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GEOMETRIC INTEGRATORS FOR PIECEWISE SMOOTH HAMILTONIAN SYSTEMS

PHILIPPE CHARTIER1 AND ERWAN FAOU 2

Abstract. In this paper, we considerC1,1 Hamiltonian systems. We prove the existence of a first derivative of the
flow with respect to initial values and show that it satisfies the symplecticity condition almost everywhere in the
phase-space. In a second step, we present a geometric integrator for such systems (called theSDHmethod) based
on B-splines interpolation and a splitting method introduced by R. McLachlan and R. Quispel, and we prove it is
convergent, and that it preserves the energy and the volume.
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1. INTRODUCTION

Consider a Hamiltonian system

{

q̇ = ∇pH(q, p),
ṗ = −∇qH(q, p),

(1.1)

where(q, p) ∈ R
d × R

d, and with a separable HamiltonianH of the form

H(q, p) =
1

2
pT p+ V (q), (1.2)

whereV (q) is a potential function with much less regularity than usually assumed in the literature. Specifically, we will
assume here thatV is aC1,1-function, which happens to be the minimum regularity necessary to ensure existence and
uniqueness of a continuous flow for (1.1).

In many applications, it is of importance that the numericalflow used to compute the solution of (1.1) preserves the
symplecticity, the volume form, the Hamiltonian, or a combination of the three (given that for smooth Hamiltonians,
symplecticity implies preservation of volume). However, for these properties to show up in long-term integration, quite a
lot of smoothness is required. Ben Leimkuhler’s work on smooth switches between different symplectic integrators points
toward the same direction [6]. In this paper, we address someof the theoretical questions arising from the non-smoothness
of the Hamiltonian: we show in particular that the exact flow of (1.1) is still symplectic and volume-preserving, though in
a weaker sense.

Keywords and phrases:Hamiltonian systems, symplecticity, volume-preservation, energy-preservation, B-splines, weak order.

1 IPSO, INRIA-Rennes, Campus de Beaulieu, 35042 Rennes Cedex
2 IPSO, INRIA-Rennes, Campus de Beaulieu, 35042 Rennes Cedex

c© EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

In a second step, we consider the construction of ageometricnumerical integrator for (1.1). A possible approach
considered in the literature is to solve in sequence thed Hamiltonian systems with Hamiltonians

H [i](qi, pi) =
1

2
p2
i + V [i](qi) +

1

2

∑

j 6=i

p̄Tj p̄j , (1.3)

V [i](qi) = V (q̄1, . . . , q̄i−1, qi, q̄i+1, . . . , q̄d) , (1.4)

obtained by freezing all components (denoted with a bar) except the two conjugate coordinatesqi andpi. If each subsystem
can be solved exactly and the same step-size is used for all, the resulting “numerical” method preserves the desired
quantities, since each sub-step is symplectic and preserves H [i] (and thusH). Considering that each subsystem is of
dimension2 and thus integrable, it can be hoped that an exact solution isindeed obtainable in some specific situations.
Nevertheless, such situations are rather non-generic, though it is important to mention at this stage the special case of
multi-quadraticpotentials, i.e. potentials such that for alli = 1, . . . , d and allq ∈ R

d, V [i] is quadratic in qi. In this
context, the method described above1 has been introduced in by R. Quispel and R.I. McLachlan in [7].

In order to retain the possibility of solving exactly each sub-system and at the same time to cover more general prob-
lems, we give up the requirement of exact Hamiltonian preservation and we consider a multi-quadratic piecewise approx-
imation ofH. If instead of (1.1) we now solve

{

q̇ = ∇pH
τ (q, p),

ṗ = −∇qH
τ (q, p),

(1.5)

whereHτ (q, p) = 1
2p
T p + V τ (q) is aC1,1 multi-quadratic approximation ofH, the aforementioned procedure applied

with exact solution of the sub-systems gives a first-order method which preservesHτ exactly as well as the volume form.
If supK |H −Hτ | ≤ CK τ2 for a compact subsetK of R

d × R
d containing the numerical solution, thenH is conserved

up to an error of sizeO(τ2) over arbitrarily long intervals of integration (includinginfinite ones).
Note that this approach remains valid for more general Hamiltonians (non-separable for instance), provided an exact

solution can be computed, so that all theoretical results concerning the conservation of energy and volume will be stated
for general Hamiltonians. In contrast, we will describe theimplementation of the method with quadratic B-splines only
for the case of separable Hamiltonians.

For generic Hamiltonians, the cost of theSDH method is exponential ind and there is very little hope that it be-
comes competitive with existing ones. The main motivation for yet considering B-splines approximations stems from
applications whereH is actually not smooth enough or where the potential function V has a special form:

(1) In several applications (e.g. orbital simulations), itis common to consider potentials which are defined differently
on different areas of the physical space, hence containing jumps in the derivatives. In this situation, where
the dimension is reasonably low and the Hamiltonian merelyC1, the numerical solution provided by standard
geometric integrators is qualitatively erroneous and our approach is -to our knowledge- the only stable one for
long-term simulations2.

(2) For systems originating from the space-discretisationof some Hamiltonian partial differential equations (such as
Schr̈odinger or Maxwell equations), the potentialV can be written componentwise asV (q) =

∑d
i=1W (qi) and

its B-splines approximation requires only the computationof a piecewise polynomial approximation of theone-
dimensionalfunctionW . In this case, the approximated potentialV τ is onlyquadratic(and not multi-quadratic)
and the corresponding system can be solved on its cell. The cost of theSDH method is then only linear inτ−1,
while still preserving both energy and volume over infinite time-intervals.

1It is worth mentioning that for multi-quadratic Hamiltonians,there is an alternative to the exact solution of each sub-step: the implicit midpoint
rule is both Hamiltonian and volume preserving (as would be indeed any non-partitioned symplectic method), and turns out to be explicit owing to the
linearity of the vector fields [7].

2Of course, it is often possible to regularize a non-smooth potential, though the numerical method then needs an automatic step-size adjustment
which is strongly problem-dependent.
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In Section 2, we prove the main properties of the flow of Hamiltonian systems with globally Lipschiz derivative: in
particular, we show that the exact flow remains symplectic, volume preserving and Hamiltonian preserving, though in a
weaker sense. We also prove the existence of a Taylor expansion in the sense of distribution and establish the order of a
general composition of flows for split systems. Section 3 is devoted to B-splines approximation of separable Hamiltonians
in the one-dimensional case ((q, p) ∈ R

2): an explicit expression of the exact solution is given thatwill serve as a basis
for higher dimensions. Section 4 is concerned with B-splines approximation for thed-dimensional case and the numerical
scheme used here is shown to be of order1 and becomes an order2 method when composed with its adjoint, though in
a slightly weaker sense than usual. Section 5 presents numerical results for three different test problems, for which the
usual behaviour of symplectic integrators is exhibited.

