
`6=0

∫
J∗

G′(h0(a))|C∗` (a)|2 ξ

ξ − `ω∗(a)
da

=
∑
∗∈{±,◦}

∑
` 6=0

∫
J∗

G′(h0(a))|C∗` (a)|2
(

ξ

ξ − `ω∗(a)
− 1

)
da

=
∑
∗∈{±,◦}

∑
` 6=0

∫
J∗

G′(h0(a))|C∗` (a)|2
(

`ω∗(a)

ξ − `ω∗(a)

)
da.

Hence we have for ξ = γ + iτ with τ < 0,

Re K̂C(ξ) =
∑
∗∈{±,◦}

∑
` 6=0

∫
J∗

G′(h0(a))|C∗` (a)|2
(

(γ − `ω∗(a))`ω∗(a)

|γ − `ω∗(a)|2 + τ2

)
da

For a given −τ ∈ [A,B], as G′ < 0 we have that

lim
γ→0

Re K̂C(ξ) = −
∑
∗∈{±,◦}

∑
6̀=0

∫
J∗

G′(h0(a))|C∗` (a)|2
(

`2ω∗(a)2

`2ω∗(a)2 + τ2

)
da

≤ −
∑
∗∈{±,◦}

∑
` 6=0

∫
J∗

G′(h0(a))|C∗` (a)|2 = −QC(0)

By uniform continuity, this implies that there exists ε0 such that for |γ| < ε and −τ ∈ [A,B], we

have |1− K̂C(ξ)| > κ0
2 .
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(iv) With the same notation as before, we calculate that

(5.1) Im K̂C(ξ) = −
∑
∗∈{±,◦}

∑
6̀=0

∫
J∗

G′(h0(a))|C∗` (a)|2τ`ω∗(a)
1

(γ − `ω∗(a))2 + τ2

= −
∑
∗∈{±,◦}

∑
`>0

∫
J∗

G′(h0(a))|C∗` (a)|2τ`ω∗(a)

(
1

(γ − `ω∗(a))2 + τ2
− 1

(γ + `ω∗(a))2 + τ2

)
da

= −4γτ
∑
∗∈{±,◦}
`>0

∫
J∗

G′(h0(a))|C∗` (a)|2`2ω∗(a)2

(
1

((γ − `ω∗(a))2 + τ2)((γ + `ω∗(a))2 + τ2)

)
.

The coefficients C∗` (a) explicitly given in section 7 are non-zero everywhere (see Propositions 7.5
and 7.12), and hence the previous term does not vanish when γ 6= 0 and τ 6= 0. By combining with

the previous results, this shows that for all ε > 0, there exists κ(ε) > 0 such that | 1−K̂C(ξ)| ≥ κ(ε)
except possibily if −τ ≤ ε and |γ| ∈ [A2 , 2B].

(iv) To conclude, we thus need to study the limit τ → 0 for |γ| ∈ [A2 , 2B]. By symmetry, we

can only consider the case γ > 0 and we know that in this case Im K̂C(ξ) < 0 is a sum of negative

terms. In the first sum (5.1) giving the expression Im K̂C(ξ), we have that for ` < 0, γ−`ω∗(a) > γ.
Hence for a fixed γ ∈ [A2 , 2B] the limit of the corresponding terms when τ → 0 is 0 and the only
contribution comes from terms for which ` > 0.

We shall use the fact that ∂aω∗ does not vanish on each chart U∗ (see Remarks 7.3 and 7.10 in
Section 7).

Let us consider the upper exterior of the eye, i.e. ∗ = +. We make in the integral on J+ the
change of variable u = `ω+(a) − γ. Hence when a ∈ J+ = ( 4

π

√
M0,+∞), we have u ∈ (−γ,+∞)

by using the formula of Proposition 7.2. Hence we have for ` > 0,∫
J+

G′(h0(a))|C+
` (a)|2τ`ω+(a)

1

(γ − `ω+(a))2 + τ2
=

∫ +∞

−γ
Fγ(

u+ γ

`
)

τ

u2 + τ2
du

= −
∫ +∞

− γ
τ

F+
γ (
|τ |u+ γ

`
)

1

u2 + 1
du = −πF+(

γ

`
) +R`,γ(|τ |),

where

(5.2) F+(v) :=
v

|`∂aω+(ω−1
+ (v))|

G′(h0(ω−1
+ (v)))|C+

` (ω−1
+ (v))|2.

Note that in view of (7.24), for all `, the coefficient C+
` are non zero, then we have for some `0 that

for all γ ∈ [A2 , 2B], F+( γ`0 ) < −κ1. As all the terms in (5.1) are non positive, we have

Im K̂C(ξ) < πF ∗(
γ

`0
) +Rγ,`0(|τ |) < −κ1

2

for −τ ≤ ε small enough. By combination with the previous item, this concludes the proof for
KC(ξ).

Now we consider the case of KS . The proof for KC(ξ) is entirely similar, once we have noticed
that

KS(t) = KS(t) = 1{t≥0}
d

dt
QS(t)

with an expansion in action-angle variables

QS(t) = −2
∑
∗∈{±,◦}

∑
`>0

∫
J∗

G′(h0(a))|S∗` (a)|2 cos(t`ω∗(a))da.
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The argument is then identical as for the case of KC , since the coefficients S∗` (a) are non-zero
everywhere (see Propositions 7.5 and 7.12).

5.2. Proof of Proposition 2.8. In the case of KC , we saw in the previous proof that

1− K̂C(0) > 0⇔ 1 +QC(0) > 0,

with

QC(t) = 2
∑
∗∈{±,◦}

∑
`>0

∫
J∗

G′(h0(a))|C∗` (a)|2 cos(t`ω∗(a))da.

Now we can use Parseval’s identity∑
`∈Z
|C∗` (a)|2 =

1

2π

∫
(−π,π)

cos2(x(θ, a))dθ

to write that

QC(0) =
∑
∗∈{±,◦}

∑
6̀=0

∫
J∗

G′(h0(a))|C∗` (a)|2da

=
1

2π

∑
∗∈{±,◦}

∫
J∗×(−π,π)

G′(h0(a)) cos2(x(θ, a))dθda−
∑
∗∈{±,◦}

∫
J∗

G′(h0(a))|C∗0 (a)|2da

=

∫
T×R

G′(h0(x, v)) cos2(x)dxdv −
∑
∗∈{±,◦}

∫
J∗

G′(h0(a))|C∗0 (a)|2da,

where we have also used area preservation. Hence the condition 1 +QC(0) > 0 is equivalent to the
condition (2.17) of Definition 2.7. This proves the result in the case of KC .
Now in the case of KS , we saw in the previous proof that

1− K̂S(0) > 0⇔ 1 +QS(0) > 0,

with

QS(t) = −2
∑
∗∈{±,◦}

∑
`>0

∫
J∗

G′(h0(a))|S∗` (a)|2 cos(t`ω∗(a))da.

Using Parseval’s formula as previously, and as S∗0(a) = 0 on each chart, we obtain this time that

1 +QS(0) > 0⇔ 1−
∫
T×R

G′(h0(x, v)) sin2(x)dxdv > 0,

which is guaranteed by the assumption G′ < 0.

6. Examples of stable stationary states

In this section we study the existence of stationary states of the kind (1.4), and exhibit examples
of such states that satisfy the stability hypothesis (2.7). Let us first make the following comments
on the stationary states considered in the introduction. Stationary solutions of (1.1), are functions
η(x, v) satisfying {η,H[η]} = 0. As for all smooth functions G : R → R and H : R2 → R we
have {G(H), H} = G′(H){H,H} = 0, stationary states can be constructed by finding a function
G : R→ R and a function η smooth enough such that the η(x, v) = G (H[η](x, v)). Note that for
such function, we have

H[η] =
v2

2
− C[η] cos(x)− S[η] sin(x) = M0 cos(x− x0),
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where M0 ≥ 0 and x0 are real constants attached to the stationary state such that M0e
ix0 =

C[η] + iS[η]. As (1.1) is invariant by translation x 7→ x + x0 we can consider the case x0 = 0 (i.e.
M0 = C[η] and S[η] = 0), and any solutions must satisfy (1.5) for this number M0.

Conversely all functions η(x, v) = G(v
2

2 −M0 cos(x))) with M0, called the magnetization of η,
satisfying (1.5) defines a stationary states.

6.1. Sufficient conditions of existence and stability. The following Proposition provides a
sufficient condition on the function G such that an inhomogeneous state of the kind (1.4) exists.

Proposition 6.1. Let G : [−e,+∞[→ R+ be a C1 function such that G,G′ ∈ L1([−e,+∞[).
Assume that there exists ζ > 0 such that

(6.1)

∫
T×R

G

(
v2

2
− ζ cos(x)

)
cos(x)dxdv ≥ ζ,

and that

(6.2) 1 +

∫
T×R

G′
(
v2

2

)
cos2(x)dxdv > 0.

Then there exists a solution M0 > 0 to the equation

M0 =

∫
T×R

G

(
v2

2
−M0 cos(x)

)
cos(x)dxdv.

