
Raman Laser Modeling:

Mathematical and Numerical Analysis

François Castella∗, Philippe Chartier†, Erwan Faou†,

Dominique Bayart‡, Florence Leplingard‡ and Catherine Martinelli‡

September 3, 2003

Abstract

In this paper we study a discrete Raman laser amplification model given as a Lotka-
Volterra system. We show that in an ideal situation, the equations can be written as
a Poisson system with boundary conditions using a global change of coordinates.
We address the questions of existence and uniqueness of a solution. We construct
numerical schemes for the approximation of the solution that have good stability.

1 Introduction

The problem described in this paper originates from a model of Raman laser am-
plification effect in an optic fiber [6, 7]. Standard discrete models of this phenomenon
[1, 8] lead to a system of differential equations of Lotka-Volterra form (see for instance
[5]), where high-frequency waves traveling forward and backward in the fiber disseminate
part of their energy to low-frequency waves through a prey-predator process. Boundary
conditions corresponding to Bragg reflecting lattices are imposed on both sides of the laser
cavity [8].

In the case of an idealized fiber, this system turns out to have a Poisson structure
(see for instance [5]) for which we can exhibit explicitly the Hamiltonian and the Casimir
invariants. However, the underlying Hamiltonian function is affine with respect to the
unknowns. The corresponding invariant manifold is thus not compact so that the exis-
tence of a solution remains a non-trivial question. Moreover, the system is posed as a
boundary value problem. These aspects contribute to make a numerical approximation
difficult to obtain : for instance, the shooting method [2] is to be banned here due to
the presence of nonlinearities (most initial values would lead to blow-up in finite time);

∗IRMAR, Université de Rennes 1, Campus Beaulieu 35042 Rennes Cedex, France
(Francois.Castella@univ-rennes1.fr)

†INRIA Rennes, Campus Beaulieu 35042 Rennes Cedex, France (Philippe.Chartier@irisa.fr,
Erwan.Faou@irisa.fr)
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more elaborated methods, such as finite differences, collocation, or multiple shooting, are
possible alternatives, but might become prohibitively costly in large dimension.

Another difficulty comes from the fact that in the original variables, there exists always
a “trivial” solution corresponding to the case where the Raman amplification effect has
not yet started. Numerically, the presence of this dummy solution makes the choice of the
initial values in an iterative process difficult to determine.

Here we prove that the Poisson system can be brought to canonical form through a
global change of coordinates. Note that the change of coordinates defined in Darboux-Lie’s
Theorem is usually local and that the literature offers only few examples of such global
transformations (see [5] pp. 241 for a nice example). We show that for an ideal fiber the
equations can be written as

u′ = G∇uH(u, d) with H(u, d) =
n∑

i=1

di sinhui, (1.1)

where u is an n-dimensional unknown vector of functions defined on the fiber, d an un-
known element of R

n, G a skew-symmetric matrix and H(u, d) the hamiltonian of the
problem. At this stage, getting a canonical Poisson system requires only to bring the
constant skew-symmetric matrix G to canonical form. Note that the di’s are Casimir in-
variants of the underlying Poisson structure [5]. In this form, the “trivial” solution does
not show up, but the problems of existence and uniqueness of the solution are still there.
Another difficulty arises from the fact that the boundary conditions depend also on the
unknown values of the Casimir invariants di. In the general case (i.e. not for an idealized
fiber), we show that we can write the problem in a form close to (1.1) where the di’s
remain invariants of the problem with unknown values.

We show that it is actually possible to take benefit of the available free parameters d
so as to reformulate the problem as a Cauchy problem for a system of integro-differential
equations. In this form, the problem is well-posed : using standard techniques (Schauder’s
theorem), the existence of solutions can be easily proved for boundary conditions indepen-
dent of d [3]. Uniqueness for boundary values that are not too far apart and an arbitrary
dimension is also shown. Note that ad-hoc techniques allow for the treatment of the one
and two-dimensional cases for arbitrary boundary values [3]. Eventually, we prove the
existence and uniqueness of a solution to the original problem (with boundary conditions
depending on d) under strong assumptions on the data.

Using the integro-differential formulation of the problem, we derive a numerical Picard-
like scheme converging toward the solution under smallness assumptions on the data. We
conclude this work by giving numerical examples showing that this scheme converges
linearly to the solution in practical cases.

The paper is organized as follows : in Section 2, we describe the original Lotka-Volterra
equations and in Section 3 we exhibit the Poisson structure in the case of an ideal fiber.
We then show a global version of the Darboux-Lie Theorem for this system.

Sections 5, 6, 7 are devoted to the proof of existence and uniqueness results for the
general problem using the change of unknowns defined in Section 4. In practical cases, the
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matrix G is invertible when n is even, and singular with an zero eigenvalue of multiplicity
1 when n is odd. We thus distinguish these two cases. In Section 5, we first consider the
simplest case where n is even, G is invertible and the boundary conditions are independent
of d. We combine this result with the use a fixed-point theorem to obtain an existence
and uniqueness result for the general case (i.e. with boundary conditions depending on d)
when n is even in Section 6. Eventually, Section 7 deals with the case where n is odd.

Finally we give numerical results in Section 8.

2 A model of cascaded Raman fiber laser

We denote by L the length of the cavity, and we suppose that n rays at given frequen-
cies ν1, ν2, ..., νn are represented by n functions Fi(x) and Bi(x) for x ∈ [0, L] denoting
the powers of the forward and backward waves respectively.

The model equations can be written as follows, where the index i runs from 0 to n
(see [8] and [1]) :

F ′
i = −αiFi +

∑
j<i gij(Fj + Bj)Fi −

∑
j>i gij(Fj + Bj)Fi,

B′
i = αiBi −

∑
j<i gij(Fj + Bj)Bi +

∑
j>i gij(Fj + Bj)Bi.

Here and in the sequel, the ′ denotes the derivation with respect to x ∈ [0, L]. The
coefficients gij are non negative and represent the Raman gain between the wave length
of the level i and j. The coefficients αi > 0 are attenuation coefficients. We define the
Raman gain matrix G = (Gij) by :

Gij = −gij if j > i,
Gij = gij if i < j,
Gii = 0.

We can now rewrite equations (2.1) in a more compact Lotka-Volterra form as follows :

F ′
i = −αiFi +

∑n
j=1 Gij(Fj + Bj)Fi

B′
i = αiBi −

∑n
j=1 Gij(Fj + Bj)Bi.