2. HAMILTONIAN SYSTEMS WITH NON-DIFFERENTIABLE VECTOR FIELDS

We consider Hamiltonian functionsH that areC1,1 over the whole phase spaceR
2d. Under this assumption, the

functiony 7→ ∇H(y) is continuous onR2d and Lipschitz3. This ensures the existence and uniqueness of the solution of
the associated Hamiltonian system:

∀ t ∈ R,
dy

dt
(t) = J−1∇H (y(t)) , y(0) = y0 ∈ R

2d (2.1)

whereJ is the constant matrix

J =

(

0 −I
I 0

)

.

Our aim in this section is to show that under these assumptions on the regularity ofH, the flowϕt associated with the
differential system (2.1) is weakly symplectic and weakly volume-preserving, i.e. that the usual matrix equalities hold
almost everywhere (a.e.) onR2d for the Lebesgue measure. In the sequel, we will use the notations

〈f |g〉 =

∫

R2d

gT (y)f(y)dy =

∫

R2d

gT f,

〈f |M |g〉 =

∫

R2d

gT (y)M(y)f(y)dy =

∫

R2d

gTMf,

for all functionsf(y) andg(y) fromR
2d to itself and all linear mappingsM(y) fromR

2d to itself, for which the expression
is well-defined.

Lemma 2.1. Let f be a Lipschitz function fromR2d to itself. Thenf is a.e. differentiable, i.e. for a.e.y ∈ R
2d there

exists a linear mappingf ′(y) fromR
2d to R

2d such that

f(y + ∆y) = f(y) + f ′(y)∆y + o(‖∆y‖) as‖∆y‖ → 0.

Moreover,f ′ coincide with its derivative in the sense of distributions,i.e. for all Lipschitz functionsg from R
2d to itself

with compact support, we have

−
∫

R2d

gT f ′ =

∫

R2d

fT g′. (2.2)

Proof. The existence of a derivativef ′(y) for a.e. y ∈ R
2d is stated in Rademacher’s Theorem (see for instance [2]

pp. 81). Although (2.2) is totally standard in functional analysis, we present here a short proof for the convenience of the
reader: for a fixed unit-vectorη, the sequence of functions

fn(y) =
f(y + 1

nη) − f(y)
1
n

3We could also assume thatH is locallyC1,1 which would yield local existence and uniqueness results.
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converges towardsf ′(y)η a.e onR2d and is uniformly bounded byL:

‖fn(y)‖ ≤ n‖f(y +
1

n
η) − f(y)‖ ≤ nL

1

n
≤ L.

Given a test functiong globally Lipschitz onR2d, the equality
∫

R2d

(

g(y + 1
nη) − g(y)

1
n

)T

f(y)dy = −
∫

R2d

gT (y)

(

f(y) − f(y − 1
nη))

1
n

)

dy

and the Dominated Convergence Theorem imply
∫

R2d

fT g′η = −
∫

R2d

gT f ′η.

Theorem 2.2. LetH be a continuously differentiable scalar function defined onR
2d such thatf = J−1∇H is Lipschitz

over the whole spaceR2d and consider the flowϕt associated withf . Then, for a fixedt ∈ R, ϕt satisfies the following
properties:

• (i) ϕt is continuous and globally Lipschitz.
• (ii) ϕt is one-to-one andϕ−1

t = ϕ−t.
• (iii) for any y ∈ R

2d,H(ϕt(y)) = H(y), that is to sayϕt is Hamiltonian-preserving.
• (iv) ϕt is a.e. differentiable onR2d.
• (v) ∇H is a.e. differentiable onR2d and its derivative∇2H is symmetric a.e.
• (vi) (ϕ′

t)
TJϕ′

t = J a.e. onR
2d.

• (vii) |det(ϕ′
t)| = 1 a.e. onR

2d.

Proof. The vector field being Lipschitz-continuous onR
2d, (i), (ii) and (iii) follow at once from standard theorems.

(iv) is a a consequence of Lemma 2.1. Similarly,f = J−1∇H, ϕs and f ◦ ϕs are differentiable a.e. Besides,ϕs
has a Lipschitz inverse so that

(f ◦ ϕs)′ = f ′ ◦ ϕs · ϕ′
s a.e. onR2d.

Though it seems familiar, this relation is far from being obvious and requires in essence that the functionϕs does not
contract sets of non-zero measure to negligible ones. We refer the reader to [2] pp. 85 for a proof of a very similar result
and also to [8] and [1] for a situation where much less regularity on f andϕs is required.

(v) is a consequence of the relation
∫

R2d

∂j(∂iH) ·G = −
∫

R2d

(∂iH) · (∂jG) =

∫

R2d

H · (∂j∂iG) =

∫

R2d

∂i(∂jH) ·G,

valid for smooth scalar functionsG.

In order to prove (vi), let us consider a smoothg and a fixed vectorη. The function〈η|ϕ′
t|g〉 is differentiable with

respect tot and

d

ds
〈η|ϕ′

s|g〉 = −
∫

R2d

(ϕ̇s)
T g′η = −

∫

R2d

(f ◦ ϕs)T g′η = 〈η|(f ◦ ϕs)′|g〉. (2.3)

Consider nowg ∈ L1(R2d; R2d) with compact supportK andgn a sequence of smooth functions such thatgn → g in
L1(K; R2d). For all s ∈ (−t, t) and for a.e.x ∈ K, the functionsϕ′

s and(f ◦ ϕs)′ are bounded, so that the sequences
of continuous functions〈ϕ′

s|gn〉 and〈(f ◦ ϕs)′|gn〉 converge uniformly on(−t, t) toward〈ϕ′
s|g〉 and〈(f ◦ ϕs)′|g〉. This
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shows that
d

ds
〈η|ϕ′

s|g〉 =
d

ds
lim
n→∞

〈η|ϕ′
s|gn〉 = lim

n→∞
〈η|(f ◦ ϕs)′|gn〉 = 〈η|(f ◦ ϕs)′|g〉,

i.e. that (2.3) is also valid for test functions inL1(R2d; R2d) with compact support. Hence, given any two Lipschitz
functionsg1 andg2 with compact supports we have

d

ds
〈g1|ϕ′

s|g2〉 =
d

ds

∫

R2d

gT1 ϕ
′
sg2 =

∫

R2d

gT1 (f ◦ ϕs)′g2 = 〈g1|f ′ ◦ ϕs · ϕ′
s|g2〉, (2.4)

so that the functionG(u, v) = 〈g1|(ϕ′
u)
TJϕ′

v|g2〉 is well defined foru and v in (−t, t) and has continuous partial
derivatives given by