In particular, η(x, v) = G
(
v2

2 −M0 cos(x)
)

is an inhomogeneous stationary solution of (1.1).

Proof. Consider the function

F (z) =

∫
T×R

G

(
v2

2
− z cos(x)

)
cos(x)dxdv − z.

We have F (0) = 0 (as the cosine function has average 0 on (−π, π)), and the hypothesis imply
that F (ζ) ≥ 0 and F ′(0) < 0. Hence either F (ζ) = 0 and the proof is done, or F (ζ) > 0, and the
intermediary value Theorem shows that there exists M0 ∈ (0, ζ) such that F (M0) = 0. �

The next Proposition gives a sufficient condition to fulfill the stability assumption of definition
2.7, which is moreover independent of the angle-action variables.

Proposition 6.2. Let G : [−e,+∞[→ R+ be a C1 function such that G,G′ ∈ L1([−e,+∞[), and
η be defined by (1.4) with M0 > 0. Assume that G′ < 0, and that η = G(h0) satisfies

1 +

∫
T×R

G′(h0(x, v)) cos2(x)dxdv −

(∫
T×R

cos(x)G′(h0(x, v))dxdv

)2

∫
T×R

G′(h0(x, v))dxdv

> 0.

Then η is stable in the sense of definition 2.7.

Proof. By using the symplectic variable (θ, a), we have

(∫
T×R

cos(x)G′(h0(x, v))dxdv

)2

∫
T×R

G′(h0(x, v))dxdv

=

 ∑
∗∈{◦,±}

∫
J∗

C∗0 (a)G′(h0(a))da

2

∑
∗∈{◦,±}

∫
J∗

G′(h0(a))da

.
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Hence it is enough to check that
(6.3)∑
∗∈{◦,±}

∫
J∗

C∗0 (a)2G′(h0(a))da ≤

 ∑
∗∈{◦,±}

∫
J∗

C∗0 (a)G′(h0(a))da

2 ∑
∗∈{◦,±}

∫
J∗

G′(h0(a))da

−1

.

Now for ∗ ∈ {◦,±}, we define on J∗ a function

F (a) =

 ∑
∗∈{◦,±}

∫
J∗

G′(h0(a))dα

−1

G′(h0(a)) > 0,

which is positive, since G′ < 0 and of global integral 1. The Cauchy-Schwarz inequality implies
then that for all ∗ ∈ {◦,±} ∑

∗∈{◦,±}

∫
J∗

C∗0 (a)F (a)da

2

≤
∑
∗∈{◦,±}

∫
J∗

C∗0 (a)2F (a)da.

Multiplying both sides of the inequality by the real number
∑
∗∈{◦,±}

∫
J∗
G′(h0(a))da which is

negative we obtain that (6.3) is true, and the proof is done. �

6.2. Example of stable stationary states: Maxwell-Boltzmann distributions. Here we
study the case where the function G is an exponential. As we consider averages of G against cosine
functions, we introduce the modified Bessel functions of the first kind:

In(z) =
1

π

∫ π

0
ez cos(x) cos(nx)dx =

∫
T

ez cos(x) cos(nx)dx.

We shall use the following assymptotics (see formulae 9.6.10 and 9.7.1 of [1]):

(6.4) In(z) =
(z

2

)n [ 1

n!
+

z2

4(n+ 1)!
+O(z4)

]
when z → 0,

(6.5) In(z) =

(
ez√
2πz

)[
1− 4n2 − 1

8z
+O

(
1

z2

)]
when z → +∞.

We shall also use the following result

Proposition 6.3 ([30]). For all n ∈ N and z ∈ R, we have

z
I ′n(z)

In(z)
<
√
z2 + n2 and

In+1(z)

In(z)
>

√
(n+ 1)2 + z2 − (n+ 1)

z
.

We shall prove the following result, which shows there exists inhomogeneous Maxwell-Boltzmann
distributions

η(x, v) = αe−βh0(x,v)

that are stationary solutions of (1.1) of the kind (1.4) (see also [19]).

Proposition 6.4. Let α, β ∈ R∗+, and G(s) = αe−βs. Then if α
√
β < 2√

2π
, G satisfies the conditions

(6.1) and (6.2).

Proof. We have for any z > 0∫
T×R

G

(
v2

2
− z cos(x)

)
cos(x)dxdv = α

∫
T×R

e−β
v2

2 eβz cos(x) cos(x)dxd = α

√
2π

β
I1(βz),
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and (6.1) is clearly guaranteed by (6.5) for z sufficiently large.
Using the first formula of (7.10)

1 +

∫
T×R

G′
(
v2

2

)
cos2(x)dxdv = 1− α

√
β
√

2π

[
I0(0) + I2(0)

2

]
= 1− α

√
β

√
2π

2
.

That last quantity is positive when α
√
β < 2√

2π
, and this concludes the proof. �

Now we shall prove that the inhomogeneous states given by Proposition 6.4 are stable in the
sense of definition 2.7

Proposition 6.5. Let η be a stationary solution of (1.1) given by

η(x, v) = αe
−β

(
v2

2
−M0 cos(x)

)
,

with α, β,M0 ∈ R∗+, α
√
β < 2√

2π
, and M0 given by Proposition 6.1, and satisfying

(6.6) M0 = α

∫
T×R

e
−β

(
v2

2
−M0 cos(x)

)
cos(x)dxdv.

Then η is stable in the sense of definition 2.7.

Proof. We shall prove that the assumptions of Proposition 6.2 are fulfilled, which will imply the
result. First, we have∫

R×T
G′(h0(x, v)) cos2(x)dxdv = −αβ

∫
T×R

e−β
v2

2 eβM0 cos(x) cos2(x)dxdv

= −α
√
β

(2π)1/2

2
[I0(βM0) + I2(βM0)] ,

using the first formula of (7.10). Then have also∫
T×R

cos(x)G′(h0(x, v))dvdx = −αβ
∫
T×R

cos(x)e−
v2

2 eβM0 cos(x)dxdv = −α
√
β(2π)1/2I1(βM0)

and ∫
T×R

G′(h0(x, v))dvdx = −α
√
β(2π)1/2I0(βM0).

Hence, by Proposition 6.2, it is sufficient to verify that

1− α
√
β

2
(2π)1/2 [I0(βM0) + I2(βM0)] + α

√
β(2π)1/2 I1(βM0)2

I0(βM0)
> 0.

Note that

I0(βM0) + I2(βM0) = 2I ′1(βM0).

Moreover, M0 satisfies (6.6) which can be written

M0 = α

√
2π

β
I1(βM0) which impliesα

√
β =

βM0

(2π)1/2I1(βM0)
.

Hence it is sufficient to show that

1− βM0I
′
1(βM0)

I1(βM0)
+
βM0I1(βM0)

I0(βM0)
> 0.

But Proposition 6.3 implies that

βM0I1(βM0)

I0(βM0)
>
√

1 + (βM0)2 − 1 and − βM0I
′
1(βM0)

I1(βM0)
> −

√
1 + (βM0)2.
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Hence

1− βM0I
′
1(βM0)

I1(βM0)
+
βM0I1(βM0)

I0(βM0)
> 0,

and the proof is done. �

7. Action-angle variables

In this section we shall recall how angle-action variables are constructed on each chart U∗. It will
involve elliptic integrals and Jacobi’s elliptic functions, whose definitions and main properties are
summarized in the following subsection.

7.1. Elliptic integrals, elliptic functions, and elliptic trigonometry. For k ∈ (0, 1) and
φ ∈ (−π/2, π/2), we define the incomplete elliptic integrals by

E(φ, k) =

∫ φ

0

√
1− k2 sin(y)dy and F (φ, k) =

∫ φ

0

1√
1− k2 sin(y)

dy

and the complete elliptic integrals by

E(k) = E
(π

2
, k
)

and K(k) = F
(π

2
, k
)
.

We will use the following standard notations: The complementarity modulus k′ =
√

1− k2, K ′(k) =
K(k′) and Jacobi’s nome

q(k) = exp(−πK ′(k)/K(k)).

We collect below some useful results for these functions.

Proposition 7.1. The functions E(z), K(z) and q(z) extend as analytic functions of z2 for |z| < 1,
satisfying E(0) = K(0) = π

2 and q(0) = 0, and we have

E(z) ∼ π

2

(
1− 1

4
z2

)
when z → 0,

K(z) ∼ π

2

(
1 +

1

4
z2

)
when z → 0,

q(z) ∼ z2

16
when z → 0.

(7.1)

Moreover, these functions have logarithmic singularities in z = 1:

E(z) ∼ 1− 1

2
(1− z) log(1− z) when z → 1,

K(z) ∼ −1

2
log(1− z) when z → 1,

q(z) ∼ 1 +
π2

log(1− z)
when z → 1.