(2.1)

To complete the description of the problem, it remains to consider the boundary
conditions in 0 and L. They read

F1(0) = P and Fi(0) = R0
i Bi(0), i = 2, . . . , n (2.2)

and
Bi(L) = RL

i Fi(L), i = 1, . . . , n − 1 and Bn(L) = RoutFn(L), (2.3)

where the coefficients R0
i and RL

i are reflectivity coefficients of the Bragg lattices in x = 0
and x = L respectively, and Rout is the last reflectivity coefficient (see [8]). The number
P is given and represents the pump power injected in the cavity at the frequency ν1. We
will mainly consider the situation where Ri � 1 and Rout < 1 (usually Rout � 0.15 and
R0

i = RL
i � 0.99).
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Note that the system (2.1-2.2-2.3) possesses the “trivial” solution

F1(x) = P exp(−α1x), B1(x) = RL
1 P exp(α1(x − 2L))

and Fi = Bi = 0 for i ≥ 2. This solution corresponds to the case where the Raman
amplification effect has not yet appeared. Indeed, the system (2.1) describes a stationary
regime of more general time dependent equations. In practice, the laser starts on the
noise due to a further term not present in equations (2.1-2.2-2.3), the so-called “Amplified
Spontaneous Emission” (ASE) (see [6]). From a mathematical point of view, when the
(ASE) term is taken into account, the only admissible stationary regime is the non-trivial
one. However, as soon as the laser starts, the contribution of the (ASE) can be completely
neglected. We are thus looking for a physical solution of (2.1-2.2-2.3), satisfying the further
assumptions :

Fi > 0 and Bi > 0 for i = 1, . . . , n. (2.4)

Even at this early stage, it is interesting to notice that the system has several mathe-
matical invariants. A simple calculation shows indeed that

∀ i = 1, . . . , n, ∀x ∈ [0, L], (FiBi)(x) = (FiBi)(0) = (FiBi)(L).

If we make the further assumption that G is skew-symmetric (that is to say that the
exchange of energy is symmetric), and that the αi are all vanishing (meaning that there
is no absorption of energy within the fiber), then we can further notice that

∑
j(Fj −Bj)

is kept constant along the fiber. This quantity can be interpreted as the energy of the
system and its preservation in absence of attenuation is physically sounded.

Remark 2.1 In practical cases, the matrix G is close to a bidiagonal matrix G̃ such that
G̃ij = 0 for |i − j| > 1, G̃ii = 0 for i = 1, . . . , n, G̃i,i+1 = −σ for i = 1, . . . , n − 1
and G̃i+1,i = σ for i = 2, . . . , n, where σ is a real positive number. Note that with this
definition, G̃ is invertible when n is even and singular with the eigenvalue 0 of multiplicity
1 when n is odd. This corresponds to the case where we only take into account the
interactions between successive frequencies, and where we suppose that the value of the
Raman gain does not depend on the frequencies, but only on the difference between two
frequencies (see [8]).

The existence of these invariants will become natural in the next section, where the
system is shown to have a Poisson structure. It is a well-known fact that such systems can
be brought back to canonical form, through a local change of variables. In the context of
the present study, it is in fact possible to exhibit a global change of variables and this is
the subject of Section 4.

3 A conservative model with Poisson structure

We consider here a somewhat idealized model, which can be viewed as a simplified
form of the previous one. The so-obtained system has obviously the advantage to be more
tractable from a mathematical point of view and to give more insight. In this section, we
thus make the following assumptions :
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1. gij = −gji, so that the matrix G is skew-symmetric.

2. the matrix G is of maximal rank : G is invertible if n is even and G is of rank n− 1
is n is odd.

3. αi = 0 for all i = 1, . . . , n (see Remark 2.1).

In the following we set Y = (F,B) ∈ R
2n and we define G(F,B) as being the n × n

matrix with coefficients GijFiBj. The 2n-dimensional square-matrix J(Y ) is then con-
structed by the equation

J(Y ) :=
(

G(F,F ) −G(F,B)
−G(B,F ) G(B,B)

)
, (3.1)

and is clearly skew-symmetric. We write Jαβ(Y ) the coefficients of this matrix (α, β =
1, . . . , 2n). Now for two functions H and K of Y we define the bracket

{H,K}(Y ) =
2n∑

α,β=1

∂H(Y )
∂Yα

Jαβ(Y )
∂K(Y )

∂Yβ
. (3.2)

We will see that this defines a Poisson bracket, i.e. satisfies for all H, K and Q functions
of Y the three identities

{H,K} = −{K,H} (skew-symmetry){{H,K}, Q}+
{{K,Q},H} +

{{Q,H},K} = 0 (Jacobi identity)

{H · K,Q} = H · {K,Q} + K · {H,Q} (Leibniz rule)

This is a consequence of the following lemma (with m = 2n) :

Lemma 3.1 Let m ≥ 1 and Aαβ be a skew-symmetric matrix of order m (Aαβ = −Aβα).
Let A(Y ) be the matrix of order m with coefficients AαβYαYβ. Then the application

(H,K) �→
m∑

α,β=1

∂H(Y )
∂Yα

Aαβ(Y )
∂K(Y )

∂Yβ
.

defines a Poisson Bracket.

Proof. It is well known (see [5]) that the result holds true if the matrix A(Y ) satisfies
the relation

m∑
α=1

(∂Aβσ(Y )
∂Yα

Aαδ(Y ) +
∂Aσδ(Y )

∂Yα
Aαβ(Y ) +

∂Aδβ(Y )
∂Yα

Aασ(Y )
)

= 0, (3.3)

for all Y ∈ R
m. But we have

m∑
α=1

∂Aβσ(Y )
∂Yα

Aαδ(Y ) = AβσAβδYβYδYσ + AβσAσδYβYδYσ
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Thus the relation (3.3) is equivalent to

AβσAβδ + AβσAσδ + AσδAσβ + AσδAδβ + AδβAδσ + AδβAβσ = 0

and we see that this relation is satisfied using the fact that Aαβ is skew-symmetric.