∂uG(u, v) = 〈g1|(ϕ′
u)
T (f ′ ◦ ϕu)TJϕ′

v|g2〉 and∂vG(u, v) = 〈g1|(ϕ′
u)
TJ(f ′ ◦ ϕv)ϕ′

v|g2〉.
As a consequenceG(s, s) is continuously differentiable and

d

ds
G(s, s) = ∂uG(s, s) + ∂vG(s, s) =

∫

R2d

gT1 (ϕ′
s)
T
(

(f ′(ϕs))
TJ − Jf ′(ϕs)

)

ϕ′
sg2,

hence∂sG(s, s) = 0 owing to point (v). This completes the proof of (vi). Eventually, (vii) is an easy consequence of (vi).

Theorem 2.3. LetH be a continuously differentiable scalar function defined onR
2d such thatf = J−1∇H is Lipschitz

over the whole spaceR2d and consider the flowϕt associated withf . For anyt ∈ R and any measurable setK of R
2d,

we have
∫

K

dy =

∫

ϕt(K)

dy. (2.5)

Besides, ifK is a compact set ofR2 andψ a diffeomorphism fromK to R
2d, then we have

∫

K

(

∂(ϕt ◦ ψ)

∂u
(u, v)

)T

J
∂(ϕt ◦ ψ)

∂u
(u, v)dudv =

∫

K

(

∂ψ

∂u
(u, v)

)T

J
∂ψ

∂u
(u, v)dudv. (2.6)

Proof. In order to get some insight of the result, we first give an elementary and intuitive proof of (2.5) for compact sets
of the form

Kη,c = {y ∈ R
2d, ‖y − c‖∞ ≤ η

2
}, η > 0 andc ∈ R

2d.

Considerϕεt the flow of the system with HamiltonianHε = ρε ⋆ H whereρε is a mollifier and where star denotes the
convolution product. For allt ∈ R, ϕεt is a volume-preserving diffeomorphism ofR

2d, so that (2.5) is trivially satisfied
for ϕεt . Now, for a fixedt ∈ R, Gronwall’s lemma shows that there exists a constantν(t) such that

sup
y∈R2d

‖ϕεt (y) − ϕt(y)‖∞ ≤ ν(t)ε.

Now, considery ∈ ϕt(Kη,c): we have

‖ϕ−t(y) − c‖∞ ≤ η

2
=⇒ ‖ϕε−t(y) − c‖∞ ≤ η

2
+ ν(t)ε =⇒ y ∈ ϕεt (Kη+2ν(t)ε).

Symmetrically, for a small enoughε, considery ∈ ϕεt (Kη−2ν(t)ε,c): we have

‖ϕε−t(y) − c‖∞ ≤ η

2
− ν(t)ε =⇒ ‖ϕ−t(y) − c‖∞ ≤ η

2
=⇒ y ∈ ϕt(Kη,c).

Summing up, we obtain

ϕεt (Kη−2ν(t)ε,c) ⊂ ϕt(Kη,c) ⊂ ϕεt (Kη+2ν(t)ε,c),
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and as a direct consequence

(η − 2ν(t)ε)2d =

∫

ϕε
t (Kη−2ν(t)ε,c)

dy ≤
∫

ϕt(Kη,c)

dy ≤
∫

ϕε
t (Kη+2ν(t)ε,c)

dy = (η + 2ν(t)ε)2d.

We get (2.5) in the limitε→ 0.

For the general case of a measurable setK, (2.5) is a consequence of the area formula, which is valid for all Lipschitz
functions (see for instance Theorem 1 of [2] pp.96)

∫

ϕt(K)

dy =

∫

K

|ϕ′
−t(y)|dy, (2.7)

and of point (vii) of Theorem 2.2 applied toϕ−t = ϕ−1
t .

Relation (2.6) is a consequence of point (vi) of Theorem 2.2 and of the chain rule forϕt ◦ ψ which holds in this case
owing to the fact thatϕt, ψ andψ−1 are Lipschitz functions.

Lemma 2.4. Let f andΓ be two Lipschitz functions fromR2d to itself and consider the flowϕs associated withf . If
div(f) = 0 a.e., then, for any Lipschitzg with compact supportK, the function〈Γ ◦ ϕs|g〉 is continuously differentiable
on (−t, t) and we have for−t < s < t:

d

ds
〈Γ ◦ ϕs|g〉 = 〈(Γ ◦ ϕs)′f |g〉 = 〈(Γ′ ◦ ϕs)ϕ′

sf |g〉 (2.8)

Moreover, the following Taylor expansion holds:

〈Γ ◦ ϕs|g〉 = 〈Γ|g〉 + s〈Γ′f |g〉 + O
(

s2 LΓ ‖g′‖L1 ‖f‖2
L∞(K)

)

, (2.9)

whereLΓ is the Lipschitz constants ofΓ, ‖ · ‖L1 is theL1-norm onR
2d and where the constant in the termO depends on

t.

Proof. Let us suppose thatg = (g1, . . . , g2d)T where allgi’s are smooth functions fromR2d to R. Then, upon using a
change of variables formula (see Theorem 2 of [2] pp. 99) with|ϕ′

s| = 1, we have

〈Γ ◦ ϕs|g〉 =

∫

R2d

ΓT (g ◦ ϕ−s)

from which we see that〈Γ ◦ ϕs|g〉 isC1 on (−t, t) and that

d

ds
〈Γ ◦ ϕs|g〉 = −

∫

R2d

ΓT (g′ ◦ ϕ−s)(f ◦ ϕ−s).