(7.2)
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More precisely, for all n ≥ 1 there exists constants Cn such that

‖(1− z)n∂n+1
z E(z)‖

L∞( 1
2
,1)
≤ Cn,

‖(1− z)n∂nzK(z)‖
L∞( 1

2
,1)
≤ Cn,∥∥∥∥log(1− z)2(1− z)n∂nz

( 1

K(z)

)∥∥∥∥
L∞( 1

2
,1)

≤ Cn,∥∥log(1− z)2(1− z)n∂nz q(z)
∥∥
L∞( 1

2
,1)
≤ Cn,∥∥∥∥(1− z)n∂nz

( 1

1− q(z)

)∥∥∥∥
L∞( 1

2
,1)

≤ Cn.

(7.3)

Proof. The statements of (7.1), (7.2) and (7.3) concerning E(z) and K(z) are consequences of
the power series expansions (900.00) and (900.05) of [12] for the function K(z), and (900.07) and
(900.10) for the function E(z) . In particular, near z = 1, we have

K(z) = log(4/z′)K1(z′) +K2(z′)

where K1 and K2 are smooth functions of (z′)2 = 1− z2 and K1(0) = 1. In other words, we have
for z ∈ (1/2, 1),

K(z) = log(1− z)A(z) +B(z) > 0

with A and B smooth functions of z2 and A(1) = −1
2 . The estimates on 1/K(z) follow from this

formula.
The first statement (7.1) concerning the function q(z) is a consequence of formula (900.05) of [12].
The second (7.2) of the expansion

q(z) = exp(−πK(
√

1− z2)/K(z)) =
∑
n≥0

(−1)n

n!

(
πK(

√
1− z2)

K(z)

)n
,

that holds near z = 1. Note that as K(z) is an analytic function z2, K(
√

1− z2) is an analytic
function of z for |z| < 1 which is bounded as well as its derivatives in the vicinity of z = 1. This
completes the proof of (7.3). �

The Jacobi elliptic functions are then defined as follows: first, we define the amplitude am(u, k)
by the formula

(7.4) F (am(u, k), k) = u.

The first Jacobi elliptic function is then

(7.5) sn(u, k) = sin(am(u, k)).

The second and third Jacobi elliptic functions are defined by the formulae

cn(u, k) =
√

1− sn2(u, k) and dn(u, k) =
√

1− k2sn2(u, k).
22



We have the following Fourier series for these functions (see formulae (908.00)–(908.03) of [12]):

am(u, k) =
πu

2K(k)
+ 2

∞∑
m=0

q(k)m+1

(m+ 1)(1 + q(k)2(m+1))
sin

(
(m+ 1)

πu

K(k)

)
,

sn(u, k) =
2π

kK(k)

∞∑
m=1

q(k)m−
1
2

1− q(k)2m−1
sin

(
(2m− 1)

πu

2K(k)

)
,

cn(u, k) =
2π

kK(k)

∞∑
m=1

q(k)m−
1
2

1 + q(k)2m−1
cos

(
(2m− 1)

πu

2K(k)

)
,

dn(u, k) =
π

2K(k)
+

2π

K(k)

∞∑
m=1

q(k)m

1 + q(k)2m
cos

(
m

πu

K(k)

)
.

(7.6)

The following formulae will also be useful (see (2.14), (2.24) in [33]):

sn2(u, k) =
K(k)−E(k)

k2K(k)
− 2π2

k2K(k)2

∞∑
m=1

mq(k)m

1− q(k)2m
cos

(
m

πu

K(k)

)

sn(u, k)cn(u, k) =
2π2

k2K(k)2

∞∑
m=1

mq(k)m

1 + q(k)2m
sin

(
m

πu

K(k)

)

sn(u, k)dn(u, k) =
π2

kK(k)2

∞∑
m=1

(2m− 1)q(k)m−
1
2

1 + q(k)2m−1
sin

(
(2m− 1)

πu

2K(k)

)
.

(7.7)

We shall also need the following elliptic trigonometry identities (see formulae 120.02, 122.00, 122.03
in [12])

sn(−u, k) = −sn(u, k), cn(−u, k) = cn(u, k), dn(−u, k) = dn(u, k),

sn(u+ K(k), k) = sn(K(k)− u, k), cn(u+ K(k), k) = −k′ sn(u, k)

dn(u, k)
,

(7.8)

of which two straightforward consequences are the following equalities

(7.9) − sn(u−K(k), k) = sn(u+ K(k), k) and − cn(u−K(k), k) = cn(u+ K(k), k).

Finally, we recall for completion some classical trigonometry identities which we often use: for a
real number z,

2 cos2(z) = 1 + cos(2z), 2 sin2(z) = 1− cos(2z), sin(2z) = 2 sin(z) cos(z),

arcsin(cos(z)) =
√

1− z2.
(7.10)

7.2. Action-angle variables on U+ or U−. We will use the following notations: ε+ = 1, and
ε− = −1. The action-angle coordinates are constructed on U± as follows.

Proposition 7.2. For ∗ ∈ {±}, there exists a symplectic change of variable (x, v) 7→ (ψ, h) from
U∗ to the set

V∗ := {(ψ, h) ∈ R2, |h ∈ (M0,+∞), ψ ∈ (−r∗(h), r∗(h))},

with

r∗(h) =
1

k(h)
√
M0

K

(
1

k(h)

)
, where k(h) =

√
h+M0

2M0
,
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such that the flow of the pendulum in the variables (ψ, h) is h(t) = h(0) and ψ(t) = t+ψ(0). There
exists then a second symplectic change of variables (ψ, h) 7→ (θ, a) from V∗ to

W∗ =

{
(θ, a) ∈ R2, |a ∈ J∗ =

(
4

π

√
M0,+∞

)
, θ ∈ (−π, π)

}
,

such that  a(h) =
4

π
k(h)

√
M0E

(
1

k(h)

)
θ(ψ, h) = ω∗(h)ψ

with ω∗(h) =
πk(h)

√
M0

K
(

1
k(h)

) ,

and so that the flow of the pendulum in the variables (θ, a) is a(t) = a(0) and θ(t) = tω∗(a) + θ(0).
Moreover, we can easily express x and v as functions of the variables (θ, h) with the formulae

x(θ, h) = ε∗2 am

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)
,(7.11)

v(θ, h) = ε∗2k(h)
√
M0 dn

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)
.(7.12)

Remark 7.3. Note that we can check directly from the formulae that ω∗(h) is increasing, and as h
is a strictly increasing function of h (see(7.13)), we have that ω∗(a) is decreasing, and ∂aω◦(a) > 0,
a ∈ J∗.

Proof. The construction is classic by using generating functions. Setting h(x, v) = v2

2 −M0 cos(x),
we have on U∗

v(x, h) = ε∗
√

2(h+M0 cos(x)).

Note that v(x, h) = ∂xS(x, h), where

S(x, h) = ε∗

∫ x

0

√
2(h+M0 cos(y))dy = ε∗2

√
2(h+M0)

∫ x/2

0

√
1− 2M0

h+M0
sin2(y)dy

= ε∗4
√
M0k(h)

∫ x/2

0

√
1− sin2(y)

k(h)2
dy = ε∗4k(h)

√
M0E

(
x

2
,

1

k(h)

)
.

We define then the variable ψ(x, h) by

ψ(x, h) = ∂hS(x, h) = ε∗

∫ x

0

1√
2(h+M0 cos(y))

dy = ε∗
1

k(h)
√
M0

F

(
x

2
,

1

k(h)

)
.

By construction, the variables (ψ, h) are symplectic, and S is the mixed-variable generating function
(see formula (5.5) p197 of [26]). We have by the above formulae

ψ̇(t) = ẋ(t)∂xψ(x(t), h(x(t), v(t))) = v(t)
ε∗√

2(h(x(t), v(t)) +M0 cos(x(t)))
= 1,

and the preservation of the hamiltonian reads ḣ = 0, such that the flow associated with h0 is in
these new variables ψ̇(t) = 1, ḣ(t) = 0.
Setting now

r∗(h) =

∫ π

0

1√
2(h+M0 cos(y))

dy =
1

k(h)
√
M0

K

(
1

k(h)

)
,

we have ψ ∈ [−r∗(h), r∗(h)], and the orbits of the flow are periodic with period 2r∗(h), which is
unsatisfying for us. Thus the second step is to perform another transformation which shall force
all trajectories to evolve in a torus. If we define

(7.13) g∗(h) =
1

π
r∗(h) =

1

π

∫ π

0

1√
2(h+M0 cos(y))

dy =
∂

∂h
a∗(h) > 0,
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with

a∗(h) =
1

π

∫ π

0

√
2(h+M0 cos(y))dy =

4

π
k(h)

√
M0E

(
1

k(h)

)
,

and set θ(x, h) = 1
g(h)ψ(x, h), then for each ∗ ∈ {±}, the variables (θ, a) belong to J∗× (−π, π) and

are symplectic. Moreover the flow reduces to

(7.14) θ̇(t) =
ψ̇(t)

g∗(h)
= ω∗(a) and ȧ(t) = 0, with ω∗(a∗(h)) =

1

g∗(h)
=

1

∂ha∗(h)
.

