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Abstract The Fast Multipole Method (FMM) has been widely developed and studied for
the evaluation of Coulomb energy and Coulomb forces. A major problem occurs when the
FMM is applied to approximate the Coulomb energy and Coulomb energy gradient within
geometric numerical integrations of Hamiltonian systems considered for solving astronomy
or molecular-dynamics problems: The FMM approximation involves an approximated po-
tential which is not regular, implying a loss of the preservation of the Hamiltonian of the
system. In this paper, we present a regularization of the Fast Multipole Method in order to
recover the invariance of energy. Numerical tests are given on a toy problem to confirm the
gain of such a regularization of the fast method.

Keywords Hamiltonian System · Geometric Numerical Integration · Fast Multipole
Method

1 Introduction

In applications to molecular dynamics, the evaluation of the potential function involves pair-
wise interactions (the Coulomb energy) of a large number of particles (typically millions of)
and constitutes the bulk of computations. In this context, different strategies have been con-
sidered to speed up its evaluation: One of them consists in using the Fast Multipole Method
(FMM) as introduced by L. Greengard and V. Rokhlin ([12]). This first version was writ-
ten to deal with point charges, while in papers [11], [10], [9], [7] and [5], the FMM was
extended to and developed for the case of continuous distributions of the charges which
corresponds to the charge distributions in molecular dynamics. These improvements led
to versions of the FMM referred to as the continuous or gaussian Fast Multipole Method
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IRMAR - Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France



2

(CFMM or GFMM). However, all these versions share the drawback of producing discon-
tinuities which in turn, when used in combination with a symplectic time discretization of
the Hamiltonian dynamics, lead to drift in energy. In molecular dynamics however, it is cru-
cial that the numerical method used to compute the solution preserves the symplecticity, the
volume form, the Hamiltonian, or a combination of the three (given that for smooth Hamil-
tonians, symplecticity implies preservation of volume) and for these properties to show up
in long-term integration, quite a lot of smoothness is required. Ben Leimkuhler’s work on
smooth switches between different symplectic integrators points toward the same direction
[4,3]. In order to attenuate the effect of discontinuities, one may use a large (sometimes up
to twenty) number of multipoles in FMM expansions at the price of a prohibitive increase
of the computational cost, despite many efforts to reduce the complexity of the FMM (see
Elliot and Board [14], Petersen et al. [15], Scuseria et al.[5–7], and [8,13]).

In this paper, we propose a regularization technique for the FMM with the aim of recov-
ering the usual benefits of symplectic integration: This new FMM is regular at the interface
between boxes and thus provides a smooth approximation of the potential. The following
section introduces the Fast Multipole Method and emphasizes its major drawbacks. The
Regular FMM (referred to as the RFMM in the sequel) is then presented in Subsection 2.2.
Finally, an application of the RFMM and numerical comparisons with the classical FMM
are given in Section 3 where both methods are applied in combination with the Velocity
Verlet scheme.

2 Regularization of a Fast Multipole Method

2.1 The Fast Multipole Method

We now briefly describe the Fast Multipole Method as derived in [12,13]. We consider a one-
level algorithm and describe the regularization technique in a simple case. The extension to
improved version of the FMM, see [14,15,8,13], can be performed similarly.

2.1.1 The FMM expansion for a standard kernel

Let A be the matrix defined by:

∀i, j ∈ {1, ...,N} , Ai j =
1∥∥xi− x j
∥∥

where x1, ..., xN are N points of a bounded domain D of R3 and ‖·‖ denotes the Euclidean
norm on R3. For a given vector q = (q j)N

j=1, the computation (Aq)i = ∑
N
j=1

1
‖xi−x j‖q j for a

given i, involves the target point xi and the source points {x j} j. Let B be a partition of the
domain D into groups containing the points x j, j = 1, . . . ,N. We denote by B. (for example:
Bsrc, Btrg) the elements of B and C. (for example: Csrc, Ctrg) their centers.

To approximate the computation of (Aq)i, we split the summation as follows:

(Aq)i = ∑
Bsrc close to Btrg

∑
x j∈Bsrc

1∥∥xi− x j
∥∥q j + ∑

Bsrc far from Btrg

∑
x j∈Bsrc

1∥∥xi− x j
∥∥q j,

where Btrg denotes the group which contains the target point xi. In the FFM approximation,
the first term is computed exactly, while the second term is approximated thanks to the
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multipole expansion and a translation operator which converts multipole expansions to local
expansions (for details, see Appendix 4.1 or [12], [13]).