Using the partition Y = (F,B), we see that J(Y ) is of the form (3.1), so that (3.2)
defines a Poisson Bracket. A simple computation then yields the first part of the following
result :

Proposition 3.2 Suppose that αi = 0 for i = 1, . . . , n and that G is skew-symmetric of
maximal rank. Then the system (2.1) is equivalent to the system

Y ′ = J(Y )∇H0(Y ) (3.4)

where J(Y ) is the matrix (3.1) and H0(Y ) is the hamiltonian

H0(Y ) =
n∑

i=1

(Fi − Bi) for Y = (F,B). (3.5)

Furthermore, the system possesses n Casimir invariants ci = FiBi, i = 1, . . . , n. If n is
odd, it has the additional invariant

∑n
i=1 ai log Fi where a = (ai)ni=1 is such that aT G = 0.

Proof. By construction, if Yσ �= 0 for k = 1, . . . , 2n, the matrix J(Y ) defined in (3.1)
has the same rank as the matrix G. Moreover, if we set ci = FiBi for i = 1, . . . , n, we see
that the vectors ∇ci are in the kernel of J(Y ). As these vectors are linearly independent,
the ci’s are n Casimir of the system. If n is even, there is no other Casimir since the rank of
J(Y ) is n for generic non zero Yσ, σ = 1, . . . , 2n. For odd n, we set A(Y ) =

∑n
i=1 ai log Fi,

so that
∇A(Y ) = (a1/F1, . . . , an/Fn, 0, . . . , 0)T .

Computing

(∇A(Y )T J(Y )
)
σ

=
{

(aT G)σFk if 1 ≤ σ ≤ n,
(aT G)σ−nBk if n + 1 ≤ σ ≤ 2n,

we then obtain ∇A(Y )T J(Y ) = 0. As ∇A(Y ) is independent of the ∇ci’s for generic Y ,
this means that A(Y ) is the last Casimir of the system.

Remark 3.3 If n is even and the αi’s non zero, then there exist n real coefficients ai such
that the system (2.1) is equivalent to the system

Y ′ = J(Y )∇Ha(Y ) (3.6)

where J(Y ) is the matrix defined in (3.1) and Ha(Y ) the hamiltonian

Ha(Y ) =
n∑

i=1

(
Fi − Bi + ai log Fi

)
for Y = (F,B). (3.7)
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As a matter of fact, we have

∇Ha(Y ) = (1 + a1/F1, . . . , 1 + an/Fn,−1, . . . ,−1)T .

Thus the system (2.1) is equivalent to the system (3.6) if and only if we have aT G = −αT

where α denotes the vector (αi)i=1,...,n and a the vector (ai)i=1,...,n. Using the assumption
that G is invertible when n is even, we get the result.

Given the form of the Casimir invariants, it now seems natural to consider the following
change of variables :

(F,B) �→
{

ci = FiBi,
ui = log(Fi/

√
ci)

i = 1, . . . , n. (3.8)

Under assumption (2.4), the transformation is a diffeomorphism and the inverse relations
read

Fi =
√

cie
ui and Bi =

√
cie

−ui .

In the new coordinates, the Hamiltonian H0(Y ) in (3.5) writes now

H0(u, c) = 2
n∑

i=1

√
ci sinh ui.

The classical Darboux-Lie theorem states that a Poisson system y′ = A(y)∇H(y) can
be locally written as a system of the form

z′ = J0∇K(z) with J0 =
(

J−1 0
0 0

)
, (3.9)

where J is the matrix

J =
(

0 I
−I 0

)
,

I being the identity matrix of dimension d and 2d the rank of A(y).

Here, for Fi > 0 and Bi > 0, i = 1, . . . , n, the matrix J(Y ) is of rank n if n is even
and n−1 if n is odd. We now show that using the change of unknowns (3.8), we can write
a global Darboux-Lie transformation. We first state the following lemma :

Lemma 3.4 There exists an invertible matrix M of order n such that

G = MAMT

where A = J−1 if n is even, and

A =
(

J−1 0
0 0

)

where J−1 is of dimension n − 1 if n is odd.
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Proof. By the real Schur decomposition theorem (see for instance [4]), any real matrix
G can be brought to the form

QTGQ =




R11 R12 · · · R1m

0 R22 · · · R2m
...

... · · · ...
0 0 · · · Rmm




where Rii is either a 1-by-1 real matrix or a 2-by-2 real matrix with complex conjugate
eigenvalues. Note that the matrix Q involved in the transformation is real orthogonal, i.e.
satisfies QT Q = I. Now, since G is supposed to be skew-symmetric, we immediately get

Rij = 0 for j �= i,

RT
ii = −Rii.

This means that QT GQ is in fact a block-diagonal matrix with skew-symmetric blocks of
dimension 1 or 2 on the diagonal, i.e. of the form Rii = 0 or

Rii =
[

0 ωi

−ωi 0

]
.

Consider now the block diagonal matrix D with diagonal blocks Dii = 1 if Rii = 0 and

Dii =
[ |ωi|−1/2 0

0 |ωi|−1/2

]
,

otherwise. The rescaled matrix DT QT GQD is block-diagonal with diagonal blocks DiiRiiDii

either null or of the form [
0 ±1
∓1 0

]
.

It remains to notice that DT QT GQD can be brought to the form stated in the lemma
through a permutation matrix P satisfying P T P = I (M is then (QDP )−T ).

Using this lemma, the following result can be easily proved :

Theorem 3.5 Suppose that αi = 0 for i = 1, . . . , n and that G is skew symmetric of
maximal rank. Let M be the matrix of Lemma 3.4, and let c and u be the variables defined
in (3.8). Then the transformation (F,B) �→ (v, c), where v = M−1u, defined a global
Darboux-Lie change of variables from

{ (F,B) ∈ R
2n |Fi > 0 and Bi > 0 } to { (v, c) ∈ R

2n | ci > 0 }.

In the coordinate system z = (v, c), the system writes

z′ = J0∇K(z),

where J0 is of the form (3.9) with J of dimension n if n is even and n−1 if n is odd. The
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hamiltonian K(z) writes :

K(z) = K(v, c) =
n∑

i=1

√
ci sinh((Mv)i) = (

√
c)T sinh(Mv).

Note that if n is odd, using the definition of M , the last component of v is of the form∑n
i=1 aiui where a = (ai)ni=1 is in the kernel of G. Thus vn is the Casimir of Proposition

3.2.