Note that we have

g∗(h) =
1

πk(h)
√
M0

K

(
1

k(h)

)
,

which gives the formula for ω∗(h).
We can express x in terms of θ and h using the formula

θ = ε∗
π

K

(
1

k(h)

)F (x
2
,

1

k(h)

)
.

Using the definition of the first Jacobi elliptic function (7.4) and (7.5), we obtain

sin(x(θ, h)/2) = ε∗sn

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)
and hence

x(θ, h) = ε∗2 am

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)
.

Moreover, we have

v(θ, h) = ε∗
√

2(h+M0 cos(x)) = ε∗
√

2(h+M0)

√
1− 1

k(h)2
sin2(x(θ, h)/2)

= ε∗2k(h)
√
M0 dn

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)
,

and this ends the proof. �

We consider now the asymptotics of these functions. Note that the variables (θ, h) are not
symplectic, but we will use them to examine these asymptotics. Note moreover that the change
a∗(h) defined above allows to compute easily integrals in (θ, h) by using da = g∗(h)dh = 1

ω∗(h)dh.

Proposition 7.4. For ∗ ∈ {±}, the functions ω∗(h), x(θ, h) and v(θ, h) are analytic for θ ∈ (−π, π)
and h ∈ (M0,+∞).
The function ω∗ exhibits the following asymptotic behavior ω∗(h) is stricly increasing and we have

(7.15) ω∗(h) ∼
√

2h when h→ +∞, and ω∗(h) ∼ 2π
√
M0

log
(

1
(h−M0)

) when h→M+
0 ,

and there exists constants, Cr, ωr 6= 0 and αr 6= 0 such that for all r ≥ 1,∥∥∥√h[h− 1
2

+r∂rhω∗(h)− ωr
]∥∥∥

L∞(2M0,+∞)
≤ Cr,∥∥log(h−M0)2

[
log(h−M0)2(h−M0)r∂rhω∗(h)− αr

]∥∥
L∞(M0,2M0)

≤ Cr.
(7.16)
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The change of variable (h, θ) 7→ (x, v) satisfies the following estimates: for large h it converges
towards the ”identity” in the sense that

x(θ, h) ∼ ε∗θ when h→ +∞,

v(θ, h) ∼ ε∗
√

2h when h→ +∞.
(7.17)

More precisely, for r, s ≥ 0 there exist constants Cr,s such that∥∥hr+1∂rh∂
s
θ(x(θ, h)− ε∗θ)

∥∥
L∞ ((−π,π)×(2M0,+∞))

≤ Cr,s,∥∥∥√h[h− 1
2

+r∂rhv(θ, h)− ε∗ωr
]∥∥∥

L∞ ((−π,π)×(2M0,+∞))
≤ Cr, and

for s ≥ 1,
∥∥∥√h[h 1

2
+r∂rh∂

s
θv(θ, h)

]∥∥∥
L∞ ((−π,π)×(2M0,+∞))

≤ Cr,s.

(7.18)

Finally, we have for r, s ≥ 1,

‖|(h−M0)r| log(h−M0)|−s+2∂rh∂
s
θ(x(θ, h)− ε∗θ)‖L∞ ((−π,π)×(M0,2M0)

≤ Cr,s and

‖|(h−M0)r| log(h−M0)|−s+3∂rh∂
s
θ(v(θ, h))‖

L∞ ((−π,π)×(M0,2M0)
≤ Cr,s

(7.19)

for some constants Cr,s, and

‖| log(h−M0)|−s∂sθ(x(θ, h)− ε∗θ)‖L∞ ((−π,π)×(M0,2M0)
≤ Cs

for s ≥ 1 and some constant Cs.

Proof. We begin with the study of the function ω∗, and prove (7.15) and (7.16). When h → +∞,
k(h) goes to +∞, and 1/k(h) goes to 0. Hence as K(z) extends near z ∼ 0 as a smooth function
in z2 with K(0) = π

2 , we have that

ω∗(h) =
πk(h)

√
M0

K
(

1
k(h)

) =
√

2(h+M0)

(
1 + Ω

(
1

h+M0

))
.

where Ω is analytic in a neighborhood of 0. This shows that on (2M0,+∞), we have ω∗(h) =√
2h(1 + Ω̃(1/h)) for some analytic function Ω̃ on (0, 1

2M0
). This gives the first asymptotic of

(7.15), and also the first estimate of (7.16).
When h→M+

0 , 1/k(h) goes to 1 and is smooth in a neighborhood of M0. Moreover 1− 1
k(h) ∼

1
2M0

(h−M0) when h→M+
0 . Asymptotics (7.2) show that

ω∗(h) =
πk(h)

√
M0

K
(

1
k(h)

) ∼ π√M0
2

(− log(1− 1
k(h)))

when h→M+
0 ,

from which we infer the asymptotics of ω∗. The second estimate of (7.16) is easily deduced using
the estimate on 1/K from (7.3), and also the fact that 1/k(h) is smooth on (M0, 2M0).

Let us now study the functions x(θ, h) and v(θ, h). Using the expansions of (7.6), and the
expressions of x(θ, h) and v(θ, h) from Proposition 7.2, we write

x(θ, h) = ε∗θ + ε∗4

∞∑
m=0

q(1/k(h))m+1

(m+ 1)(1 + q(1/k(h))2(m+1))
sin((m+ 1)θ)

and

v(θ, h) = ε∗ω∗(h)

(
1 + 4

∞∑
m=0

q(1/k(h))m+1

1 + q(1/k(h))2(m+1)
cos((m+ 1)θ)

)
= ω∗(h)∂θx(θ, h).
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Note that by construction, x(θ, h) is bounded for (θ, h) ∈ (−π, π)× (M0,+∞). It is then clear that
we have to consider and study the auxiliary function

R(θ, q) = 4
∞∑
m=0

qm+1

1 + q2(m+1)
ei(m+1)θ.

This function is well defined for |q| < 1 and when q → 0, we have

(7.20) R(θ, q) ∼ 4qeiθ.

Moreover, we have the estimate

(7.21) ‖∂rq∂sθR(θ, q)‖
L∞(0, 1

2
)
≤ Cr,s

for all r, s ≥ 0 and some constant Cr,s.To prove this, note that as (1 + x2)−1 and its derivatives are
bounded near x = 0, we can write that

∂rq∂
s
θR(q, θ) =

∞∑
m≥r−1

(m+ 1)r+sqm+1−rei(m+1)θRr,sm (q)

where Rr,sm (q) ≤ Cr,s for all m and q ∈ (0, 1
2). Estimate (7.21) follows easily. In addition, when

q → 1, we have

(7.22) ‖R(θ, q)‖
L∞( 1

2
,1)
≤ 4

∞∑
m=0

qm+1 ≤ 4

(
q

1− q

)
.

We also want to estimate the derivatives of this function. We can proceed as previously, and use
the fact that x 7→ (1 + x2)−1 is bounded as well as all its derivatives near x = 1, so that we can
write for r ≥ 1 and s ≥ 0;

∂rq∂
s
θR(θ, q) =

∞∑
m≥r−1

(m+ 1)r+sqm+1−rei(m+1)θRr,sm (q)

where Rr,sm (q) ≤ Cr,s for all m and q ∈ (1
2 , 1). We deduce that

(7.23) ‖∂rq∂sθR(θ, q)‖
L∞( 1

2
,1)
≤ Cr,s

(1− q)r+s+1
,

for some constant Cr,s.
We can now study the asymptotic behaviors of x(θ, h) and v(θ, h), starting with the case when

h→ +∞. In this case 1/k(h) goes to 0, and q(1/k(h)) is a smooth function of 1/k(h)2 = 2M0/(h+
M0)→ 0. As we have

x(θ, a) = ε∗

[
θ + Im

(
R

(
θ, q

(
1

k(h)

)))]
,

we deduce from then (7.20), (7.21) and the Faà di Bruno formula that

∂rh∂
s
θ(x(θ, h)− ε∗θ) = O(h−r−1)

uniformly in θ. The results for v are obtained from the previous result and the fact that v(h, θ) =

ω∗(h)∂θx(θ, h) ∼ ε∗ω∗(h) ∼ ε∗
√

2h when h → 0. In other words asymptotics (7.17) and estimates
(7.18) are proved.

It remains to study the behaviors of x(θ, h) and v(θ, h) when h → M+
0 . Using the properties of

1/(1− q(z)) (see (7.2) and (7.3)) near z = 1, we obtain from (7.23)

‖∂rq∂sθR(q(1/k(h)), θ)‖
L∞(M0,2M0)

≤ C log

(
1

h−M0

)r+s+1

,
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and moreover, from (7.3)

∂rhq(1/k(h)) = O
((

1

h−M0

)r 1

log(h−M0)2

)
.

This shows that for s ≥ 1,

∂sθ(x(θ, h)− ε∗θ) = O

(
log

(
1

h−M0

)s+1
)
,

and using the Faà di Bruno formula, we see that for s ≥ 1 and r ≥ 1,

∂rh∂
s
θ(x(θ, h)− ε∗θ) = O

((
1

h−M0

)r
log

(
1

h−M0

)s−1
)
.