The algorithm for the calculation of the matrix-vector product Aq can be summarized as
follows (see Appendix 4.1 for complete details):

• Step 0: Calculation of some q-independent quantities:
· Parts of the translation operator TBtrg Bsrc that converts a multipole expansion around

Csrc to a local expansion around Ctrg.
· The far moments f l,k

j and the local moments gl,k
i involved in the multipole and local

expansions, for each source points x j or target points xi.
• Step 1: Calculation of the far fields: For all Bsrc in B, F l,k

Bsrc
accumulates the charges q j

together with the far moments f l,k
j of the source points contained in Bsrc.

• Step 2: Calculation of the local fields: For all Btrg in B, (Gl,k
Btrg

)l,k is obtained by trans-

lations of the far fields (Fλ ,κ
Bsrc

)λ ,κ for all Bsrc in B far from Btrg.

• Step 3: Accumulation of the far interactions: For all Btrg in B, for all xi in Btrg, (Aq) f ar
i

accumulates the local fields (Gl,k
Btrg

)l,k together with the local moments (gl,k
i )l,k.

• Step 4: Calculation of the close interactions: For all Btrg in B, for all xi in Btrg, (Aq)close
i

accumulates the contribution of the neighbor source points x j.
• Step 5: Calculation of matrix-vector product: For all Btrg in B, for all xi in Btrg,

(Aq)i ≈ (Aq)close
i +(Aq) f ar

i . (1)

In this algorithm, the interactions xi ↔ x j are cut into a succession of interactions in-
volving the groups containing xi and x j. Such an approximation obviously introduces dis-
continuities in the approximated quantity 1

‖xi−x j‖ for both variables xi and x j, whenever xi

or x j crosses the interface between two groups. Figure 1-a (respectively Figure 1-b) shows
the critical situation where two target points (respectively two source points) are very close
to each other but are not in a same group.

2.1.2 The FMM expansion for the gradient of a standard kernel

When applied to the numerical simulation of Hamiltonian systems involving a multi-body
interaction potential, standard numerical schemes require the evaluation of the derivative of
functions of the form G(x,y) = 1

‖x−y‖ . The FMM approximation of the kernel ∇xG(x,y) is
derived from the FMM approximation of the kernel G(x,y). Indeed, the only difference lies
in the calculation of the local moment which is not gl,k

i any longer, but the gradient of this
quantity defined in the algorithm above. The FMM approximation of the kernel ∇xG(x,y)
is then based on the derivation of the quantity gl,k

i with respect to xi which is made straight-
forward by noticing that the quantity gl,k

i is polynomial w.r.t (xi−Ctrg). Details are given in
Appendix 4.2.

2.2 A Regularized Version of the Fast Multipole Method

As explained in Subsection 2.1, we apply a regularization technique to a rather basic one-
level Fast Multipole Method. However, it can be easily extended to improved versions as
considered in [14], [15], [8], [13]. At the end of this subsection, we discuss the multilevel
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Fig. 1 (generated with Fig4TeX) Exhibition of the discontinuity in the approximation of the interaction be-
tween some couples of target and source points. (a) Two source points x j1 and x j2 , close to each other, interact
differently with the target point xi. (b) Two target points, close to each other, receive differently the informa-
tion from their environment.

version. Besides, the multi-dimensional regularization is obtained by considering a 1D reg-
ularization on each component of the multi-dimensional variable.

In this subsection, we mainly focus on the 1D regularization of the FMM approximation
of the kernel G(x,y). The regularized FMM approximation of its derivatives is obtained
considering the derivatives of the regularized FMM approximation of the kernel.

2.2.1 A 1D regularization

As pointed out in Subsection 2.1, the FMM introduces a discontinuity related to the distribu-
tion of the domain points into groups. Such discontinuities appear at the interface between
two groups. In this paper, we perform the regularization with the simple following idea:
when a point of a group is close to another group, we view it as a shared point and its contri-
bution to each group is calculated according to its location. This leads to a new distribution
of the points. We call groups associated to this distribution “virtual groups”.