Going back to previous variables, it follows that

d

ds
〈Γ ◦ ϕs|g〉 = −

∫

R2d

(Γ ◦ ϕs)T g′f =

∫

R2d

gT (Γ ◦ ϕs)′f

owing to the fact that
∑

k(∂kf
k) = div(f) = 0 a.e. 4 We can now prove (2.9) for Lipschitz functions by a density

argument just as in the proof of point (vi) in Theorem 2.2. Eventually, since〈Γ ◦ ϕs, g〉 is continuously differentiable on
(−t, t), estimate (2.9) follows straightforwardly from the bound

|〈(Γ ◦ ϕs)′f |g〉 − 〈Γ′f |g〉| ≤ |〈Γ ◦ ϕs − Γ|g′f〉| ≤ s C LΓ ‖g′‖L1 ‖f‖2
L∞(K),

whereLΓ is the Lipschitz constant ofΓ and whereC is a constant depending ont.

4Note that ifΓ is continuously differentiable, the same equality can be obtained straightforwardly, in particular without using the change of variable
formula.
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Lemma 2.5. Considern vector fieldsf1, f2, . . . , fn where thefi’s are Lipschitz functions fromR2d to itself satisfying
div(fi) = 0 a.e., and for alli = 1, . . . , n let ϕi,u be the flow associated withfi. Then, for all Lipschitz functionsg with
compact supportK and foru andv in (−t, t), the following weak Taylor Lagrange expansions hold:

〈ϕu1,1 ◦ . . . ◦ ϕun,n|g〉 = 〈y +
∑

i

uifi +
∑

i<j

uiujf
′
ifj +

∑

i

u2
i

2
f ′ifi|g〉

+
∑

i≤j

O
(

‖g′‖L1 u2
iuj
)

, (2.10)

where the constant in the termO depends on theLfi
’s, on the‖fj‖L∞(K)’s and ont.

Proof. We first prove the estimate for one vector fieldf and the corresponding flowϕu: defineθ(u) = 〈ϕu|g〉. Using
formula (2.8), first withΓ(y) = y and then withΓ(y) = f(y), we straightforwardly obtaiṅθ(u) = 〈f ◦ ϕu|g〉 and
θ̈(u) = 〈(f ◦ ϕu)′f |g〉. Estimate (2.9) then leads to

|θ(u) − θ(0) − uθ̇(0) − u2

2
θ̈(0)| ≤ u3

6
C Lf ‖g′‖L1 ‖f‖2

L∞(K). (2.11)

We thus obtain (2.10) forn = 1 by noticing thaẗθ(0) = 〈f, g〉 andθ̈(0) = 〈f ′f |g〉.

Consider now the functionθ(u, v) = 〈ϕu,1 ◦ ϕv,2|g〉. Noticing thatθ(u, v) = 〈ϕu,1|g ◦ ϕ−v,2〉, we have

θ(u, v) = 〈y + uf1 +
u2

2
f ′1f1|g ◦ ϕ−v,2〉 + O(u3),

= 〈ϕv,2|g〉 + u〈f1 ◦ ϕv,2|g〉 +
u2

2
〈f ′1 ◦ ϕv,2 · f1 ◦ ϕv,2|g〉 + O(u3),

= 〈y + vf2 +
v2

2
f ′2f2|g〉 + u〈f1|g〉 + uv〈f ′1f2|g〉 +

u2

2
〈f ′1f1|g〉

+O(u3) + O(v3) + O(u2v) + O(uv2).

This proves (2.10) forn = 2. The general case follows by induction.

Corollary 2.6. Consider a split vector fieldf = f1 + . . . fn where thefi’s are Lipschitz functions fromR2d to itself
satisfying div(fi) = 0 a.e., and for alli = 1, . . . , n letϕu,i be the flow associated withfi, andϕt the flow associated with
f . Then, for all Lipschitz functionsg with compact supportK and fors in (−t, t), the following weak Taylor Lagrange
expansions hold forΦs = ϕs,1 ◦ · · · ◦ ϕs,n

〈Φs|g〉 = 〈ϕs|g〉 + O(s2‖g‖L1), (2.12)

that is to say theΦs is of (strong) order1, and

〈Φs/2 ◦ Φ∗
s/2|g〉 = 〈ϕs|g〉 + O(s3‖g′‖L1), (2.13)

that is to say theΦs/2 ◦ Φ∗
s/2 is of (weak) order2.

Proof. Equation (2.12) is obtained as in Lemma 2.5. The strong orderfollows from a density argument. We prove the
weak order2 by applying previous lemma withf = 1

2f1 + . . . 1
2fn + 1

2fn + . . . 1
2f1, u1 = u2 = . . . = u2n = s/2 and

comparing the different terms with those of the developmentof 〈ϕs|g〉.
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3. ONE DEGREE OF FREEDOM EXAMPLE

In this section, we consider the case of a Hamiltonian of the form

H(q, p) =
p2

2
+ V (q)

wherep ∈ R andV : R 7→ R is a potential function.

3.1. Approximation using quadratic B-splines functions

Let τ be a real number, and letVn be the values of the potentialV at the grid points(n+ 1/2)τ , n ∈ Z. We define the
interpolantV τ (q) of V (q) as the function

V τ (q) :=
∑

n∈Z

Vn Bn(q) (3.1)

whereBn(q) is the B-splines function of order3 defined by

Bn(q) =











































1

2

(

q − (n− 1)τ

τ

)2

, (n− 1)τ ≤ q ≤ nτ,

−
(

q − nτ

τ

)2

+

(

q − nτ

τ

)

+
1

2
, nτ ≤ q ≤ (n+ 1)τ,

1

2

(

(n+ 2)τ − q

τ

)2

, (n+ 1)τ ≤ q ≤ (n+ 2)τ,

0, elsewhere.

(3.2)

The function (3.1) is aC1 real function overR, and is piecewise quadratic with respect to the decomposition R =
⊔

n∈Z
[nτ, (n+ 1)τ ]. The corresponding HamiltonianHτ (q, p) = 1

2p
2 + V τ (q) is then piecewise quadratic with respect

to the decomposition

R
2 =

⊔

n∈Z

[nτ, (n+ 1)τ ] × R.