As v(θ, h) = ω∗(h)∂θx(θ, h), we deduce from the estimates on ω∗(h) that

∂rh∂
s
θv(θ, h) = O

((
1

h−M0

)r
log

(
1

h−M0

)s−3
)
,

and this proves estimates (7.19). To conclude the proof, let us say that the analyticity of ω∗(h),
x(θ, h) and v(θ, h) stated in the Proposition follows from the analyticity properties of the special
functions stated at the beginning of section 7. �

Now let us consider a function f(x, v) that is continuous and its restriction f∗ to U∗. We are
interested in the behavior of the Fourier coefficients (2.2) that by a slight abuse of notation, we will
also denote by

f∗` (h) =
1

2π

∫ 2π

0
f∗(x(θ, h), v(θ, h))e−i`θdθ

these coefficients in the variable h.
In the special cases where f is either the cosine or the sine function, we have the following explicit
expressions:

Proposition 7.5. For ∗ ∈ {±}, and (θ, a) ∈ J∗ × (−π, π),

cos(x(θ, a)) =
∑
`∈Z

C∗` (a)ei`θ and sin(x(θ, a)) =
∑
`∈Z

S∗` (a)ei`θ.

with, in terms of the variable h,

C∗0 (h) = 1− 2k(h)2 + 2k(h)2
E
(

1
k(h)

)
K
(

1
k(h)

)
C∗` (h) = C∗−`(h) =

2π2k(h)2

K
(

1
k(h)

)2

 |`|q
(

1
k(h)

)|`|
1− q

(
1

k(h)

)2|`|

 , ` > 0

(7.24)

and

S∗0(h) = 0

S∗` (h) = −S∗−`(h) = ε∗(−i)
2π2k(h)2

K
(

1
k(h)

)2

 |`|q
(

1
k(h)

)|`|
1 + q

(
1

k(h)

)2|`|

 , ` > 0.
(7.25)
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Proof. Recall that we have

sin(x(θ, h)/2) = ε∗sn

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)
.

Hence using the expansion of sn2 in (7.7) and the second formula of (7.10), we obtain

cos(x(θ, h)) = 1− 2sn2

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)

= 1− 2k(h)2
K
(

1
k(h)

)
−E

(
1

k(h)

)
K
(

1
k(h)

) +
4π2k(h)2

K
(

1
k(h)

)2

∞∑
m=1

mq
(

1
k(h)

)m
1− q

(
1

k(h)

)2m cos(mθ).

Formulae (7.24) follow easily. Moreover, we have

x(θ, h) = ε∗2 am

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)
.

Hence, using the third formula of (7.10), the definitions of the functions sn(u, k) and cn(u, k), and
the expansion of sn(u, k)cn(u, k) from (7.7), we infer

sin(x(θ, h)) = 2ε∗sn

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)
cn

(
1

π
K

(
1

k(h)

)
θ,

1

k(h)

)
= 2ε∗

2k(h)2π2

K(1/k(h))2

∞∑
m=1

mq(1/k(h))m

1 + q(1/k(h))2m
sin(mθ).

Formulae (7.25) follow easily. �

For some smooth function f , we can estimate the generalized Fourier coefficients f∗` (a) in the
following way.

Proposition 7.6. Assume that f is a function satisfying

max
|α|≤m

‖〈v〉µ∂αx,vf‖L∞(U∗)
≤ Cp,m

for some m ≥ 1 and µ ≥ 0. Then, we have for r + s ≤ m.

∂rhf
∗
` (h) = O

(
1

|`|s
( 1

h−M0

)r
log
( 1

h−M0

)s)
when h→M+

0

∂rhf
∗
` (h) = O

(
1

|`|s
1

hµ/2

)
when h→ +∞.

(7.26)

Proof. We have

∂rhf
∗
` (h) =

1

`s
(−i)s 1

2π

∫
(−π,π)

∂rh∂
s
θ(f
∗(x(θ, h), v(θ, h)))e−i`θdθ,

and using Faà di Bruno formula, the hypothesis on f, and (7.19), we infer that when h→M+
0 ,

∂rhf
∗
` (h) = O

(
1

|`|s
( 1

h−M0

)r
log
( 1

h−M0

)s)
.

Moreover, by the same arguments, and using also (7.18), we obtain

∂rhf
∗
` (h) = O

( 1

|`|s
1

hp/2

)
, h→ +∞.
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From this result, we obtain the following:

Proposition 7.7. Assume that f an ϕ are real functions satisfying

max
|α|≤m

‖〈v〉µ∂αx,vf‖L∞(U∗)
≤ Cµ,m and max

|α|≤M
‖∂αx,vϕ‖L∞(U∗)

≤ CM .

for some m ≥ 1 + r, µ > 2 and M ≥ 3 + r. Then we have for all t ≥ 1,∣∣∣∣∫
U∗

ϕ(ψt(x, v))f(x, v)dv −
∫ +∞

M0

f∗0 (h)ϕ∗0(h)
1

ω∗(h)
dh

∣∣∣∣ ≤ C

(1 + t)r+1
.

Proof. Recall that for ∗ ∈ {±}, we have by formulae (2.3) and (2.4), and the identity ψt(θ, h) =
θ + tω∗(h), ∫

U∗

ϕ(ψt(x, v))f(x, v)dvdx =
∑
`∈Z

∫
(M0,+∞)

f∗` (h)ϕ∗−`(h)eit`ω∗(h) 1

ω∗(h)
dh.

We shall then integrate by parts with respect to h, using in particular the fact that ∂hω∗ does not
vanish on U±. For ` 6= 0, we may thus define two operators D`,h and D>`,h acting on function G(h)
of h by

D`,hG =
1

i`∂hω∗
∂hG and D>`,hG = −∂h

(
G

i`∂hω∗

)
.

We shall in particular consider iterations of the operator D>`,h, and use the special notation

(D>`,h)0G = − G

i`∂hω∗
.

We have the following useful Lemma (whose proof is postponed to the end of the current one):

Lemma 7.8. For all 0 ≤ β ≤ r + 1,

(D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
= O(|`|−βh−µ/2) when h→ +∞,

and

(D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
= O

(
|`|−β(h−M0) log

(
1

h−M0

)m(β)
)

when h→M+
0 ,

for some integer m(β) > 0.

This Lemma says essentially that the singularities coming from f∗` and ϕ∗−` at the separatix are
cancelled by the one of ∂hω∗. This shows in particular that for all 0 < β ≤ r + 1,

lim
h→M+

0

(D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

) 1

∂hω∗(h)
= 0,

lim
h→+∞

(D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

) 1

∂hω∗(h)
= 0,

and that ∥∥∥(D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)∥∥∥
L1((M0,+∞))

≤
Cβ
|`|β

,
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using also (7.16) and the hypothesis µ > 2.
Integrating by parts r + 1 times while using Lemma 7.8, we have for ` 6= 0∫

(M0,+∞)
f∗` (h)ϕ∗−`(h)ei`tω∗(h) dh

ω∗(h)
=

1

t

∫
(M0,+∞)

f∗` (h)ϕ∗−`(h)D`,h(ei`tω∗(h))
dh

ω∗(h)

=
1

t

[
−(D>`,h)0

(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
ei`tω∗(h)

]+∞

M0

+
1

t

∫
(M0,+∞)

ei`tω∗(h)(D>`,h)
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
dh,

=
1

t

∫
(M0,+∞)

D`,h(ei`tω∗(h))(D>`,h)
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
dh,

=
1

tr+1

∫
(M0,+∞)

ei`tω∗(h)(D>`,h)r+1
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
dh,

such that∣∣∣∣∣
∫

(M0,+∞)
f∗` (h)ϕ∗−`(h)ei`tω∗(h) dh

ω∗(h)

∣∣∣∣∣ ≤ 1

tr+1

∥∥∥(D>`,h)r+1
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)∥∥∥
L1((M0,+∞))

≤ Cr+1

tr+1|`|r+1
,

and summing in ` gives the result. �

Proof of [Lemma 7.8]. Let us first prove the estimate when h ∼M0. We shall rather prove by
induction on β ≤ r + 1 that

(7.27) (D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
= O

(
|`|−β(h−M0) log

(
1

h−M0

)m(β)
)
,

and, if β ≤ r,

(7.28) ∂h(D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
= O

(
|`|−β log

(
1

h−M0

)n(β)
)
,

for some integers m(β), n(β).
When β = 0, we have by Proposition 7.6, (7.15) and (7.16)

−(D>`,h)0
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
=

f∗` (h)ϕ∗−`(h)

ω∗(h)∂hω∗(h)
= O

(
(h−M0) log

(
1

(h−M0)

)3
)
,

and

∂h

(
f∗` (h)ϕ∗−`(h)

ω∗(h)∂hω∗(h)

)
=
∂h
(
f∗` (h)ϕ∗−`(h)

)
ω∗(h)∂hω∗(h)

+
(
f∗` (h)ϕ∗−`(h)

)
∂h

(
1

ω∗(h)∂hω∗(h)

)
= O

(
log

(
1

(h−M0)

)3
)
.