In 1D, the groups in B are disjoint intervals. Let [pi, pi+1], i∈Z define the i-th geometric
group belonging to B. For all i, let pl

i and pr
i be two points around pi. We define the i-th

virtual group as the interval [pl
i , pr

i+1]. Now for a given point x ∈ R, we associate virtual
groups and weights depending on the position of x with respect to these virtual groups.
For example in Figure 2, the point x1 belongs to group 2 and its weight is 1 and in this
case, the relation (1) remains unchanged. Point x2 belongs to groups 2 and 3, with weights
respectively equal to c2 and c3 such that:

? c2 + c3 = 1 ; obviously, c2 > c3.
? c2 and c3 are given by a regularizing function χ : [pl

3, pr
3]→ [0,1],
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Virtual group 1

Virtual group 2

Virtual group 3

Group 1 Group 2 Group 3

p1pl1 pr1 x1• x2•x3•

Fig. 2 (generated with Fig4TeX) The virtual groups for a regularized FMM: when the geometric groups are
next to each other, the virtual groups overlap like in the partition of unity technique.

c2 = (1−χ(x2)) , c3 = χ(x2) such that (1) becomes

(Aq)x2 ≈ (1−χ(x2)) [(Aq)close
x2∈ group 2 +(Aq) f ar

x2∈ group 2]

+ χ(x2) [(Aq)close
x2∈ group 3 +(Aq) f ar

x2∈ group 3]

Point x3 belongs to groups 1 and 2, with weights respectively equal to c1 and c2 such that:

? c1 + c2 = 1 ; obviously, c1 < c2.
? c1 and c2 are given by a regularizing function χ : [pl

2, pr
2]→ [0,1],

c1 = (1−χ(x3)), c2 = χ(x3) such that (1) becomes

(Aq)x3 ≈ (1−χ(x3)) [(Aq)close
x3∈ group 1 +(Aq) f ar

x3∈ group 1]

+ χ(x3) [(Aq)close
x3∈ group 2 +(Aq) f ar

x3∈ group 2]

As discussed in the introduction, the aim is to get a C∞ FMM approximation. The reg-
ularizing function χ should be chosen such that χ equals to 0 at the left extremity of the
segment [pl

i , pr
i ], equals to 1 at the other extremity and such that all its derivatives vanish at

both left and right extremities. Without any loss of generality, we can focus on the segment
[0,1]. A simple linear change of variable gives the function on any segment [pl

i , pr
i ].

Of course, many choices exist for the regularizing function χ . In the following, we use
the function defined on [0,1] by the formula

χ(x) =
1

1+ e−α[1/(1−x2)−1/(1−(x−1)2)]
(2)

The coefficient α influences the maximum gradient, which has to be taken minimal to avoid
possible instabilities in the numerical schemes (presence of high eigenvalues).

Figure 3 gives the maximum gradient of the function versus the value of α . In this way,
we obtain a good guess of α minimizing the maximum gradient of χ . In Subsection 3.2, we
take α = 1.37. Figure 4 shows the regularizing function for some values of α while Figure
5 shows the gradient and the second derivative for the same values of α .

2.2.2 Algorithmic consequences

The major consequence of the regularization is an enlargement of the FMM groups. It is
clear that the regularization is improved when virtual groups are large in comparison with
geometric groups (if pl

i and pr
i are too close to pi, the regularization will be very close

to a jump). However, one should keep in mind that the overlapping of groups may lead to
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Fig. 3 (a) The maximum gradient of the regularizing function versus α . (b) Zoom around the optimal value
of α .
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divergence of the multipole and local expansions (7) and (9). In order to avoid this to happen,
we may have to consider a wider definition of the neighboring groups according to the size
of the overlap. Indeed, in classical applications of FMM, two boxes B1 and B2 are said to
be “close to each other” whenever they have at least one common vertex: We say that they
are neighbors of order 1 and write B1

1∼ B2. Here, we also may have to consider B1 and B2

neighbors of order 2: We write B1
2∼ B2 if there is at least one box B3 such that B1

1∼ B3 and
B3

1∼ B2. The order of a neighborhood can be numerically characterized using the infinity
norm when the groups are cubes from a usual FMM oc-tree.

The regularization can be performed for both the first and the second variables of the
kernel 1

‖xi−x j‖ . However, in usual situations, one is interested in the regularization for the

target variable only. When the regularization occurs on the source point, the contribution
coefficient applies in the calculation of the far fields (17) in the FMM algorithm and only
the source points are distributed in overlapping groups. When the regularization occurs at
target point, the contribution coefficient is involved in the last step (1) and only the target
points are distributed in overlapping groups. Here, we are interested in a regularization for
target points only.

