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The objective of this problem is to characterize the first hitting time of a sphere centered
at the origin, by the d–dimensional Brownian motion and by the two–dimensional Ornstein–
Uhlenbeck process (a Gaussian diffusion process).

Let B be a d–dimensional standard Brownian motion, and adapted to a given filtration F .
Let θ = (θ(t) , t ≥ 0) be a d–dimensional stochastic process in M2 =

⋂
T≥0M

2([0, T ]), seen as a
row–vector, adapted to the same filtration F . Here is a first preliminary result.

(i) If ∫ t

0
θ(s) θ∗(s) ds = t ,

almost surely for any t ≥ 0, then the process defined by

W (t) =

∫ t

0
θ(s) dB(s) ,

for any t ≥ 0, satisfies

E[exp{i λ (W (t)−W (s))} | F(s)] = exp{−1
2 λ

2 (t− s)} ,

almost surely, for any scalar λ and for any 0 ≤ s ≤ t, hence it is a one–
dimensional standard Brownian motion.

[Hint: Write the Itô formula for the process W and for the complex–valued function f(x) =
exp{i λ x} where the scalar λ is fixed, between the time instants s and t, with 0 ≤ s ≤ t.]

Solution

Clearly, the complex–valued function f(x) = exp{i λ x} is twice continuously differentiable with
f ′(x) = i λ f(x) and f ′′(x) = −λ2 f(x), and writing the Itô formula yields

exp{i λW (t)} = exp{i λW (s)}+ i λ

∫ t

s
exp{i λW (u)} dW (u)

− 1
2 λ

2

∫ t

s
exp{i λW (u)} θ(u) θ∗(u) du

= exp{i λW (s)}+ i λ

∫ t

s
exp{i λW (u)} θ(u) dB(u)

− 1
2 λ

2

∫ t

s
exp{i λW (u)} du .
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Note that

E
∫ T

0
| exp{i λW (u)}|2 θ(u) θ∗(u) du = T <∞ ,

for any T ≥ 0, so that the stochastic integral is a square–integrable martingale, with zero
expectation, hence

E[

∫ t

s
exp{i λW (u)} θ(u) dB(u) | F(s)] = 0 .

Therefore

E[exp{i λW (t)} | F(s)] = exp{i λW (s)} − 1
2 λ

2

∫ t

s
E[exp{i λW (u)} | F(s)] du ,

so that the function defined by

f(t) = E[exp{i λW (t)} | F(s)] ,

satisfies the linear ODE

f(t) = f(s)− 1
2 λ

2

∫ t

s
f(u) du ,

the explicit solution of which is

f(t) = f(s) exp{−1
2 λ

2 (t− s)} .

In other words

E[exp{i λW (t)} | F(s)] = exp{i λW (s)} exp{−1
2 λ

2 (t− s)} ,

or equivalently
E[exp{i λ (W (t)−W (s)} | F(s)] = exp{−1

2 λ
2 (t− s)} .

This shows that the increment (W (t) − W (s)) is independent of F(s), normally distributed
with zero mean and variance (t − s). This holds for any 0 ≤ s ≤ t, hence the process W is a
one–dimensional standard Brownian motion, adapted to the filtration F .

2

Bessel processes

(ii) Write the Itô formula for the d–dimensional standard Brownian motion B and
for the real–valued function f(x) = |x|2 = x∗ x.

Solution

Clearly
f ′(x) = 2x∗ and f ′′(x) = 2 I ,

hence

|B(t)|2 = |B(0)|2 + 2

∫ t

0
B∗(s) dB(s) + 1

2

∫ t

0
trace(2I) ds

= |B(0)|2 + d t+ 2

∫ t

0
B∗(s) dB(s) ,
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since trace(I) = d for the d× d identity matrix I.
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(iii) Using the result proved at question (i), show that the squared Bessel process
defined by V (t) = |B(t)|2 for any t ≥ 0, satisfies the SDE

V (t) = V (0) + d t+ 2

∫ t

0

√
V (s) dW (s) ,

for any t ≥ 0, and for some one–dimensional standard Brownian motion W .

Solution

Note that∫ t

0
B∗(s) dB(s) =

∫ t

0
B∗(s) 1(B(s) 6= 0) dB(s) =

∫ t

0
|B(s)| B

∗(s)

|B(s)|
1(B(s) 6= 0) dB(s) .

Introducing

θ(s) =
B∗(s)

|B(s)|
1(B(s) 6= 0) ,

it holds

θ(s) θ∗(s) =
B∗(s)

|B(s)|
B(s)

|B(s)|
1(B(s) 6= 0) = 1(B(s) 6= 0) ,

hence ∫ t

0
θ(s) θ∗(s) ds =

∫ t

0
1(B(s) 6= 0) ds = t−

∫ t

0
1(B(s) = 0) ds .