For β ≥ 1, if (7.27) and (7.28) hold at rank β − 1, then by using the formula

(D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
= −∂h

(
(D>`,h)β−1

(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
i`∂hω∗(h)

)
,
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and the estimate (7.16) for ∂hω∗(h)−1, one easily proves (7.27) at rank β. As long as β ≤ r, one
deduces then (7.28) at rank β by writing that

log

(
1

h−M0

)−m(β)

(D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

)
= O

(
|`|−β(h−M0)

)
,

which shows that

∂h

(
log

(
1

h−M0

)−m(β)

(D>`,h)β
(
f∗` (h)ϕ∗−`(h)ω∗(h)−1

))
= O(|`|−β),

and gives the result.
The asymptotics when h → +∞ are easier to obtain, as for any s ≤ β ≤ r + 1, Proposition 7.6
implies that

∂sh
(
f∗` (h)ϕ∗−`(h)

)
= O(h−µ/2),

while (7.16) shows that

∂sh

(
1

ω∗(h)∂hω∗(h)

)
= O(1),

such that Leibniz’s formula yields the result. Note that the contribution |`|−β comes obviously
from iterations of the operator D>`,h.

7.3. Action-angle in U◦. In this subsection we provide a rather complete description of the change
of variable in U◦.

Proposition 7.9. There exists a symplectic change of variable (x, v) 7→ (ψ, h) from U◦ to the set

V◦ := {(ψ, h) ∈ R2, |h ∈ (−M0,M0), ψ ∈ (−r◦(h), r◦(h))},

with

r◦(h) =
2k(h)√
M0

K(k(h)), where k(h) =

√
h+M0

2M0
.

such that the flow of the pendulum in the variable (ψ, h) is h(t) = h(0) and ψ(t) = t+ψ(0). There
exists then a second symplectic change of variables (ψ, h) 7→ (θ, a) from V◦ to

{(θ, a) ∈ R2, |a ∈ J◦ =

(
0,

8

π

√
M0

)
, θ ∈ (−π, π)},

such that a(h) =
8
√
M0

π
(E(k(h))− (1− k(h)2)K(k(h)))

θ(ψ, h) = ω◦(h)ψ

with ω◦(h) =
π
√
M0

2K(k(h))

and so that the flow of the pendulum in the variables (θ, a) is a(t) = a(0) and θ(t) = tω◦(a(0))+ψ(0).
Moreover, we can easily express (x, v) as functions of the variables (θ, h) with the formulae

x(θ, h) = 2 arcsin

(
k(h)sn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

))
,(7.29)

v(θ, h) = 2k(h)
√
M0 cn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)
.(7.30)

Remark 7.10. Note that we can check directly from the formulae that ω◦(h) is decreasing, and as
h is a strictly increasing function of h (see(7.31)), ω◦(a) is decreasing, and ∂aω◦(a) < 0, a ∈ J◦.
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Proof. In this case, we have h ∈ (−M0,M0) and we can write

v(x, h) = ε∗
√

2(h+M0 cos(x))

defined for h+M0 cos(x) ≥ 0, where ε∗ = 1 if v ≥ 0 and ε∗ = −1 if v ≤ 0. Using this representation,
both sets U◦,+ = U◦ ∩ {v ≥ 0} and U◦,− = U◦ ∩ {v ≤ 0} can be parametrized as

U◦,∗ = {(x, h) ∈ T× (−M0,M0) |h ≥ −M0 cos(x)}
= {(x, h) |h× (−M0,M0), x ∈ (−x0(h), x0(h))},

where x0(h) is the solution in [0, π] of the equation h+M0 cos(x0(h)) = 0. Note that have

sin2(x0(h)/2) = k(h)2.

For x ∈ (−x0(h), x0(h)), let us define Θ(x, h) ∈ (−π/2, π/2) as the unique solution of

k(h) sin(Θ(x, h)) = sin(x/2).

This solution is well defined when x ∈ (−x0(h), x0(h)) as 1
k(h) sin(x2 ) ∈ (0, 1) in this interval. Note

that Θ(0, h) = 0, Θ(−x0(h), h) = −π
2 and Θ(x0(h), h) = π

2 . Moreover, by taking the derivative
with respect to x, we have

k(h) cos(Θ(x, h))∂xΘ(x, h) =
1

2
cos(x/2) =

1

2

√
1− k(h)2 sin(Θ(x, h))2.

In particular, we have√
1− sin2(Θ(x, h)) =

1

2k(h)∂xΘ(x, h)

√
1− k(h)2 sin(Θ(x, h))2.

Then we have

U◦,∗ = {(x, h)|h ∈ (−M0,M0),Θ(x, h) ∈ (−π/2, π/2)},
and we can define the generatrix function S(x, h) on U◦,∗ by the formula

S(x, h) = ε∗

∫ x

x0(h)

√
2(h+M0 cos(y))dy

= ε∗

∫ x

x0(h)

√
2(h+M0)− 4M0 sin2(y/2)dy

= ε∗2k(h)
√
M0

∫ x

x0(h)

√
1− sin2(y/2)

k(h)2
dy

= ε∗2k(h)
√
M0

∫ x

x0(h)

√
1− sin2(Θ(y, h))dy

= ε∗2k(h)
√
M0

∫ x

x0(h)

√
1− sin2(Θ(y, h))

1

∂xΘ(y, h)
∂xΘ(y, h)dy

= ε∗4k(h)2
√
M0

∫ Θ(x,h)

π
2

1− sin2(φ)√
1− k(h)2 sin2(φ)

dφ.

Whence

S(x, h) = ε∗4
√
M0(E(Θ(x, h), k(h))−E(k(h)))

− ε∗4
√
M0(1− k(h)2)(F (Θ(x, h), k(h))−K(k(h))).
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Note that this function is equal to zero on the axis {v = 0, x ∈ [0, π]} and has a discontinuity in
the axis {v = 0, x ∈ [−π, 0]}. We can then define

ψ(x, h) =
∂

∂h
S(x, h)

= ε∗

∫ x

x0(h)

1√
2(h+M0 cos(y))

dy

= ε∗
1√
M0

∫ x

x0(h)

1√
1− k(h)2 sin2(Θ(y, h))

∂xΘ(x, h)dy

= ε∗
1√
M0

(F (Θ(x, k(h)), k(h))−K(k(h))),

where we used the fact that h+M0 cos(x0(h)) = 0.

On a period, we thus see that ψ(x, h) ∈
(
−2K(k(h))√

M0
, 2K(k(h))√

M0

)
. Hence the function

θ = ε∗
π
√
M0

2K(k(h))
ψ = ε∗

π

2

F (Θ(x, k(h)), k(h))

K(k(h))
− ε∗

π

2

belongs to (−π, π), and is such that the point x0(h) correspond to the angle θ = 0. The frequency
and action are then given by

ω◦(h) =
π
√
M0

2K(k(h))
=

1

g◦(h)
and a◦(h) =

8
√
M0

π
(E(k(h))− (1− k(h)2)K(k(h)),

as

∂ha◦(h) =
8
√
M0

π

1

4M0k(h)
(∂kE(k(h))− (1− k(h)2)∂kK(k(h) + 2k(h)K(k(h))

=
8
√
M0

π

1

4M0k(h)
(k(h)K(k(h)) = g◦(h) > 0.(7.31)

Using the properties of the elliptic functions, we have

Θ(x(θ, h), h)) = ε∗am

(
2

π
K(k(h))

(
θ + ε∗

π

2

)
, k(h)

)
hence

(7.32) sin(x(θ, h)/2) = ε∗k(h)sn

(
2

π
K(k(h))

(
θ + ε∗

π

2

)
, k(h)

)
.

Now using the first formula of (7.9) we see that the expression (7.32) does actually not depend on
the value of ε∗ = ±1, and thus

sin(x(θ, h)/2) = k(h)sn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)
,

which yields

x(θ, h) = 2 arcsin

(
k(h)sn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

))
.