An increase of the FMM computational cost is expected due solely to the fact that some
target points belong to two groups: it stems from the last step of the computation of far
interactions (Step 3, relation (19)) and from the computation of close interactions (Step 4,
relation (20)). The costs of steps 3 and 4 is indeed multiplied by the ratio between the average
number of points in the virtual groups and the average number of points in the geometric
groups; nevertheless, the complexity of these steps remains the same and the complexity of
the whole algorithm unchanged.

2.2.3 Error estimates and 1D illustration

The FMM approximation induces an error in the evaluation of the potential function (see
Eqn. (8) and (12) below). For the RFMM method, such estimates are still valid. More-
over, thanks to the regularity of the approximated potential, error estimates might still hold
true in stronger norms. In this introductory paper, we deliberately leave these questions
aside and rather illustrate numerically the improvement gained from the RFMM: As an ex-
ample, we consider here a set of 800 points x1, ..., x800, uniformly distributed on the 1D
domain [0,1]. For this illustration, we compute a vector S defined by: for i = 1, ...,800,
Si = ∑

400
j=250 G(xi,x j) with G(xi,x j) = 1

‖xi−x j‖ if i 6= j and 0 otherwise. The quantity S can

be defined as a classical matrix-vector product communly computed with the FMM. Here,
we computed S in three different ways: exact calculation, using a classical FMM and using a
regularized FMM. Figure 6 gives plots of the error obtained when using either the classical
FMM or the regularized FMM. The figure clearly shows the effect of the regularization at
the interfaces between the groups, where the classical FMM has evident discontinuities.

2.2.4 Extention to multilevel algorithms

In the one-level FMM, the regularization is only involved in the accumulation of far inter-
actions from local fields. In the multilevel method though, steps 2 and 3, which compute
local fields from far fields and accumulate far interactions from local fields are performed as
follows:
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Fig. 6 (a) Plot of the error obtained using either the classical FMM (dashed line) or the regularized FMM
(continuous line). (b) Zoom.

• Step 2: Calculation of the local fields at the coarser level: translation between all couples
of groups.
• Step 2-bis: Calculation of the local fields at all the levels: translation between all couples

of groups which are not neighbor but satisfying the condition that their parents are close
to each other + translation of the information accumulated at the previous level (to a
group from its parent).
• Step 3: Accumulation of the far interactions at the finest level only, taking into account

the fact that all local fields at all levels have been accumulated at the finest level through
Steps 2 and 2-bis.

Note that close interactions are taken into account only at the finest level. It is then clear that
the same regularization can be applied to the multilevel algorithm involving the regulariza-
tion in Step 3 and the calculation of the close interactions. The influence on the algorithmic
complexity is similar to the one-level FMM situation.

3 Velocity Verlet Scheme and Regular Fast Multipole Method

In this Section, we apply the Verlet’s method to a somehow “academic” model of the Outer
Solar System as defined in [2]. Generally speaking and for a separable Hamiltonian system
of the form {

q̇ = M−1 p ∈ R3N

ṗ =−∇U(q) ∈ R3N (3)

where M = diag(m1IR3 , · · · ,mNIR3) and with Hamiltonian H(p,q) = T (p)+U(q), T (p) =
1
2 pT M−1 p being the kinetic energy and U(q) the potential function, the Verlet’s method
reads (see for instance [2]) 

qn+ 1
2

= qn + h
2 vn

vn+1 = vn−h∇U(qn+ 1
2
)

qn+1 = qn+ 1
2
+ h

2 vn+1

(4)

where qn and vn denote approximations of q(nh) and v(nh) with v = q̇ = M−1 p. It is explicit,
symplectic and symmetric, and preserves a modified energy for exponentially long time
when the potential U is smooth.
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Table 1 Data for the Outer Solar System

planet/Sun mass initial position initial velocity
Sun m0 = 1.00000597682 (0 , 0 , 0) (0 , 0 , 0)

Jupiter m1 = 0.000954786104043
-3.5023653
-3.8169847
-1.5507963

0.00565429
-0.00412490
-0.00190589

Saturn m2 = 0.000285583733151
9.0755314
-3.0458353
-1.6483708

0.00168318
0.00483525
0.00192462

Uranus m3 = 0.0000437273164546
8.3101420

-16.2901086
-7.2521278

0.00354178
0.00137102
0.00055029

Neptune m4 = 0.0000517759138449
11.4707666
-25.7294829
-10.8169456

0.00288930
0.00114527
0.00039677

Pluto m5 = 1
1.3·108

-15.5387357
-25.2225594
-3.1902382

0.00276725
-0.00170702
-0.00136504

When the scheme is applied in astronomy or molecular dynamics, the bulk of compu-
tations lies in the evaluation of ∇U for successive steps (order N2). It is thus natural to
consider its FMM approximation.