4 Change of unknowns

In this Section, we do not consider any longer neither that the αi’s are necessarily zero,
nor that G is skew-symmetric. However, most of the invariants persist and the change of
variable exhibited in (3.8) is still of interest. For a given i, a straightforward computation
shows that

F ′
iBi = −αiFiBi +

∑n
j=1 Gij(Fj + Bj)FiBi and

B′
iFi = αiBiFi −

∑n
j=1 Gij(Fj + Bj)BiFi.

This implies that F ′
iBi + FiB

′
i = 0, i.e. that ci := FiBi is constant along the trajectories

of (2.1). Hence, equation (2.1) with αi �= 0, i = 1, . . . , n, still possesses the n invariants
ci, i = 1, . . . , n. The transformation considered in equations (3.8) is still relevant and
will considerably simplify the analysis. Owing to the the simple relations Fi + Bi =
2
√

ci cosh(ui) and u′
i = F ′

i/Fi, the system (2.1) can be written as{
u′

i = −αi + 2
∑n

j=1 Gij
√

cj cosh uj

c′i = 0
for i = 1, . . . , n. (4.1)

The boundary conditions are now

u1(0) = log(P/
√

c1) and ui(0) = 1
2 log R0

i for i = 2, . . . , n, (4.2)

and
ui(L) = −1

2 log RL
i for i = 1, . . . , 0 and un(L) = −1

2 log Rout. (4.3)

The original system (2.1-2.2-2.3) posed on the set { (F,B) ∈ R
2n |Fi > 0 and Bi > 0 }

thus reduces to equations (4.1-4.2-4.3) on the set { (u, c) ∈ R
2n | ci > 0 }. It is worth

mentioning that the boundary condition u1(0) = log P/
√

c1 depends on c1 while the others
remain independent of the ci’s. As we see in further sections, this induces a different
treatment according to the parity of n.

5 Existence and uniqueness results for n even : A modified problem

For even n, problem (4.1) with boundary conditions (4.2-4.3) is hardly tractable due
to the term log(P/

√
c1) in (4.2), for which it is hard to derive bounds (see next section).

As a first step, we thus show the existence of a solution for the modified problem{
u′

i = −αi + 2
∑n

j=1 Gij
√

cj cosh uj

c′i = 0
for i = 1, . . . , n, (5.1)
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with the following boundary conditions

u1(0) = 1
2 log Rin and ui(0) = 1

2 log R0
i for i = 2, . . . , n, (5.2)

and
ui(L) = −1

2 log RL
i for i = 1, . . . , n and un(L) = −1

2 log Rout. (5.3)

Here, Rin is an unknown real number. With respect to the original variables, this corre-
sponds to the boundary condition F1(0) = RinB1(0). For convenience, we denote in the
sequel :

R0
1 := Rin, RL

n := Rout and R0 = (R0
1, . . . , R

0
n)T , RL = (RL

1 , . . . , RL
n)T .

In the ideal case where G is skew-symmetric and α = 0, this problem is a Poisson system
with boundary conditions. Using the same technique as in [3], we now show that it can
be reformulated as a Cauchy problem for a system of integro-differential equations.

Integrating equations (5.1) from 0 to L, we find, for all i = 1, . . . , n :

ui(L) − ui(0) = −αiL + 2
n∑

j=1

Gij
√

cj‖ cosh uj‖1

where ‖ cosh uj‖1
is the L1 norm of cosh ui in [0, L]. Hence, we see that

∀ i = 1, . . . , n 2
n∑

j=1

Gij
√

cj‖ cosh uj‖1
= −1

2 log RL
i − 1

2 log R0
i + αiL, (5.4)

Defining successively µ = −1
2 log RL − 1

2 log R0 + Lα (where the log is applied component
wise) and q = G−1µ ∈ R

n (for non-singular G), equation (5.4) then reads

∀ i = 1, . . . , n,
√

ci‖ cosh ui‖1
= 1

2qi. (5.5)

This shows that the condition qi > 0, i = 1, . . . , n, is necessary to have the existence of
a solution satisfying ci > 0 for all i. Moreover, under this condition, the system (5.1) is
equivalent to the system

∀ i = 1, . . . , n, u′
i = −αi +

n∑
j=1

Gijqj
cosh uj

‖ cosh uj‖1

. (5.6)

This equation is not an ordinary differential equation. It is defined for arbitrary, possibly
negative, qi’s. The condition qi > 0 for all i = 1, . . . , n thus appears as a condition for the
problem (5.1-5.2-5.3) to possess a “physical” solution with non negative ci’s.

Note that if u = (ui)ni=1 satisfies (5.6) with the boundary conditions (5.2), then by
definition of q, the boundary conditions (5.3) are also satisfied.

We begin by showing an existence result for a general problem of the form (5.6) with
Cauchy boundary conditions at x = 0 (see [3]) :
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Proposition 5.1 Let β ∈ R
n, A be a matrix of size n, and v0 ∈ R

n. There exists a vector
v with smooth coefficients vi(x), i = 1, . . . , n defined on [0, L], solution of the equations :

For i = 1, . . . , n




v′i(x) = βi +
n∑

j=1

Aij
cosh vj(x)
‖ cosh vj‖1

, for x ∈ [0, L],

vi(0) = v0
i .

(5.7)

Using this result with βi = −αi, v0
i = 1

2 log R0
i for i = 1, . . . , n and Aij = Gijqj for

i, j = 1, . . . , n, we deduce immediately the following theorem:

Theorem 5.2 Suppose that n is even and let

µ = −1
2 log RL − 1

2 log R0 + Lα. (5.8)

The system (5.1) together with the boundary conditions (5.2) and (5.3) possesses a smooth
solution with ci > 0 for i = 1, . . . , n, if and only if the components of q = G−1µ satisfy

qi > 0 for i = 1, . . . , n. (5.9)

In this case, one has the relation

ci =

(
qi

2‖ cosh ui‖1

)2

for i = 1, . . . , n.

Later on, we will discuss condition (5.9) and show that it is satisfied in situations of
practical interest (see Proposition 6.3 below).