Moreover, we have

v(θ, h) = ε∗
√

2(h+M0 cos(x(θ, h)) = ε∗
√

2(h+M0)

√
1− 1

k(h)2
sin2(x(θ, h)/2)

= ε∗
√

2(h+M0)

√
1− sin2(Θ(x(θ, h), h) = ε∗2k(h)

√
M0 cn

(
2

π
K(k(h))

(
θ + ε∗

π

2

)
, k(h)

)
,
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and using the second formula of (7.9), it yields

v(θ, h) = 2k(h)
√
M0 cn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)
,

and concludes the proof. �

Proposition 7.11. The function ω◦(h), x(θ, h) and v(θ, h) are analytic for θ ∈ (−π, π) and h ∈
(−M0,M0).
The function ω◦ exhibits the following asymptotic behavior

ω◦(h) ∼ π
√
M0

(− log(M0 − h))
when h→M−0 ,

ω◦(h) =
√
M0 −

1

8
√
M0

(h+M0) when h→ −M0,

(7.33)

and there exists constants, Cr, ωr with ω1 = 1
8
√
M0

and αr 6= 0 such that for all r ≥ 1,∥∥∥(h+M0)−1
[
∂rhω◦(h)− ωr

]∥∥∥
L∞(−M0,0)

≤ Cr,∥∥log(h−M0)2
[
log(h−M0)2(h−M0)r∂rhω◦(h)− αr

]∥∥
L∞(0,M0)

≤ Cr.
(7.34)

The change of variable (h, θ) 7→ (x, v) satisfies the following estimates: When h→ −M0 it converges
towards the action-angle variable of the harmonic oscillator 1

2(v2 +M0x
2) in the sense that

x(θ, h) ∼ 2

√
h+M0

2M0
cos(θ) when h→ −M0,

v(θ, h) ∼ −2
√
M0

√
h+M0

2M0
sin(θ) when h→ −M0.

(7.35)

More precisely, for r, s ≥ 0 there exist constants Cr,s such that∥∥∥∥∥(h+M0)r−
1
2∂rh∂

s
θ

[
x(θ, h)− 2

√
h+M0

2M0
cos(θ)

]∥∥∥∥∥
L∞ ((−π,π)×(−M0,0))

≤ Cr,s,∥∥∥∥∥(h+M0)r−
1
2∂rh∂

s
θ

[
v(θ, h) + 2

√
M0

√
h+M0

2M0
sin(θ)

]∥∥∥∥∥
L∞ ((−π,π)×(−M0,0))

≤ Cr,s.
(7.36)

Finally, we have for r, s ≥ 1,

‖|(M0 − h)r| log(M0 − h)|−s+2∂rh∂
s
θ(x(θ, h))‖

L∞ ((−π,π)×(0,M0)
≤ Cr,s and

‖|(M0 − h)r| log(M0 − h)|−s+3∂rh∂
s
θ(v(θ, h))‖

L∞ ((−π,π)×(0,M0)
≤ Cr,s

(7.37)

for some constants Cr,s, and

‖| log(M0 − h)|−s∂sθ(x(θ, h))‖
L∞ ((−π,π)×(0,M0)

≤ Cs
for s ≥ 1 and some constant Cs.

Proof. Let us first prove (7.33) and (7.34), starting with the study of ω◦ when h→M−0 . We have,
by using (7.2), that

ω◦(h) =
π
√
M0

2K(k(h))
∼ π

√
M0

(− log(1− k(h)))
and we obtain the result using

1− k(h) = 1−
√

1 +
h−M0

2M0
∼ M0 − h

4M0
.
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This proves the first part of (7.33). Note that the second estimate of (7.34) follows from the
estimate on the function 1/K of (7.3), and the smoothness of k(h) in the vicinity h ∼M0.

When h→ −M0, ω◦(h) is an analytic function of k(h)2 = h+M0
2M0

, and we have using (7.1)

ω◦(h) =
π
√
M0

2K(k(h))
=

√
M0 −

√
M0

4
k(h)2 +O((h+M0)2)

=
√
M0 −

1

8
√
M0

(h+M0) +O((h+M0)2).

The first estimate of (7.34) follows easily.
Let us now study the functions x(θ, h) and v(θ, h). Using (7.6) and the expression (7.29) and

(7.30) of x(θ, h) and v(θ, h), we obtain the expansions

v(θ, h) =
√
M0

4π

K(k(h))

∞∑
m=0

q(k(h))m+ 1
2

1 + q(k(h))2m+1
cos
(

(2m+ 1)
(
θ +

π

2

))
and

sin(x(θ, h)/2) = k(h)sn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)
=

2π

K(k(h))

∞∑
m=0

q(k(h))m+ 1
2

1− q(k(h))2m+1
sin
(

(2m+ 1)
(
θ +

π

2

))
.

This, together with the fact that arcsin(z) ∼ z is analytic in the vicinity of z = 0 and the expansions
(7.1), shows that v(θ, h) and x(θ, h) are analytic functions of

√
h+M0 when h→ −M0, and that

v(θ, h) ∼ 8
√
q(k(h))

√
M0 cos

(
θ +

π

2

)
∼ −2k(h)

√
M0 sin(θ)

and

x(θ, h) ∼ 8
√
q(k(h)) sin

(
θ +

π

2

)
∼ 2k(h) cos(θ)

which yields asymptotics (7.35), and estimates (7.36) follow easily.
It remains to prove (7.37). The analysis is similar to what we did for U+ and U−, as we have

v(θ, h) =
√
M0

4π

K(k(h))
R(θ, q(k(h)))

with

R(θ, q) =
∞∑
m=0

qm+ 1
2

1 + q2m+1
cos
(

(2m+ 1)
(
θ +

π

2

))
.

By doing an analysis similar to the one performed for U+ and U−, we have

‖∂rq∂sθR(θ, q(k(h)))‖
L∞(0,M0)

≤ C log

(
1

M0 − h

)r+s+1

,

Moreover (7.3) shows that

∂rhq(k(h)) = O
((

1

M0 − h

)r 1

log(M0 − h)2

)
,

and

∂rh
1

K(k(h))
= O

((
1

M0 − h

)r 1

log(M0 − h)2

)
.
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We deduce from these estimates that we have the same asymptotics as in the case of U+ and U−:

∂rh∂
s
θv(θ, h) = O

((
1

h−M0

)r
log

(
1

h−M0

)s−3
)
.

Now we can perform a similar analysis for

sin(x(θ, h)/2) = k(h)sn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)
=

2π

K(k(h))

∞∑
m=0

q(k(h))m+ 1
2

1− q(k(h))2m+1
sin
(

(2m+ 1)
(
θ +

π

2

))
after noticing that

1

1− q2m+1
=

1

1− q

(
1− q

1− q2m+1

)
≤ C

2m+ 1

(
1

1− q

)
when q ∈ (1

2 , 1). To obtain the conclusion for x(θ, h), we just have to be careful as arcsin has
singularities in ±1: recall that we have the expansion (see (4.4.41) in [1])

arcsin(x) = −π/2 +
√

2(1 + x)

(
+∞∑
n=0

(2n)!

8n(2n+ 1)(n!)2
(1 + x)n

)
and

arcsin(x) = π/2−
√

2(1− x)

(
+∞∑
n=0

(2n)!

8n(2n+ 1)(n!)2
(1− x)n

)
.

In our context, it will happen at the point ±x0(h) and the singularity will be of order
√
M0 − h.

However, this singularity is weaker than the other one coming from functions q(z) and K(z) in the
vicinity z ∼ 1 (see (7.2)). This finishes the proof of (7.37). �

The Fourier expansion of cosine and sine functions are given by the following result:

Proposition 7.12. For (θ, a) ∈ (−π, π)× J◦,

cos(x(θ, a)) =
∑
`∈Z

C◦` (a)ei`θ and sin(x(θ, a)) =
∑
`∈Z

S◦` (a)ei`θ

with, in terms of the variable h,

C◦0 (h) = −1 + 2
E(k(h))

K(k(h))

C◦2`(h) = (−1)|`|
2π2

K(k(h))2

(
|`|q(k(h))|`|

1− q(k(h))2|`|

)
, ` 6= 0

C◦2`+1 = 0,

(7.38)

and

S◦2`(h) = 0

S◦2`−1(h) = S◦−(2`−1)(h) =
(−1)`−1π2

2K(k(h))2

(
(2`− 1)q(k(h))`−

1
2

1− q(k(h))2`−1

)
, ` ≥ 1.

(7.39)
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Proof. Recall that we have

sin(x(θ, h)/2) = k(h)sn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)
.

By using the third formula of (7.10), the definition of the function dn(u, k) and the expansion of
sn(u, k)dn(u, k) in (7.7), we have

sin(x(θ, h)) = 2 sin(x(θ, h)/2)

√
1− sin2(x(θ, h)/2)

= 2k(h)sn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)
dn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)
=

π2

K(k(h))2

∞∑
m=1

(2m− 1)q(k(h))m−
1
2

1 + q(k(h))2m−1
sin
(

(2m− 1)
(
θ +

π

2

))
,

which yields (7.39).
Using now the first and fourth formulae of (7.10), and the expansion of sn2(u, k) from (7.7), we
obtain

cos(x(θ, h)) = cos

(
2 arcsin

(
k(h)sn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)))
= 2 cos2

(
arcsin

(
k(h)sn

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)))
− 1

= 1− 2k(h)2sn2

(
2

π
K(k(h))

(
θ +

π

2

)
, k(h)

)
= 1− 2

K(k(h))−E(k(h))

K(k(h))
+

4π2

K(k(h))2

∞∑
m=1

mq(k(h))m

1− q(k(h))2m
cos(2mθ +mπ),

which yields (7.38). �

As in the case of U± we can establish estimates for general Fourier coefficients f◦ as follows:

Proposition 7.13. Assume that f is a function satisfying

max
|α|≤m

‖∂αx,vf‖L∞(U◦)
≤ Cm

for some m ≥ p+ 2, with p defined by

p = max{n ≥ 1, ∂αx,vf(0, 0) = 0, ∀α, 1 ≤ |α| ≤ n}

(and with the convention that p = 0 if this set is empty). Then, as long as r + s ≤ m and
s+ p+ 2 ≤ m, we have that for ` 6= 0,

∂rhf
◦
` (h) = O

(
1

|`|s
( 1

h−M0

)r
log
( 1

h−M0

)s)
when h→M−0 ,(7.40)

and that

(7.41) f◦` (h) =
1

|`|s
(
c` (h+M0)

p+1
2 + (h+M0)

p+2
2 r`(

√
h+M0)

)
,

where c` is a number uniformly bounded in ` and r` ∈Wm−(p+2)−s,∞ uniformly in `.