The following approximation result shows that ifV is C2, the functionV τ (q) is aC1 approximation ofV on all compact
subsets ofR:

Proposition 3.1. Assume thatV is a C2 function onR such that∇2V is bounded onR. The functionV τ defined above
satisfies the estimates:

max
q∈R

|V (q) − V τ (q)| ≤ C1τ
2 and max

q∈R

|∇V (q) −∇V τ (q)| ≤ C2τ (3.3)

where the constantsC1 andC2 depend only onmaxq∈R |∇2V (q)|.
Moreover, for a givenτ0 > 0, the functionV τ (q) is uniformlyC1,1 onR for τ ∈ (0, τ0).

Proof. Let nτ ≤ q ≤ (n+ 1)τ . Denotingx = q−nτ
τ , we have

V τ (q) =
1

2
Vn−1 (1 − x)

2
+ Vn

(

−x2 + x+
1

2

)

+
1

2
Vn+1x

2,

that is to say

V τ (q) =
1

2
(Vn + Vn−1) + x(Vn − Vn−1) +

1

2
x2(Vn+1 − 2Vn + Vn−1). (3.4)
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Using Taylor expansions, we obtain

Vn−1 = V (q) + τ(− 1
2 − x)∇V (q) + O(τ2),

Vn = V (q) + τ( 1
2 − x)∇V (q) + O(τ2),

Vn+1 = V (q) + τ( 3
2 − x)∇V (q) + O(τ2).

where the terms inO(τ2) depend onmax(n−1)τ≤q≤(n+1)τ |∇2V (q)|. Plugging these expressions into (3.4), we get

V τ (q) = V (q) + O(τ2).

Similarly, using∂q = τ−1∂x, we have

∇V τ (q) =
1

τ
(Vn − Vn−1) +

1

τ
x(Vn+1 − 2Vn + Vn−1) = ∇V (q) + O(τ). (3.5)

This completes the proof of (3.3). Moreover, using (3.5) it is easy to show that there exists a numerical constantC3 such
that we have

∀ q1, q2 ∈ R, |∇V τ (q1) −∇V τ (q2)| ≤ (1 + C3τ)

(

max
q∈R

|∇2V (q)|
)

|q1 − q2|

and this shows that the functionV τ (q) uniformly C1,1 onR for sufficiently smallτ .

The following approximation result is an easy application of the previous proposition:

Theorem 3.2. Letϕt be the flow of the Hamiltonian system with HamiltonianH andϕτt be the flow of the Hamiltonian
system with HamiltonianHτ . Let us fixτ0 > 0. Then we have the estimate:

∀ 0 < τ ≤ τ0, ∀ y ∈ R
2, ∀T > 0, ‖ϕT (y) − ϕτT (y)‖ ≤ C2τ

L
(exp(LT ) − 1) , (3.6)

whereL is the Lipschitz constant of∇V .

3.2. Integration of the system

The aim of this subsection is to give an explicit expression of the exact solution of the Hamiltonian system

{

q̇(t) = p(t),
ṗ(t) = −∇V τ (q(t)). (3.7)

Let n = E[q(0)/τ ]. The solution of (3.7) in[nτ, (n+ 1)τ ] × R is given by the system

d

dt

(

q(t)
p(t)

)

=

(

0 1
βn 0

)(

q(t)
p(t)

)

+

(

0
αn

)

(3.8)

where

αn =
1

τ
(Vn−1 − Vn + n(Vn+1 − 2Vn + Vn−1)) and βn = − 1

τ2
(Vn+1 − 2Vn + Vn−1).

Its exact solution can be written explicitly as

(

q(t)
p(t)

)

= eAnt

(

q(0)
p(0)

)

+

∫ t

0

eAn(t−s)

(

0
αn

)

ds (3.9)

where

An =

(

0 1
βn 0

)

.

Formula (3.9) remains valid as long asq(t) stays in[nτ, (n+ 1)τ ].
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Another way of computing the (geometric) trajectories is asfollows: suppose thatH0 = 1
2p

2
0 + V τ (q0) is given. In a

domainKn = [nτ, (n+ 1)τ ] × R, the trajectory corresponds to the set

{(q, p) ∈ Kn | 1
2p

2 − 1
2αnq

2 − βnq + δn = H0} (3.10)

where

δn =
1

2
(Vn + Vn−1) − n(Vn − Vn−1) +

1

2
n2(Vn+1 − 2Vn + Vn−1).

The set (3.8) is simply the intersection ofKj with a conic. Hence, the trajectory is a piecewise conic curve.
Starting from(q0, p0) ∈ R

2, an algorithm to integrate exactly (3.7) can be written as follows:

(1) Determinen0 = E(q0/τ)
(2) Compute the solution (3.9) inKn0

and solve fort1 > 0 such thatq(t1) = (n0 + 1)τ . If there is a solution, let
p1 = p(t1), q1 = (n0 + 1)τ , n1 = n0 + 1, and continue to integrate inKn1

(if there are more than one positive
solution, take the minimum).

(3) If there is no solution to Step 2, solve fort1 > 0 such thatq(t1) = n0τ andp(t1) 6= p(0). If there is a solution,
let p1 = p(t1), q1 = n0τ , n1 = n0 − 1, and continue to integrate inKn1

.
(4) If there is no solution to (3), letn1 = n0 − 1, and continue to integrate inKn1

.

This procedure can be repeated until a given timet. The algorithm is described with full details in the Appendix section.

4. THE d-DIMENSIONAL CASE

We now consider the case of a d-dimensional Hamiltonian

H(q, p) =
1

2
pT p+ V (q)

wherep ∈ R
d andV : R

d 7→ R is the potential function.

4.1. Multi-dimensional B-splines functions

Multi-dimensional B-splines approximations can be obtained rather straightforwardly from the one-dimensional case
by tensor products: suppose thatV takes the valuesVn1,...,nd

at the grid points







(n1 + 1
2 )τ

...
(nd + 1

2 )τ






(4.1)

then we define the interpolantV τ (q) of V (q) as the function

V τ (q1, . . . , qd) :=
∑

(n1,...,nd)∈Zd

Vn1,...,nd

d
∏

j=1

Bnj
(qj) (4.2)

whereBn is the B-splines function defined in (3.2). Proposition 3.1 can be easily generalized and is thus stated without
proof:

Proposition 4.1. Assume thatV is aC2 function onR
d such that∇2V is bounded onRd. The functionV τ defined above

satisfies the estimates:

max
q∈Rd

|V (q) − V τ (q)| ≤ C1τ
2 and max

q∈Rd
|∇V (q) −∇V τ (q)| ≤ C2τ

where the constantsC1 andC2 depend only onmaxq∈Rd |∇2V (q)|.
Moreover, for a givenτ0 > 0, the functionV τ (q) is uniformlyC1,1 onR

d for τ ∈ (0, τ0).
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4.2. Numerical integration of the system

