École Nationale de la Statistique et de l'Analyse de l'Information examen du cours "Filtrage linéaire et non-linéaire"

vendredi 24 janvier 2020, 14:00 à 16:00

Borne de Cramér-Rao a posteriori et filtre de Kalman

On considère le système linéaire gaussien

$$X_k = F_k X_{k-1} + W_k$$

$$Y_k = H_k X_k + V_k$$
(*)

avec les conditions habituelles

- l'état initial X_0 est un vecteur aléatoire gaussien de moyenne \bar{X}_0 et de matrice de covariance Q_0^X ,
- la suite $\{W_k\}$ est un bruit blanc gaussien (une suite de vecteurs aléatoires gaussiens indépendants et centrés) de matrice de covariance Q_k^W à l'instant k,
- la suite $\{V_k\}$ est un bruit blanc gaussien (une suite de vecteurs aléatoires gaussiens indépendants et centrés) de matrice de covariance Q_k^V à l'instant k,
- l'état initial X_0 et les suites $\{W_k\}$ et $\{V_k\}$ sont mutuellement indépendants.

On suppose en outre que

• la matrice de covariance Q_0^X est inversible et les matrices de covariance Q_k^W et Q_k^V sont inversibles, à tout instant k.

On se propose de montrer la propriété suivante

la matrice de covariance P_k^- de l'erreur de prédiction et la matrice de covariance P_k de l'erreur d'estimation (données par les équations du filtre de Kalman) sont inversibles, à tout instant k,

et d'établir une équation récurrente pour les matrices inverses, notées I_k^- et I_k respectivement (attention à ne pas confondre avec la même notation utilisée pour le processus d'innovation). On pourra utiliser en particulier le lemme d'inversion matricielle vu en cours.

- (i) Montrer que la matrice P_0^- est inversible, et donner l'expression de la matrice inverse I_0^- .
- (ii) Pour tout instant $k \geq 0$, montrer que si la matrice P_k^- est inversible, alors la matrice P_k est inversible, et donner l'expression de la matrice inverse I_k en fonction de la matrice I_k^- .
- (iii) Pour tout instant $k \geq 1$, montrer que si la matrice P_{k-1} est inversible, alors la matrice P_k^- est inversible, et donner l'expression de la matrice inverse I_k^- en fonction de la matrice I_{k-1} .

On considère ensuite le système non-linéaire (mais avec des bruits gaussiens)

$$X_k = b_k(X_{k-1}) + W_k$$

$$Y_k = h_k(X_k) + V_k$$

avec les conditions habituelles

- l'état initial X_0 est un vecteur aléatoire gaussien de moyenne \bar{X}_0 et de matrice de covariance Q_0^X ,
- la suite $\{W_k\}$ est un bruit blanc gaussien (une suite de vecteurs aléatoires gaussiens indépendants et centrés) de matrice de covariance Q_k^W à l'instant k,
- la suite $\{V_k\}$ est un bruit blanc gaussien (une suite de vecteurs aléatoires gaussiens indépendants et centrés) de matrice de covariance Q_k^V à l'instant k,
- \bullet l'état initial X_0 et les suites $\{W_k\}$ et $\{V_k\}$ sont mutuellement indépendants,
- les fonctions $x \mapsto b_k(x)$ et $x \mapsto h_k(x)$ sont dérivables.

On suppose en outre (comme dans le cas du système linéaire gaussien décrit en (\star)) que

la matrice de covariance Q_0^X est inversible et les matrices de covariance Q_k^W et Q_k^V sont inversibles, à tout instant k.

- (iv) Rappeler l'équation récurrente vue en cours vérifiée par la matrice d'information de Fisher J_k , avec l'expression des matrices D_k^{11} , D_k^{12} , D_k^{22} et E_k . On ne demande pas l'expression générale, mais l'expression explicite à l'aide des matrices jacobiennes des fonctions $x \mapsto b_k(x)$ et $x \mapsto h_k(x)$.
- (v) Montrer que l'initialisation est donnée par $J_0^-=(Q_0^X)^{-1}$.
- (vi) Donner l'expression des matrices D_k^{11} , D_k^{12} , D_k^{22} et E_k dans le cas particulier d'un système linéaire gaussien comme celui décrit en (\star) , où les fonctions $x \mapsto b_k(x)$ et $x \mapsto h_k(x)$ sont linéaires.
 - Ré-écrire l'équation récurrente vérifiée par la matrice d'information de Fisher J_k dans ce cas particulier.
- (vii) En déduire que, dans le cas particulier d'un système linéaire gaussien, la matrice d'information de Fisher J_k coïncide avec la matrice I_k , étudiée aux questions (i) à (iii) et définie comme l'inverse de la matrice de covariance P_k de l'erreur d'estimation (donnée par les équations du filtre de Kalman). Interpréter la borne de Cramér–Rao a posteriori ainsi obtenue.