Proof. The estimates near the separatix are exactly the same as in the case of U+ and U−. Let us
then focus on the asymptotic near h = −M0. Taylor-expanding, we can always write that

f(x, v) = f(0, 0) + F 1(x, v) · (x, v) = f(0, 0) + F 1(0, 0) · (x, v) + F 2(x, v) · (x, v)(2)
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where F 1(x, v) is linear and F 2(x, v) is bilinear. We may write for ` 6= 0 that

(7.42) f◦` (a) =
1

2π

∫
(−π,π)

[
F 1(0, 0) · (x, v) + F 2(x(θ, a), v(θ, a)) · (x(θ, a), v(θ, a))(2)

]
e−i`θ dθ.

We obtain then from Proposition 7.11 that U(θ, a) = (x(θ, a), v(θ, a)) can be expanded when h is
near −M0 as

U(θ, a) =
∑
n≥1

an(θ)(h+M0)
n
2 ,

where the functions an are smooth since (x(θ, a), v(θ, a)) is an analytic function of
√
h+M0 uni-

formly in θ. By plugging this expansion in (7.42) and by integrating by parts s times we get (7.41)
for p = 0. If p > 0, we just notice that by further Taylor expansion, we have

f(x, v) = f(0, 0) + F p+1(0, 0) · (x, v)(p) + F p+2(x, v)(x, v)(p+1),

where F p+1(x, v) is p+ 1-linear and F p+2 p+ 2 linear. It suffices then to proceed as above. �

From this result, we obtain the following:

Proposition 7.14. Assume that f an ϕ are real functions satisfying

max
|α|≤m

‖∂αx,vf‖L∞(U◦)
≤ Cm and max

|α|≤M
‖∂αx,vϕ‖L∞(U◦)

≤ Cr,s

for some m ≥ 0. Let p and q defined as

p = max{n ≥ 1, ∂αx,vf(0, 0) = 0, ∀α, 1 ≤ |α| ≤ n},
q = max{n ≥ 1, ∂αx,vϕ(0, 0) = 0, ∀α, 1 ≤ |α| ≤ n}.

Then, for m ≥ 5 + p+ p+q
2 , M ≥ 7 + q + p+q

2 , M ≥ m+ 2, we have for t ≥ 1∣∣∣∣∫
U◦

f(x, v)ϕ(ψt(x, v))dv −
∫ M0

−M0

f◦0 (h)ϕ◦0(h)
1

ω◦(h)
dh

∣∣∣∣ ≤ C

(1 + t)
p+q
2

+2
.

Proof. We begin as in Proposition 7.7 and write that∫
U◦

f(x, v)ϕ(ψt(x, v))dxdv =
∑
`∈Z

∫ M0

−M0

f◦` (h)ϕ◦−`(h)eit`ω◦(h) 1

ω◦(h)
dh.

By taking a smooth nonnegative function χ(s) such that χ = 1 for s ≤ δ and χ = 0 for s ≥ 2δ with
δ small enough, we can split the integral into∫ M0

−M0

f◦` (h)ϕ◦−`(h)eit`ω◦(h) 1

ω◦(h)
dh =

∫ M0

−M0

χ

(
h+M0

M0

)
f◦` (h)ϕ◦−`(h)eit`ω◦(h) 1

ω◦(h)
dh

+

∫ M0

−M0

(
1− χ

(
h+M0

M0

))
f◦` (h)ϕ◦−`(h)eit`ω◦(h) 1

ω◦(h)
dh = I1

` + I2
` .

As in the proof of Proposition 7.7, the idea is again to integrate by parts as long as we can, i.e. as
long as the contributions from the boundary points h ∼ ±M0 vanish. The term I2

` can be handled
as before for U+ and U− : as ∂hω◦ does not vanish, only the contribution at the separatix h ∼M0

matters, and this yields a decay by (1 + t)−r assuming enough regularity. As a matter of fact, we
just need to take m large enough in order to choose r ≥ p+q

2 + 2.
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We shall now focus on I1
` which contains the contribution from the center h ∼ −M0. By using

Proposition 7.13, we can expand I1
` under the form

I1
` =

1

|`|s
c̃`

∫ M0

−M0

(h+M0)1+ p+q
2 χ

(
h+M0

M0

)
eit`ω◦(h) 1

ω◦(h)
dh

+
1

|`|s
c̃`

∫ M0

−M0

(h+M0)1+ 1+p+q
2 χ

(
h+M0

M0

)
r̃`(
√
h+M0)

1

ω◦(h)
eit`ω◦(h)dh,

where r̃` is uniformly in ` in Wm−p−2 (since we always assume that M is much bigger than m,
M ≥ m + s), and where the constant c` is uniformly bounded in `. It is important to notice that
ω◦(h) and all its derivatives are non-zero smooth functions in ]−M0, c] for any c ∈ (0,M0), so that
during the integration by parts, ω◦ will not play any major part.
Let us first consider the case where p + q is even, and write p + q = 2k. Then the polynomial

contributions in (h + M0) are (h + M0)k+1 in the first integral and (h + M0)k+1+ 1
2 in the second

integral above. We can thus integrate by parts k + 2 times in each of the two integrals (as in the
proof of Proposition 7.7), in order to obtain that

|I1
` | .

1

|`|s
1

(1 + t)k+2
.

Taking s = 2 and summing with respect to `, we get the result.

In the case p+ q = 2k + 1, the polynomial contributions in (h+M0) are (h+M0)k+ 3
2 in the first

integral and (h+M0)k+2 in the second integral. For the latter we can thus integrate by parts k+ 3

times as previously to get a decay like 1/(1 + t)k+3, which is 1/(1 + t)
p+q
2

+ 5
2 , and is already faster

than the expected decay. For the first integral, we can integrate by parts k + 3 times, except for
the most singular term where we can integrate by parts only k + 2 times without boundary terms
to obtain integrals under the form

Ĩ1
` =

1

(1 + t)k+2|`|s
c̃`

∫ M0

−M0

(h+M0)−
1
2χ

(
h+M0

M0

)
χ̃(h+M0)eit`ω◦(h)dh.

where χ̃ is a smooth function. Next, since ∂hω◦ does not vanish, we can make the change of variable
u = ω◦(h)− ω◦(−M0). By observing that this allows to write h+M0 = uA(u) where A is smooth
and does not vanish (so in particular, we have that A(0) 6= 0), we can thus write

Ĩ1
` =

1

(1 + t)k+2|`|s
c̃`

∫ X

0

1

u
1
2

Ψ(u)eit`u du

where Ψ is smooth and compactly supported in [0, X). Taylor-expanding the function Ψ, we obtain
that

Ĩ1
` =

1

(1 + t)k+2|`|s
c̃`

∫ X

0

1

u
1
2

eit`u du+
1

(1 + t)k+2|`|s
c̃`

∫ X

0
u

1
2 Ψ1(u)eit`u du.

For the second integral above, we can integrate by parts once to obtain an estimate by 1
(1+t)k+3|`|s .

To handle the first integral we use Lemma 7.15 below, which yields the decay

1/(1 + t)k+2+ 1
2 .

By noticing that k + 1
2 + 2 = p+q

2 + 2, we finally get the result. �

Lemma 7.15. Consider the integral

I(t) =

∫ X

0

1

u
1
2

eitu du.
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Then we have that for t ≥ 1,

|I(t)| . 1

t
1
2

.

Proof. Let us set v = tu in the integral, we obtain that

I(t) =
1

t
1
2

∫ tX

0

1

v
1
2

eiv dv =
1

t
1
2

∫ 1

0

1

v
1
2

eiv dv +
1

t
1
2

∫ tX

1

1

v
1
2

eiv dv

(assuming that t is sufficiently large so that tX ≥ 1). The first integral in the right-hand side above

is clearly uniformly bounded by 1/t
1
2 . For the second integral in the above right hand side, we can

integrate by parts once to get that∣∣∣∣ 1

t
1
2

∫ tX

1

1

v
1
2

eiv dv

∣∣∣∣ . 1

t
1
2

(
1 +

∫ +∞

1

1

v
3
2

dv

)
.

�
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