Ford > 1 and apart from specific Hamiltonians (see for instance Section 5.2), the full system with potentialV τ

{

q̇(t) = p(t),
ṗ(t) = −∇V τ (q(t)), (4.3)

can not be integrated exactly and we have to resort to the procedure described in Introduction. The vector field (4.3) is
thus split intod Hamiltonian systems with hamiltoniansH [i,τ ] defined by

H [i,τ ](qi, pi) =
1

2
p2
i + V [i,τ ](qi) +

1

2

∑

j 6=i

p̄2
j , (4.4)

where

V [i,τ ](qi) =
∑

ni∈Z

Bni
(qi)V̄ni

with V̄ni
=
∑

j 6=i

∑

nj∈Z

Vn1,...,nd

∏

k 6=i

Bnk
(q̄k),

which is exactly of the form (3.1): Forniτ ≤ qi ≤ (ni + 1)τ the trajectory is obtained by solving the system
{

q̇i(t) = pi(t),
ṗi(t) = ᾱi + β̄iqi(t),

(4.5)

where

ᾱi =
1

τ

(

V̄ni−1 − V̄ni
+ ni(V̄ni+1 − 2V̄ni

+ V̄ni−1)
)

,

β̄i = − 1

τ2
(V̄ni+1 − 2V̄ni

+ V̄ni−1),

which can be done as shown in Section 3. In order to have an approximation of the solution(q(t + h), p(t + h)) of the
full system, the equations with HamiltonianH [i,τ ](qi, pi) have to be solved in sequence fori = 1, . . . , d. In practice,
computing the exact trajectory necessitates to recompute new values of the potentialV [i,τ ] wheneverqi crosses a frontier,
since the trajectory is not on the same conic.

By combining the space approximation by B-splines functions of the potential and the time-approximation using the
splitting method, we obtain the following error estimate result:

Theorem 4.2. Letϕt be the exact flow of the system(1.1)andϕτi,t the exact flow of the Hamiltonian system with Hamil-

tonianH [i,τ ]. The numerical flowΦτh as defined above with stepsizeh > 0 and space discretization parameterτ is of the
formΦτh = ϕτ1,h ◦ . . . ϕτd,h and satisfies the following estimate for all Lipschitz function g with compact support:

|〈ϕh − Φτh|g〉| ≤ C(hτ + h2‖g‖L1) (4.6)

for a constantC depending onV , and for sufficiently smallh andτ .
If the systems(4.5) are solved fori = 1, . . . , d and then fori = d, . . . , 1 in reverse order, the resulting method

Φτh/2 ◦
(

Φτh/2

)∗

is symmetric and

|〈ϕh − Φτh/2 ◦
(

Φτh/2

)∗

|g〉| ≤ C(hτ + h3‖g′‖L1). (4.7)

Proof. Consider the componentwise vector-field splitting off [τ ] = ∇H [τ ] described above and in introduction. It can be
seen as the result of the splitting ofK = J−1 = K1+ . . .+Kd where(Kk)i,j = δi,k δj,2d−k−δj,k δi,2d−k. Hence, taking
n = d andfi = Ki∇H [τ ], i = 1, . . . , d in Lemma 2.6, it is clear that div(fi) = 0 a.e. and this proves the statements.
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Theorem 4.3. The numerical flowΦτh = ϕτ1,h ◦ . . . ϕτd,h is energy-preserving and weakly symplectic.

Proof. This is a straightforward consequence of point (vi) of Theorem 2.2 and of the chain rule forϕτ1,h ◦ . . . ϕτd,h which
holds true since all theϕτi,h’s are Lipschitz functions with Lipschitz inverse.

5. NUMERICAL EXPERIMENTS

In order to test theSDH method, we have applied it to three test problems.

5.1. A problem with a piecewise smooth Hamiltonian

In this section, we consider a simple model problem, simple enough to be easily described and nevertheless represen-
tative of real-life situations encountered e.g. in molecular dynamics or in satellite engineering. Our aim is to compute the
positionq of a mass point affected by the forces of two bodies, assumed to be fixed at positions0 andQ for simplicity.
The relative position of this point to the two bodies is such that we can regard one the two forces to be active only in the
disk of centerQ and radiusRc. The Hamiltonian of the problem we consider is thus of the form:

H(q, p) =
1

2
pT p− 1

‖q‖ +W (q)

where

W (q) =

{

− M
‖q−Q‖ + 2MRc

‖q−Q‖2 − MR2
c

‖q−Q‖3 if ‖q −Q‖ ≤ Rc
0 if ‖q −Q‖ ≥ Rc

,

andM = 20. Such an Hamiltonian is obviously continuously differentiable. Nevertheless, there is no hope that a
symplectic or symmetric scheme, such as Verlet or the implicit midpoint rule, can preserve the energy over long time-
intervals. The reason why such a method is to fail is simple: although there existmodifiedHamiltonians preserved by
the numerical solution in both areas of the physical space (‖q − Q‖ ≤ Rc and‖q − Q‖ ≥ Rc), they do not coincide
over the whole space, and this precludes an overall conservation of the energy. In contrast, the B-splines approximation
ofH isC1,1 over the whole space, and the method we propose preserves it globally, as shown on Figure 1. The long-term
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FIGURE 1. Energy for the Verlet (left) and theSDH (right) methods withh = τ = 0.01.

behaviour of the two methods is thus clearly different and their ability to reproduce stable orbits as well (see Figure 2).
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FIGURE 2. Numerical solutions obtained with for the Verlet (left) and theSDH (right) methods with
h = τ = 0.01.

5.2. Sine-Gordon equation

We consider here the Sine-Gordon equationutt = uxx − sin(u) with the following initial conditions

u(x, 0) = π, ut(x, 0) = sin(πx) +
1

2
π2(1 − x2),

taken from [3] and previously [5]. A finite differences spacediscretization with step∆x = 2/d, d ∈ N
∗, then leads to the

Hamiltonian system

{

q̇ = p
ṗ = −Ω2q − sin(q)

(5.1)

whereq is thed-dimensional vector whosejth-component is an approximation ofu(xj−1, t) at the grid pointxj−1 =
−1 + (j − 1)∆x, sin(q) is the vector with components(sin(qj))j=1,...,d andΩ2 is thed× d matrix of finite differences:

Ω2 =
1

(∆x)2





















5
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. ..
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...
...