3.1 The RFMM for the Outer Solar System

The Outer Solar System (as defined in [2]) is the Solar system where the Sun is aggregated
with the four closest planets (Mercure, Venus, Earth, Mars) and is modeled by Hamiltonian
equations with

T (p) =
1
2

5

∑
i=0

1
mi

pT
i pi and U(q) =−γ

5

∑
i=1

i−1

∑
j=0

mim j∥∥qi−q j
∥∥ , (5)

where γ is the gravitational constant. Denoting G(x,y) = 1
‖x−y‖ , the k-th component of the

(R3)N-vector ∇U(q) is given by the formula

∇kU(q) =−γ ∑
j 6=k

mkm j∇xG(qk,q j) =−γ ∑
j

Mk, j (6)

with Mk, j = mkm j∇xG(qk,q j) for k 6= j and M j, j = 0. This corresponds to a matrix-vector
product commonly computed with the FMM.

3.2 Numerical results

The initial values are taken from [2] and listed in Table 1 (m0 includes the mass of inner
planets). Distances are expressed in astronomical units = UA (1 UA = 149,597,870 km),
times in days, and γ = 2.95912208286 ·10−4.

Function (2) is implemented with the value α = 1.37 suggested by Figure 3. The time-
step is chosen equal to 10 days. The size of the boxes should take into account the length
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Fig. 7 Plot of the relative error on the Hamiltonian of the system, L = 3, NL = 7, No = 1, Rreg = 0.25: (a)
log10(relative error); (b) relative error.

of the trajectories and the displacement for one time-step. In this example, one can find that
Uranus (resp. Jupiter) requires about 30,700 days (resp. 4,300) to describe one loop around
the Sun. With a time-step equal to 10 days, the trajectory around the Sun will be described
with about 3,070 locations (resp. 430) on a curve of length about 118 UA (resp. 32) which
define a characteristic time-step length equal to 0.04 UA (resp. 0.07). Such reports give
enough information to derive the choice of the FMM boxes.

In the sequel, we present experiments for several values of the following parameters:

? L: number of multipoles, truncature parameter in formulae (18) and (19). As is well
known, the FMM expansion behaves like a geometric series with respect to L. A typical
value for L is around 6, whereas a value around 15 or even 20 gives a very accurate
approximation.

? No: order of neighborhood that defines the close and far interactions in the FMM oc-
tree.

? NL: number of levels of the oc-tree. We found in this experiment that a good tradeoff is
NL = 7.

? ht : time-step size.
? Rreg: ratio of the regularization zone on each side of a geometric group to the length

of the geometric group. Example: For the 1D group [0,1], when Rreg = 0.25, the vir-
tual corresponding group is [−0.25,1.25] and the regularization function operates on
[−0.25,0.25] and [−0.75,1.25].

Figure 7-a shows the relative error (in log-scale) on the Hamiltonian versus time, for
L = 3, NL = 7, No = 1, Rreg = 0.25 and illustrates the impressive improvement brought by
the regularization technique.

Figure 8 also shows a significant qualitative improvement, as far as trajectories are con-
cerned. However, as is expected from a low-accuracy approximation of the potential, they
are still quantitatively wrong.

Figures 9 and 10 show that when L is increased, no gain in the qualitative behavior of
the FMM is noticed. In contrast, the regularization technique enables energy preservation.
For L = 10, the RFMM leads to accuracy comparable with what is obtained with the exact
potential.
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Fig. 8 Trajectories of the planets around the Sun, L = 3, using: (a) a classical FMM, (b) the regular FMM.
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Fig. 9 Plot log10 of relative error on the Hamiltonian of the system, with: (a) L = 5, NL = 7, No = 1,
Rreg = 0.25 ; (b) L = 6, NL = 7, No = 1, Rreg = 0.25.
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Fig. 10 (a) Plot log10 of relative error on the Hamiltonian of the system, L = 10, NL = 7, No = 1, Rreg = 0.25 ;
(b) Zoom.
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Fig. 11 Trajectories (with the different codes, L = 6) of the planets: (a) Jupiter; (b) Saturn.
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Fig. 12 Plot of the relative error on the Hamiltonian of the system, L = 3, NL = 7, No = 2, Rreg = 0.45: (a)
log10(relative error); (b) relative error.