Proof. (of Proposition 5.1) The function v is a solution of (5.7) if and only if it is a
solution of the fixed-point problem

v = Φ(v)

where Φ is defined by

Φ(v)i(x) = v0
i + βix +

n∑
j=1

Aij

∫ x

0

cosh vj(t)
‖ cosh vj‖1

dt, for i = 1, . . . , n. (5.10)

On the space (L∞)n, we define the norm ‖v‖∞ = maxn
i=1 ‖vi‖L∞ . If v ∈ (L∞)n, we have

for all x ∈ [0, L],
‖Φ(v)‖∞ ≤ ‖v0‖∞ + L‖β‖∞ + ‖A‖∞ , (5.11)

where ‖ · ‖∞ denotes either the norm on (L∞)n or the standard infinity norm for vectors
and matrices in R

n. Note that we used the fact that

0 ≤
∫ x

0

cosh vj

‖ cosh vj‖1

≤ 1. (5.12)
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Moreover, as ‖ cosh vj‖1
≥ L for j = 1, . . . , n, we also have for all v ∈ (L∞)n,

∀ i = 1, . . . , n,

∣∣∣∣dΦ(v)i(x)
dx

∣∣∣∣ ≤ |βi| + 1
L

n∑
j=1

|Aij | cosh ‖vj‖L∞

and hence
‖Φ(v)′‖∞ ≤ ‖β‖∞ +

1
L
‖A‖∞ cosh ‖v‖∞ .

Thus Φ is a map from (L∞)n to (W1,∞)n. Now, for u and v in
(
L∞)n and for all i =

1, . . . , n, we have :

Φ(u)i(x) − Φ(v)i(x) =
n∑

j=1

Aij
1

‖ cosh uj‖1

∫ x

0

(
cosh uj(t) − cosh vj(t)

)
dt

+
n∑

j=1

Aij

(∫ x

0

cosh vj(s)
‖ cosh vj‖1

ds

)
1

‖ cosh uj‖1

∫ L

0

(
cosh vj(t) − cosh uj(t)

)
dt. (5.13)

Using (5.12) and the fact that the L1 norms of cosh uj and cosh vj are greater than L, we
get the bound

|Φ(u)i(x) − Φ(v)i(x)| ≤ 2
n∑

j=1

|Aij |‖ cosh uj − cosh vj‖L∞ ,

for all i = 1, . . . , n. Hence, if u and v satisfy ‖u‖∞ ≤ M and ‖v‖∞ ≤ M , we have

‖Φ(u) − Φ(v)‖∞ ≤ 2‖A‖∞ (sinh M)‖u − v‖∞ . (5.14)

In a similar way, we find

‖Φ(u)′ − Φ(v)′‖∞ ≤ 1
L

(
1 +

cosh M

L

)
‖A‖∞ (sinhM)‖u − v‖∞ .

This shows that Φ is continuous from (L∞)n to (W1,∞)n. As [0, L] is bounded, the em-
bedding W1,∞ → C(0, L) is compact, so that Φ defines a continuous compact application

Φ :
(
L∞)n −→ (

L∞)n
with bounded range K ⊂ C(0, L)n (see (5.11)). Due to Schauder’s theorem, we can assert
that Φ has a fixed point v in K : v is a continuous solution of (5.7). An easy induction
then shows that v ∈ C∞(0, L) and this concludes the proof.

Remark 5.3 In the case where βi = 0, the system (5.7) is invariant by scaling of the
interval [0, L]. Indeed, we see that if the functions vi, i = 1, . . . , n, are solutions of (5.7)
on [0, L], then the functions y �→ vi(Ly) are solutions of the same equation on (0, 1) (with
the L1 norm on (0, 1). This is easily seen by change of variables.

In [3] we proved that for n = 2, α1 = α2 = 0 and G skew-symmetric, the solution

12



given in Theorem 5.2 is unique. As we will see now, uniqueness for higher dimensions is
only proved here under a smallness hypothesis on the data. As before, we first state a
general result for problems of the form (5.7) :

Proposition 5.4 There exists a number ε > 0 such that for every matrix A and all vectors
v0 and β satisfying

‖v0‖∞ + L‖β‖∞ + ‖A‖∞ < ε, (5.15)

the solution v of Proposition 5.1 is unique. Moreover, the sequence v(k) defined for k ≥ 0
by v(k+1) = Φ(v(k)) where Φ is defined by (5.10) and v(0) = 0 converges toward v.

The multiplication by L in inequality (5.15) owes to homogeneity considerations (see
(5.11)). Before proving this result, we show how it yields a uniqueness result for problem
(5.1-5.2-5.3). Recall that for given positive numbers R0

i , RL
i and αi we set µ = −1

2 log RL−
1
2 log R0 + Lα and q = G−1µ. For δ > 0, we define the set

Ωδ = { R0
i , R

L
i , αi ∈ R

3n | |R0
i − 1| < δ, |RL

i − 1| < δ and |αi| < δ }. (5.16)

Note that for all δ > 0, Ωδ is a domain of R
3n containing the point (1, 1, 0) (i.e. R1

i = 1,
RL

i = 1 and αi = 0 for all i = 1, . . . , n). Using Proposition 5.4 with β = −α, v0 = 1
2 log R0

and A = G · diag(q), we obtain the following result :

Theorem 5.5 There exists a real number δ such that if (R0, RL, α) ∈ Ωδ satisfies

∀ i = 1, . . . , n, qi > 0

with µ = −1
2 log RL − 1

2 log R0 + Lα and q = G−1µ, then the solution u∗ of the equation
(5.1-5.2-5.3) is unique. Moreover, the sequence of functions u(k) defined on [0, L] by

u
(0)
i = 0, i = 1, . . . , n,(

u
(k+1)
i

)′
= −αi +

n∑
j=1

Gijqj

cosh u
(k)
j

‖ cosh u
(k)
j ‖

1

, u
(k+1)
i (0) =

1
2

log R0
i , i = 1, . . . , n,

(5.17)

converges towards u∗.

Proof. (of Proposition 5.4) Under assumption (5.15), we can see by using (5.11) that for
all v ∈ (L∞)n, Φ(v) takes its values in the ball B∞(0, ε) of (L∞)n. As a consequence, if v
and u are two solutions of (5.7), they satisfy ‖v‖∞ < ε and ‖u‖∞ < ε.

Using equation (5.14) and the bound ‖A‖∞ < ε, it follows that

‖Φ(u) − Φ(v)‖∞ ≤ 2ε(sinh ε)‖u − v‖∞ . (5.18)

Let k = 2ε(sinh ε). For sufficiently small ε, k < 1 so that Φ is a contraction from B∞(0, ε)
to itself. Hence, u = v = u∗ and the sequence u(k) converges toward u∗.