− 4
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12 − 4
3
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2





















(5.2)

Its Hamiltonian is given by

H(q, p) =
1

2
pT p+

1

2
qTΩ2q −

d
∑

j=1

cos(qj) − d2

and has the peculiarity to be separable in the components ofq. An especially nice consequence of this is that only
one quadratic approximation ofcos is needed on the interval[−π/2, 3π/2] and the corresponding coefficientsβ̂ andα̂
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computed once for all and then used in each box. For instance,one can take

cos qj ≈ − 4

π2
q2j + 1 for − π

2
≤ qj ≤

π

2
,

cos qj ≈ 4

π2
(qj − π)2 − 1 for

π

2
≤ qj ≤

3π

2
,

i.e. β̂j = − 8
π2 , α̂j = 0 on [−π

2 ,
π
2 ] and β̂j = 8

π2 , α̂j = − 8
π on [π2 ,

3π
2 ]. On each box, we thus have to solve the

differential equation (5.1) withΩ replaced bỹΩ = Ω + diag(β̂1, . . . , β̂d)which admits the following exact solution.

(

q(t)
p(t)

)

=

(

cos(tΩ̃) Ω̃−1 sin(tΩ̃)

−Ω̃ sin(tΩ̃) cos(tΩ̃)

)(

q0
p0

)

+

(

Ω̃−2(Id − cos(tΩ̃))α

Ω̃−1 sin(tΩ̃)α

)

.

Although there is no theoretical difficulties in propagating this solution, it is tricky in practice (algorithmically)to de-
termine the exit point in a multi-dimensional cell. In this paper, we have chosen to use the method described in Section
4.2. On Figure 3, we show the numerical values of the first32 adiabatic invariants (corresponding to the32 smallest
frequencies) computed forh = 0.01 (left) andh = 0.1 (right): note that ifΩ = STDS with STS = I, these invariants
have the form:

Ii =
1

2
pTSTΛiSp+

dii
2
qTSTΛiSq, (5.3)

where(Λi)j,k = δijδik.
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FIGURE 3. Preservation of energyH and adiabatic invariantIi, i = 1, . . . , 32 for h = 0.01 (left) and
h = 0.1 (right)

5.3. Fermi-Pasta-Ulam problem

The Fermi-Pasta-Ulam problem is a highly oscillatory system with an adiabatic invariant. The following Hamiltonian
is taken from [4] Sect I.4.

H(x0, x1, y0, y1) =
1

2

m
∑

i=1

(y2
0,i + y2

1,i) +
ω2

2

m
∑

i=1

x2
1,i

+
1

4

(

(x0,1 − x1,1)
4 +

m−1
∑

i=1

(x0,i+1 − x1,i+1 − x0,i − x1,i)
4 + (x0,m + x1,m)4

)
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and the simulations are carried on with the initial values given therein. In this formulation, the system has an adiabatic
invariant of the formI =

∑m
j=1 Ij where theIj ’s are the oscillatory energies of the fast springs

Ij(x1,j , y1,j) =
1

2
(y2

1,j + ω2x2
1,j)

i.e. I ≡ I(x1, y1) = 1
2 (xT1 x1+ω2yT1 y1). However, in order to reduce the computational cost of our method, we transform

the equations through the change of variableq0 = x0−x1−S(x0 +x1), q1 = x1 +(eTmx0)em whereem = [0, . . . , 0, 1]T

and

S =















0 . . . . . . 0

1
. ..

...

0
. ..

. . .
... . . . 1 0















,

that is to sayq = Qx andp = Q−T y with

Q =

[

I − S −(I + S)
eme

T
m I

]

andQ−1 =

[

(I − S)−1 − 1
2eme

T (I − S)−1(I + S) − em(e− 1
2em)T

− 1
2eme

T
m I − em(e− 1

2em)T

]

,

so thatH(x0, x1, y0, y1) becomes

H̃(q0, q1, p0, p1) =
1

2
pTQQT p+

ω2

2
qTRTRq +

1

4

m
∑

i=1

q40,i +
1

4
q41,m,

with

R =
[

− 1
2eme

T
m I − em(e− 1

2em)T
]

. (5.4)

The B-splines quadratic approximation of̃H now requires only one functional approximation ofz 7→ 1
4z

4, namely a
quadratic piecewise polynomial, and we are in the same situation as for the Sine-Gordon equation. Figure (4) shows the
computed solutions with exact solution of the subsystems and τ = 0.01. Note that for all the values ofh we have tried,
no resonance occurred and the both the energy and the adiabatic invariant are conserved.

6. CONCLUSION

The numerical method considered in this paper relies on agrid discretization of the potential function in the phase-
space: the idea is to convert the initial problem into a sequence of more simple problems, namely Hamiltonian systems
with multi-quadratic Hamiltonians, for which a splitting method introduced by R. Quispel and R. Mc Lachlan in [7] exists,
that preserves both the volume and the energy.

In this work we have shown thatC1,1-approximations lead to a problem globally well-defined on the whole space which
possesses an exact flow both symplectic and energy-preserving. Since the regularity of the vector-field is lower than usual
(only Lipschitz), it is necessary to resort to derivatives in the sense of distributions and test-functions. These theoretical
results largely explain the favorable behaviour of the method, as exhibited on test problems.

In terms of efficiency, the algorithm we developed has a rather high computational cost compared to existing ones.
This is mainly due to the approximation in space whose cost increases exponentially with the dimension. However,
there exist specific situations, as described in Introduction, where its cost compares favorably with the usual situation.
In particular, the systems obtained by discretization of a Hamiltonian PDE are properly solved by our method, without
step-size restriction or resonances.
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FIGURE 4. Preservation of energyH − 0.8 and adiabatic invariantI for h = 0.01 (left) andh = π/ω
(right)
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APPENDIX: ALGORITHM FOR THE EXACT SOLUTION

In this section, we describe the algorithm that advances thesolution by a steph while staying in the interval]ql, qr[
or by a step0 < hs < h while staying in the interval]ql, qr[ and reaching a point of the boundary at timehs. We thus
assume thatq0 ∈ [ql, qr] with ql < qr and that the trajectory enters the interval]ql, qr[.