In Figure 11, we show the trajectories of Jupiter and Saturn, using the three codes (with
FMM, with RFMM or without FMM). We can see that the trajectories are more stable using
the RFMM instead of the FMM.

In Figure 12, we consider an order of neighborhood No = 2 and increase the ratio be-
tween the size of the regularization zone and the length of the geometric groups to Rreg =
0.45. Taking L = 3, we observe an error of order 10−3 on the Hamiltonian, comparable to
the results obtained with L = 5 and No = 1.

In Figure 13, we plot the trajectories of the planets both for the FMM and RFMM ap-
proximations, and observe a gain of stability in the regular case.

In terms of complexity of the algorithm, the observed overhead between FMM and
RFMM is around 20% for L = 3, 10% for L = 5 and 6 and 1% for L = 10.
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Fig. 13 Trajectories of the planets around the Sun, L = 3 and No = 2, using: (a) a classical FMM, (b) the
regular FMM.

4 Appendix

4.1 Details on the FMM approximation and FMM algorithm

The FMM approximation is based on the expansions given by the following results:

Result 1 (Multipole expansion): Assume that J source points {x j1 , ...,x jJ} are con-
tained in a group Bsrc of center Csrc and of radius r. Let us denote by (ρ jp ,θ jp ,φ jp) the
spherical coordinates of (x jp−Csrc). Then for any xi such that ‖xi−Csrc‖2 > r, denoting the
spherical coordinates of (xi−Csrc) by (ρis,θis,φis), we have the expansion

J

∑
p=1

1∥∥xi− x jp

∥∥q jp =
∞

∑
n=0

n

∑
m=−n

Mm
n

ρ
n+1
is

Y m
n (θis,φis) (7)

with

Mm
n =

J

∑
p=1

q jp ρ
n
jpY−m

n (θ jp ,φ jp).

and Y m
n a spherical harmonic. The corresponding error estimate is∣∣∣∣∣ J

∑
p=1

1∥∥xi− x jp

∥∥q jp −
L

∑
n=0

n

∑
m=−n

Mm
n

ρ
n+1
is

Y m
n (θis,φis)

∣∣∣∣∣≤ ∑
J
p=1

∣∣q jp

∣∣
ρis− r

(
r

ρis

)L+1

(8)

Result 2 (Conversion of a multipole expansion to a local expansion): Consider the
J source points defined for Result 1. Let us consider that the target point xi is contained in
a group Btrg of center Ctrg and radius r. Denoting by (ρst ,θst ,φst ) the spherical coordinates
of (Csrc−Ctrg) and by (ρi,θi,φi) the spherical coordinates of (xi−Ctrg), under the condition
that ρst =

∥∥Ctrg−Csrc
∥∥> 2r, the expansion given by (7) can be written

J

∑
p=1

1∥∥xi− x jp

∥∥q jp =
∞

∑
l=0

l

∑
k=−l

Lk
l ρ

l
i Y

k
l (θi,φi) (9)
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with the translation operation

Lk
l =

∞

∑
n=0

n

∑
m=−n

Mm
n ı|k−m|−|k|−|m|Am

n Ak
l Y m−k

l+n (θst ,φst)

(−1)nAm−k
l+n ρ

l+n+1
st

. (10)

and

Am
n =

(−1)n√
(n−m)!(n+m)!

.

We denote by TBtrg Bsrc the translation operator which maps (Mm
n )m,n onto (Lk

l )l,k and write

(Lk
l )l,k = TBtrg Bsrc(M

m
n )m,n (11)

The corresponding error estimate is∣∣∣∣∣ J

∑
p=1

1∥∥xi− x jp

∥∥q jp −
L

∑
l=0

l

∑
k=−l

Lk
l ρ

l
i Y

k
l (θi,φi)

∣∣∣∣∣≤ ∑
J
p=1

∣∣q jp

∣∣
cr− r

(
1
c

)L+1

(12)

with c satisfying ρst > (c+1)r.
The spherical harmonics are given from the associate Legendre functions Pm

n :