Remark 5.6 In [3], the following slightly different result is shown : for β = 0 and a given
v0, there exists ε such that whenever ‖A‖∞ < ε, the solution is unique. Here, as we wish
to solve the original problem with a given pump power P , we need to derive estimates
that hold uniformly with respect to the initial value v0.
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6 Existence and uniqueness results for n even : The initial equations

Comparing equations (4.1-4.2-4.3) and (5.1-5.2-5.3) shows that solving the first system
is equivalent to finding a value of Rin satisfying

√
Rin = P/

√
c1, where c1 depends on Rin,

for fixed αi, RL
i (i = 1, . . . , n), R0

i (i = 2, . . . , n) and P . Using relation (5.5), this reads

Rin =
4P 2

q2
1

‖ cosh u1‖2

1
=: g(Rin). (6.1)

Note that in order to define the function g, the data have to be taken in the set Ωδ with
δ sufficiently small.

Here, we show that under conditions on P and the data, we can find a unique solution
of this equation if the data are “small” : this means in particular that the solution Rin =
g(Rin) is close to 1, or, equivalently, that

√
c1 is close to P or 1

2q1‖ cosh u1‖−1

1
is close to

P .

For δ > 0, we introduce the following set :

Uδ := { (R0
j )

n
j=2, (RL

i , αi)ni=1 | |R0
j −1| < 1, |R0

i −1| < 1, and |αi| < δ }. (6.2)

We set X = (R0
2, . . . , R

0
n, RL

1 , . . . , RL
n , α1, . . . , αn) ∈ R

3n−1 an element of Uδ. Note that if
|R0

1 − 1| < δ then (R0
1,X) ∈ Ωδ.

We write qj(R,X) for the coefficients of q = G−1µ where µ depends on (R,X) via the
equation (5.8) for R0

1 = Rin.

We first note the following : suppose that X ∈ Uδ is fixed, then as G11 = 0, for all
R0

1, q1 depends only on X, and is written q1(X).

Now for fixed X ∈ Uδ, assuming that P is close to
√

c1 means that P is close to
1
2q1(X)‖ cosh u1‖−1

1
. If δ is sufficiently small, the solution u is close to zero, so that

‖ cosh u1‖1
is approximatively equal to L. Hence it appears necessary to consider values

of P in a neighborhood of q1(X)
2L . A condition of this type indeed ensures existence and

uniqueness of the solution :

Theorem 6.1 There exists a real number δ > 0, such that if X ∈ Uδ satisfies :

q1(X) > 0 and ∀R ∈ Iδ := [1, 1 + δ], qj(R,X) ≥ 0 for j = 2, . . . , n, (6.3)

and if P is a real number such that

q1(X)
2L

≤ P ≤ q1(X)
2L

(1 +
δ

4
), (6.4)

then there exists a unique Rin ∈ [1, 1 + δ] such that the solution (u, c) of the equations
(5.1-5.2-5.3) for the data Rin and X satisfies

Rin =
P 2

c1
=

4P 2

q2
1(X)

‖ cosh u1‖2

1
.

Hence (u, c) is the unique solution of the initial problem (4.1-4.2-4.3). If we have in
addition qj(Rin,X) > 0 for j = 2, . . . , n, then (F,B) defined by Fi =

√
cie

ui and Bi =√
cie

−ui for i = 1, . . . , n is the unique positive solution of (2.1-2.2-2.3).
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Proof. Let X ∈ Uδ and R ∈ Iδ := [1, 1 + δ]. We recall that for δ sufficiently small,
the function Φ defined in (5.10) satisfies the following estimate : there exist continuous
functions M(δ) > 0 and ρ(δ) > 0 such that M(δ) → 0, ρ(δ) → 0 as δ → 0, and such that

∀u, v ∈ B∞(0,M(δ)), ‖Φ(u) − Φ(v)‖∞ ≤ ρ(δ)‖u − v‖∞ .

In the following, when X is fixed, we write Φ(u,R) instead of Φ(u) to fix the value of
R = R0

1.

Lemma 6.2 There exists δ0 > 0 such that for δ < δ0 and for X ∈ Uδ, R ∈ Iδ, R̃ ∈ Iδ,
and u and ũ solutions of

u = Φ(u,R) and ũ = Φ(ũ, R),

then we have
‖u − ũ‖∞ ≤ C(G)|R − R̃ |

where C(G) depends only on G.

We postpone the proof of this lemma. Let δ < δ0, and let X ∈ Uδ satisfy (6.3). For
R ∈ Iδ, we define the function

g(R) =
4P 2

q1(X)2
‖ cosh u1‖2

1

where u is solution of u = Φ(u,R). Suppose that P satisfies (6.4). Then we have for
R ∈ Iδ,

g(R) ≥ 4L2P 2

q1(X)2
≥ 1.

Moreover, as X satisfies (6.3), α1 ≥ 0, and the coefficients G1j are non-positive for j =
2, . . . , n, so that u′

1(x) ≤ 0 for x ∈ [0, L] (see (5.6)). It follows that u1(x) ≤ u1(0) = log
√

R
and

g(R) ≤ 4L2P 2

q1(X)2
(cosh u1(0))2.

Using

cosh u1(0) =
R + 1
2
√

R
.

for R ∈ [1, 1 + δ] we get

g(R) ≤ L2P 2(2 + δ)2

q1(X)2(1 + δ)
.

Under condition (6.4), this inequality becomes

g(R) ≤ (2 + δ)2

4(1 + δ)
(
1 + δ

4

)2
.

Eventually, since for sufficiently small δ0 and δ0 > δ > 0

(2 + δ)2
(
1 + δ

4

)2 ≤ 4(1 + δ)2
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this simplifies into
g(R) ≤ 1 + δ.

As a consequence, and provided once again that condition (6.4) is satisfied, g maps Iδ to
itself.

Now considering u and ũ the respective solutions of u = Φ(u,R) and ũ = Φ(ũ, R̃), and
taking R and R̃ in Iδ, we compute

g(R) − g(R̃) =
4P 2

q1(X)2
(
‖ cosh u1‖2

1
− ‖ cosh ũ1‖2

1

)
.

From ‖u‖∞ ≤ M(δ) and ‖ũ‖∞ ≤ M(δ), we then have

|g(R) − g(R̃)| ≤ 4L2P 2

q1(X)2
2 (cosh M(δ)) (sinh M(δ)) ‖u − ũ‖∞

and upon using the bound (5.9) and lemma 6.2, we recover the following expression

|g(R) − g(R̃)| ≤ 2C(G)(1 + δ
4 )2(cosh M(δ))(sinh M(δ))|R − R̃ |.