Case of a parabole (β = 0) : The solution is of the form :

q(t) = q0 + p0t+ α
t2

2
, (6.1)

p(t) = p0 + αt. (6.2)

(1) if α = 0, thenq(t) is a straight line.
(a) if p0 = 0 : the exit point has coordinatesqs = q0, ps = p0, hs = h.
(b) if p0 > 0 : the exit point has coordinateshs = min(h, (qr − q0)/p0), qs = q0 + p0hs, ps = p0.
(c) if p0 < 0 : the exit point has coordinateshs = min(h, (ql − q0)/p0), qs = q0 + p0hs, ps = p0.

(2) if α > 0 thenq = 1
2αp

2 +Q with Q = q0 − p20
2α is a real parabole oriented toward the positiveq’s.

(a) if p0 < 0 andql > Q then leths =
−p0−

√
2α(ql−Q)

α .
(i) if hs < h, thenqs = ql andps = αhs + p0.

(ii) if hs > h, thenhs = h, ps = αhs + p0 andqs =
p2s
2α +Q.

(b) else leths =
−p0+

√
2α(qr−Q)

α .
(i) if hs < h, thenqs = qr andps = αhs + p0.

(ii) if hs > h, thenhs = h, ps = αhs + p0 andqs =
p2s
2α +Q.

(3) if α < 0, thenq = 1
2αp

2 +Q with Q = q0 − p20
2α , is a real parabole oriented toward the negativeq’s.
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(a) if p0 > 0 andqr < Q then leths =
p0−

√
2(−α)(Q−qr)

(−α) .
(i) if hs < h, thenqs = qr andps = αhs + p0.

(ii) if hs > h, thenhs = h, ps = αh+ p0 andqs =
p2s
2α +Q.

(b) else leths =
p0+

√
2(−α)(Q−ql)

(−α) .
(i) if hs < h, thenqs = ql andps = αhs + p0.

(ii) if hs > h, thenhs = h, ps = αhs + p0 andqs =
p2s
2α +Q.

Forβ 6= 0, we define the Hamiltonian as follows :

H(q, p) =
1

2
p2 −

(q + α
β )2

2β−1

=
1

2
p2 − ψ2

2β−1
:= H̃(ψ, p),

whereψ = q + α
β . Eventually, we denotea =

√

2|β−1||H̃0|, b =
√

2|H̃0| andω =
√

|β|.

Case of an ellipse (β < 0 and henceH̃0 ≥ 0) :

(1) if H̃0 = 0 : singularity of the vector field!
(2) the trajectory is a piece of the ellipseE with cartesian equationψ

2

a2 + p2

b2 = 1 and parametric equationsψ(t) =
a cos(ϕ0 − ωt), p(t) = b sin(ϕ0 − ωt).
(a) p0 > 0 or (p0 = 0 andψ0 < 0) : ϕ0 = arccos(ψ0/a). We look whetherE crossesψ = ψr and thenψ = ψl.

(i) if ψr < a, then the exit point has coordinates

ψs = ψr, ps = +b

√

1 − ψ2
r

a2
, hs = ω−1(ϕ0 − arccos(ψs/a)). (6.3)

(ii) if ψr ≥ a :
(A) if ψl > −a, then the exit point has coordinates

ψs = ψl, ps = −b
√

1 − ψ2
l

a2
, hs = ω−1(ϕ0 + arccos(ψs/a)). (6.4)

(B) if ψl ≤ −a : E is fully contained in theψ-band.hs = h, ψ(hs) = a cos(ϕ0 − ωhs), p(hs) =
b sin(ϕ0 − ωhs).

(b) p0 < 0 or (p0 = 0 andψ0 > 0) : ϕ0 = − arccos(ψ0/a). We look whetherE crossesψ = ψl and then
ψ = ψt.

(i) if ψl > −a, then the exit point has coordinates

ψs = ψl, ps = −b
√

1 − ψ2
l

a2
, hs = ω−1(ϕ0 + arccos(ψs/a)). (6.5)

(ii) if ψl ≤ −a,
(A) if ψr < a, then the exit point has coordinates

ψs = ψr, ps = +b

√

1 − ψ2
r

a2
, hs = ω−1(ϕ0 + 2π − arccos(ψs/a)). (6.6)
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(B) if ψr ≥ a : E is fully contained in theψ-band. hs = h, ψ(hs) = a cos(ϕ0 − ωhs), p(hs) =
b sin(ϕ0 − ωhs).

Case of an hyperbole (β > 0 :)

(1) if H̃0 = 0 : the trajectory is a straight line with equationε(p0)p = ε(ψ0)ωψ.
(2) if H̃0 < 0 : the trajectory is a piece of the hyperbole

ψ2

a2
− p2

b2
= 1,

ψ = ε(ψ0) a cosh(ε(ψ0)t+ t0)
p = b sinh(ε(ψ0)t+ t0)

, t0 = Argsh
(p0

b

)

.

(a) if ψ0 > 0 :
(i) if p0 < 0 andψl > a thenψs = ψl andps = − b

a

√

ψ2
s − a2

(ii) elseψs = ψr andps = b
a

√

ψ2
s − a2

(b) if ψ0 < 0 :
(i) if p0 > 0 andψr < −a thenψs = ψr andps = b

a

√

ψ2
s − a2

(ii) elseψs = ψl andps = − b
a

√

ψ2
s − a2

Thenhs = ε(ψ0) (Argsh(ps/b) − Argsh(p0/b)). If hs > h thenhs = h and

ψs = ε(ψ0)
a

b

(

√

p2
0 + b2 cosh(h) + sinh (ε(ψ0)h) p0

)

,

ps =
√

p2
0 + b2 sinh(ε(ψ0)h) + cosh(h)p0.

(3) if H̃0 > 0 : the trajectory is a piece of the hyperbole

p2

b2
− ψ2

a2
= 1,

p = ε(p0) b cosh(ε(p0)t+ t0),
ψ = a sinh(ε(p0)t+ t0),

t0 = Argsh

(

ψ0

a

)

.

Let

ψs =
1 + ε(p0)

2
ψr +

1 − ε(p0)

2
ψl andhs = ε(p0) (Argsh(ψs/a) − Argsh(ψ0/a)) .

If hs > h, thenhs = h and

ψs = sinh (ε(p0)h)

√

ψ0
2 + a2 + cosh (h)ψ0.

Eventually,

ps = ε(p0)
b

a

√

ψ2
s + a2.
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