Y m
n (θ ,φ) =

√
(n−|m|)!
(n+ |m|)! P|m|n (cosθ)eımφ . (13)

The associate Legendre functions can be calculated recursively thanks to the relations
Pk

k (cosθ) = (2k)!
2kk! (−sinθ)k

Pk
k+1(cosθ) = (2k +1) cosθ Pk

k (cosθ)

}
∀k ≥ 0,

(l− k)Pk
l (cosθ) = (2l−1)cosθPk

l−1(cosθ)− (l + k−1)Pk
l−2(cosθ)

∀l,k/ 0≤ k ≤ l−2

(14)

The derivation of the previous results is given in [12] and [13]. The definition of the spe-
cial functions involved in those expansions and further details about their properties can be
found in [16].

The first steps of the algorithm given in Subsection 2.1.1 can be written more precisely
as follows:

• Step 0: Calculation of some q-independant quantities.
· Precalculation related to the translation operators TBtrg Bsrc .
· The far moments: ∀Bsrc ∈B, ∀x j ∈ Bsrc, with (x j−Csrc)↔ (ρ j,θ j,φ j)

f l,k
j = ρ

l
jY
−k
l (θ j,φ j) (15)

· The local moments: ∀Btrg ∈B, ∀xi ∈ Btrg, with (xi−Ctrg)↔ (ρi,θi,φi)

gl,k
i = ρ

l
i Y

k
l (θi,φi) (16)

• Step 1: Calculation of the far fields: ∀Bsrc ∈B,

F l,k
Bsrc

= ∑
x j∈Bsrc

q j f l,k
j (17)
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• Step 2: Calculation of the local fields – translations: ∀Btrg ∈B,

(Gl,k
Btrg

)l,k = ∑
Bsrc far from Btrg

TBtrg Bsrc(F
λ ,κ
Bsrc

)λ ,κ (18)

• Step 3: Accumulation of the far interactions: ∀Btrg ∈B, ∀xi ∈ Btrg,

(Aq) f ar
i =

L

∑
l=0

l

∑
k=−l

gl,k
i Gl,k

Btrg
(19)

• Step 4: Calculation of the close interactions: ∀Btrg ∈B, ∀xi ∈ Btrg,

(Aq)close
i = ∑

Bsrc close to Btrg

∑
x j∈Bsrc

1∥∥xi− x j
∥∥q j (20)

where L is the truncature parameter involved in the approximation of the multipole and local
expansions (7) and (9).

4.2 Details on the FMM approximation of the gradient energy

The FMM approximation of the kernel ∇xG(x,y) is derived from the FMM approximation
of the kernel G(x,y) = 1

‖x−y‖ by derivating the local moment gl,k
i w.r.t xi, with the correspon-

dance (xi−Ctrg)↔ (ρi,θi,φi) involved in (16). This derivation is performed below using
the fact that the quantity gl,k

i is polynomial w.r.t (xi−Ctrg).
For x = (x1,x2,x3) ∈ R3 of spherical coordinates (ρ,θ ,φ), let us introduce the notation

E k
l (x1,x2,x3) = ρ

lY k
l (θ ,φ)

Thanks to the definition of the spherical harmonics (13), and the recursive relations on the
associate Legendre functions (14), a simple exercise shows the following relations

E 0
0 (x1,x2,x3) = 1

E l
l (x1,x2,x3) = (−x1− ix2)l

√
(2l)!

2l l!
E l

l+1(x1,x2,x3) = x3
√

2l +1 E l
l (x1,x2,x3)

E k
l+2(x1,x2,x3) = Ck

l x3 E k
l+1(x1,x2,x3)+Dk

l ρ2 E k
l (x1,x2,x3)

E −k
l (x1,x2,x3) = E k

l (x1,x2,x3)

(21)

with

Ck
l =

2l +3√
(l +2+ k)(l +2− k)

and Dk
l =−

√
(l +1+ k)(l +1− k)
(l +2+ k)(l +2− k)

It comes directly the following relations for the gradient of E k
l

∇E 0
0 (x1,x2,x3) = 0

∇E l
l (x1,x2,x3) = l

(x1+ix2) E l
l (x1,x2,x3) V1

∇E l
l+1(x1,x2,x3) =

√
2l+1

(x1+ix2) E l
l (x1,x2,x3) V2

(22)

with V1 = (1, i,0)T and V2 = (x3 l , ix3 l , x1 + ix2)T .
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