Since M(δ) tends to 0 when δ → 0, we may assume that δ0 is small enough for g to be a
contraction from Iδ to itself provided δ < δ0. This proves the uniqueness of the fixed-point
of g.

Proof. (of Lemma 6.2) Let δ0 be such that ρ(δ) ≤ 1
2 for δ ≤ δ0. As u and ũ are in

B∞(0,M(δ)), we get straightforwardly

‖u − ũ‖∞ = ‖Φ(u,R) − Φ(ũ, R̃)‖∞
≤ ‖Φ(u,R) − Φ(ũ, R)‖∞ + ‖Φ(ũ, R) − Φ(ũ, R̃)‖∞
≤ 1

2‖u − ũ‖∞ + ‖Φ(ũ, R) − Φ(ũ, R̃)‖∞ .

Using the expression of Φ, it then follows that

‖u − ũ‖∞ ≤ | log R − log R̃ | + 2
n∑

j=2

|qj − q̃j||Gij |,

where qj and q̃j denote the components of q as functions respectively of R and R̃ and for
fixed X (recall that q1(X) does not depend on R). As q = G−1µ with µ defined in (5.8),
we see that there exits C(G) depending only on G such that

‖u − ũ‖∞ ≤ C(G)| log R − log R̃ |.

Owing to the fact that both R and R̃ belong to Iδ, the inequality | log R− log R̃ | ≤ |R−R̃ |
leads to the result.

We conclude this section by showing that conditions (5.9) and (6.3) are fulfilled in
the situation where G has non zero coefficient only on the upper and lower first diagonals,
where the αi’s are zero, and where most of the reflectivity coefficients R0

i and RL
i are equal

to 1.
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Proposition 6.3 Suppose that G satisfies

Gij = 0 for |i − j| < 1. (6.5)

Suppose moreover that for all i = 1, . . . , n, αi = 0,

∀ i = 2, . . . , n, R0
i = 1 and ∀ i = 1, . . . , n − 1, RL

i = 1.

For all Rout =: RL
n < 1 and Rin > 1, let µ be defined as in (5.8) and q = G−1µ. Then we

have qj > 0 for all j = 1, . . . , n. In particular, condition (6.3) is satisfied.

Proof. Under the hypotheses of the proposition, we have µi = 0 for i = 2, . . . , n − 1,
µ1 = −1

2 log Rin and µn = −1
2 log Rout. Due to (6.5) the components of q = G−1µ may

then be written as

qi =

{
νi(1

2 log Rin) for i even,

νi(−1
2 log Rout) for i odd,

where νi are positive numbers and he result follows at once.

7 Existence and uniqueness results for n odd

In this section, we prove existence and uniqueness of the solution of (4.1) with initial
conditions (4.2-4.3) under the assumption that the data are small enough. Note that for
boundary conditions of the form (5.2-5.3), the system for odd n cannot be directly written
in the form (5.6) since the matrix G is not invertible.

Let n = 2p+1 and assume that G is of rank 2p. Then there exist vectors a and b such
that aT G = 0 and Gb = 0 (if G is skew symmetric, we can take a = b). For convenience
and with no loss of generality, we may assume that the first coefficients a1 and b1 of a and
b are non zero. Similarly to the proof of Proposition 3.2, we have

d
dx

(
n∑

i=1

ai log Fi

)
= −

n∑
i=1

aiαi

and upon integrating from 0 to L

n∑
i=1

ai (log Fi(L) − log Fi(0)) = −
n∑

i=1

aiαiL. (7.1)

Applying the change of coordinates (see (3.8))

log Fi(L) − log Fi(0) = ui(L) − ui(0),

and taking into account the boundary conditions (4.2) and (4.3) leads to

n∑
i=1

ai (ui(L) − ui(0) + αiL) = 0.
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Since a1 �= 0, we then get

u1(0) = u1(L) + α1L +
n∑

i=2

ai

a1
(ui(L) − ui(0) + αiL) , (7.2)

and inserting u1(0) = log P − log
√

c1, we find that

log
√

c1 = log P + 1
2 log RL

1 − α1L +
∑n

i=2
ai
a1

(
1
2 log(RL

i R0
i ) − αiL

)
(7.3)

with the notation RL
n = Rout.

This shows that for odd n, the constant c1 depends explicitly on the parameters of
the problem : the boundary condition in u1(0) may be put in the form u1(0) = log

√
R0

1

where R0
1 = P 2/c1 is given.

Consider now the system (4.1) together with boundary conditions (4.2) and (4.3).
Integrating from 0 to L, we get for i = 1, . . . , n,

ui(L) − ui(0) + αiL = 2
n∑

j=1

Gij
√

cj‖ cosh uj‖1
.

Denoting respectively µ and q the vectors with components respectively µi = ui(L) −
ui(0) + αiL and qi = 2

√
ci‖ cosh ui‖1

, the system reads Gq = µ. Now, since G is of rank
2p = n − 1, the dimension of Null GT is 1 and we have

R
n = Null GT ⊕ G(Rn)

with Null GT = Span (a) =
(
G(Rn)

)⊥
. Now by definition of c1, µT a = 0, so that

µ ∈ G(Rn). This means that q is determined up to an element of the kernel of G : if q0 is
particular solution of the system Gq = µ, the general solution q can thus be written

q = q0 + λb

where λ ∈ R. Now writing the first component of this equation yields

2
√

c1‖ cosh u1‖1
= q0

1 + λb1,

and we then get

λ =
1
b1

(
2
√

c1‖ cosh u1‖1
− q0

1

)
=

1
b1

(
2

P√
Rin

‖ cosh u1‖1
− q0

1

)
.

where Rin = R0
1 is fixed. We sum up these results in the following proposition.

Proposition 7.1 Let n = 2p + 1 and assume that G is of rank 2p. Consider the vectors
a = (ai)ni=1 and b = (bi)ni=1 such that aT G = 0 and Gb = 0 and assume that a1 = b1 = 1.
Then the system (4.1-4.2-4.3) is equivalent to the following system in u and λ :

u′
i(x) = −αi +

n∑
j=1

Gij(q0
j + λbj)

cosh uj(x)
‖ cosh uj‖1

for i = 1, . . . , n and x ∈ [0, L]

λ = 2P√
R0

1

‖ cosh u1‖1
− q0

1

ui(0) = 1
2 log R0

i for i = 1, . . . , n.
(7.4)
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Here

R0
1 = e(2L

∑n
i=1 aiαi)(RL

1 )−1
n∏

i=2

(RL
i R0

i )
−ai (7.5)

depends only on the data of the problem, and q0 is a given particular solution of Gq = µ
with µ defined by

µi = −1
2 log RL

i − 1
2 log R0

i + αiL.

Using the notations of previous section, X denotes an element of Uδ defined in (6.2).
As R0

1 is given by (7.5), we see that the vector q0
i depends only on X, and we write q0

i (X).
Note that if X ∈ Uδ with δ sufficiently small, R0

1 is close to 1 and q0 is closed to 0. Using
this fact leads to the following result :

Theorem 7.2 There exists a real number δ0 such that for all δ < δ0 the following propo-
sition holds true : if X ∈ Uδ is such that

∀λ ∈ [0, δ], q0
i (X) + λbi > 0 for i = 1, . . . , n,

then for any real number P satisfying

q0
1(X)

√
R0

1

2L
≤ P ≤ (q0

1(X) + δ)
R0

1

L(R0
1 + 1)

, (7.6)

where R0
1 is defined by (7.5), problem (7.4) has a unique solution (u, λ). Moreover, λ ∈

[0, δ] and u is the unique solution of the system (4.1-4.2-4.3) with

√
ci =

q0
i + λbi

2‖ cosh ui‖1

for i = 2, . . . , n

and c1 given by (7.3).

Proof. For any λ ∈ R and X ∈ Uδ, we define the application Φλ as

Φλ(v)i(x) = 1
2 log R0

i − αix +
n∑

j=1

Gij(q0
i (X) + λbi)

∫ x

0

cosh vj(t)
‖ cosh vj‖1

dt, for i = 1, . . . , n.

(7.7)
Before going on, we first state without proof the following result, which is a direct conse-
quence of the bounds (5.11) and (5.14).

Lemma 7.3 There exist δ0 > 0 and continuous functions M(δ) > 0 and ρ(δ) > 0 satisfy-
ing M(δ) → 0 and ρ(δ) → 0 as δ → 0, such that for all δ < δ0, for all X ∈ Uδ and for all
λ ∈ [0, δ], Φλ satisfies

∀u, v ∈ B∞(0,M(δ)) ⊂ (L∞)n, ‖Φλ(u) − Φλ(v)‖∞ ≤ ρ(δ)‖u − v‖∞ .
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Now, if δ < δ0 and X ∈ Uδ, then for all λ ∈ [0, δ], there exists a unique u(λ) solution of
u(λ) = Φλ(u(λ)). Thus, we can define the function

g(λ) =
2√
R0

1

P‖ cosh u
(λ)
1 ‖

1
− q0

1(X). (7.8)

It remains to show that g has a unique fixed point in [0, δ]. Proceeding as in the proof
of Theorem 6.1, it can be seen that condition (7.6) implies that g maps [0, δ] into itself.
Moreover, we see that for λ and λ̃ in [0, δ] we have

|g(λ) − g(λ̃)| ≤ 2√
R0

1

P (sinhM(δ))‖u(λ) − u(λ̃)‖∞ .

We may now conclude, as in lemma 6.2, that for δ0 sufficiently small, the function g is a
contraction from [0, δ] to itself. This finishes the proof.

8 Numerical experiments

In this section, we solve equations (2.1-2.2-2.3) in a situation of practical interest for
dimensions n = 4 and n = 5. Numerical values of the parameters are taken as follows :
L = 100, R0

2 = . . . = R0
n = 0.99, RL

1 = . . . = RL
n−1 = 0.99 and RL

n = Rout = 0.1. The
matrix G of Raman gains is taken (up to terms of order 10−9) as

G = 10−3




0 −5.354693 −0.833641 −0.165746 −0.001215
5.109551 0 −5.091333 −0.800871 −0.246770
0.757437 4.847864 0 −4.883841 −0.694188
0.143011 0.724173 4.637914 0 −3.546259
0.001000 0.212878 0.628922 3.383213 0


 .

for n = 5 and as the sub-matrix obtained by erasing the last column and the last line
for n = 4. Similarly, the matrix of attenuation coefficients is taken as the sub-matrix of
appropriate size of

diag(α) = 10−3




0.388799 0 0 0 0
0 0.346712 0 0 0
0 0 0.296873 0 0
0 0 0 0.252234 0
0 0 0 0 0.218211


 .

Note (see [1, 2, 8]) that the matrix G is of the form

G = L − DLT D−1

where L is a strictly lower triangular matrix and D is a diagonal matrix with diagonal
coefficients νi > 0 corresponding to Fi and Bi

∗. In particular, GD is skew-symmetric, and
thus G has always a non trivial kernel whenever n is odd.

Algorithm (5.17) with explicit Euler as basic integration method and step-size h =
L/1000 has been used to solve equations (5.1-5.2-5.3) in the following three cases :

∗This means that Gij = Lij for i > j and Gij = −Lji
νi
νj

for i < j.
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Figure 1: Solution (F,B) for n = 4 and relative error versus iteration number

• n = 4 and Rin = 20 : a direct computation shows that the condition qi > 0 is fulfilled
for i = 1, . . . , 4. The solution is plot on the left of Figure 1. The relative error on
the solution u in L1 is plot on the right of Figure 1 as a function of the number of
iteration performed. A clear linear convergence is observed for this value of Rin as
well as for larger ones as further numerical experiments confirm it.

• n = 4 and P = 5 : the fixed-point of the function g as defined in (6.1) is searched
through a fixed-point loop with initial value Rin = 20. The solution (F,B) is plot
on the left of Figure 2. The fixed point is Rin � 43.708504.

• n = 5 : the a and b vectors of Proposition 7.1 have the following values

a �




1
−0.152781
1.066044
−0.198392
1.551714


 , b �




1
−0.145786
0.968595
−0.171179
1.277317


 , and q0 � 102




0.149596
3.435993
−0.465061
3.352517

0


 .

The solution (F,B) is plot on the right of Figure 2. In this case, the sequence
λ(k+1) = g(λ(k)) (g as in (7.8)) converges to the numerical value λ � 242.0841567.
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