Finally, using the Fubini theorem yields

E
∫ t

0
1(B(s) = 0) ds =

∫ t

0
P[B(s) = 0] ds = 0 ,

hence ∫ t

0
1(B(s) = 0) ds = 0 ,

almost surely, since a nonnegative random variable with zero expectation is almost surely equal
to zero. Therefore ∫ t

0
θ(s) θ∗(s) ds = t ,

almost surely for any t ≥ 0, and it follows from the result proved at question (i) that the process
defined by

W (t) =

∫ t

0
θ(s) dB(s) ,

for any t ≥ 0, is a one–dimensional standard Brownian motion, and∫ t

0
B∗(s) dB(s) =

∫ t

0
|B(s)| θ(s) dB(s) =

∫ t

0
|B(s)| dW (s) .

3



2

It can be shown that there exists a unique solution (even though the diffusion coefficient is only
Hölder continuous) to this one–dimensional SDE. The boundary {0} is never reached, and if the
initial condition is V (0) = 0 then the boundary {0} is left immediately and never returned to.

Consider the hitting time

Ta = inf{t ≥ 0 : V (t) ≥ a} = inf{t ≥ 0 : |B(t)| ≥
√
a} ,

and the related Laplace transform

u(x) = E0,x[exp{−λTa}] ,

defined for any 0 ≤ x ≤ a and for any λ > 0. Clearly, the function u(x) is finite near x = 0, and
takes the value 1 at x = a.

(iv) Give the expression of the second–order partial differential operator associated
with the squared Bessel process.

Let ν = 1
2 (d− 2). Prove that the Laplace transform u(x) satisfies the ODE

2xu′′(x) + 2 (ν + 1)u′(x)− λu(x) = 0 , (1)

for any 0 < x < a, and give the two boundary conditions satisfied near x = 0
and at x = a.

Solution

The second–order partial differential operator associated with the squared Bessel process is

L = 2x
d2

dx2
+ 2 (ν + 1)

d

dx
,

with ν = 1
2 (d− 2) so that d = 2 (ν + 1), hence the PDE

Lu(x)− λu(x) = 0 ,

satisfied by the Laplace transform u(x) reduces to the ODE

2xu′′(x) + 2 (ν + 1)u′(x)− λu(x) = 0 ,

for any 0 < x < a, with the two constraints that

• it should be finite near x = 0, i.e. u(0+) is finite,

• it should take the value 1 at x = a, i.e. u(a) = 1.

2

The explicit solution to this boundary–value problem involves modified Bessel functions: some
facts about these special functions are collected in the Appendix.
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(v) Check that if the function w(x) is a particular solution of (3), then the function
defined by u(x) = (

√
x)−ν w(

√
2λx) for any x ≥ 0 is a particular solution of (1).

[Hint: Lengthy calculations, skip this.]

Solution

If the function w(x) solves the ODE

x2w′′(x) + xw′(x)− (x2 + ν2)w(x) = 0

then upon an obvious change of variable it holds

2λxw′′(
√

2λx) +
√

2λxw′(
√

2λx)− (2λx+ ν2)w(
√

2λx) = 0 (?)

for any x ≥ 0. Using the chain rule, the function w0(x) = w(
√

2λx) satisfies

w′0(x) =
√

2λ
1

2
√
x
w′(
√

2λx)

and

w′′0(x) = −
√

2λ
1

4x
√
x
w′(
√

2λx) + 2λ
1

4x
w′′(
√

2λx)

hence u(x) = (
√
x)−ν w0(x) satisfies

u′(x) = −1
2 ν (
√
x)−ν−2 w0(x) + (

√
x)−ν w′0(x)

= −1
2 ν (
√
x)−ν−2 w(

√
2λx) + 1

2

√
2λ (
√
x)−ν−1 w′(

√
2λx)

and using the Leibniz rule yields

u′′(x) = 1
2 ν (12 ν + 1) (

√
x)−ν−4 w0(x)− 2 1

2 ν (
√
x)−ν−2 w′0(x) + (

√
x)−ν w′′0(x)

= 1
2 ν (12 ν + 1) (

√
x)−ν−4 w(

√
2λx)− 1

2 ν
√

2λ (
√
x)−ν−3 w′(

√
2λx)

−1
4

√
2λ (
√
x)−ν−3 w′(

√
2λx) + 1

2 λ (
√
x)−ν−2 w′′(

√
2λx)

= 1
2 ν (12 ν + 1) (

√
x)−ν−4 w(

√
2λx)− 1

2 (ν + 1
2)
√

2λ (
√
x)−ν−3 w′(

√
2λx)

+1
2 λ (
√
x)−ν−2 w′′(

√
2λx)
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Therefore

2xu′′(x) + 2 (ν + 1)u′(x)− λu(x)

= 2x [12 ν (12 ν + 1) (
√
x)−ν−4 w(

√
2λx)− 1

2 (ν + 1
2)
√

2λ (
√
x)−ν−3 w′(

√
2λx)

+ 1
2 λ (
√
x)−ν−2 w′′(

√
2λx)]

+ 2 (ν + 1) [−1
2 ν (
√
x)−ν−2 w(

√
2λx) + 1

2

√
2λ (
√
x)−ν−1 w′(

√
2λx)]

− λ (
√
x)−ν w(

√
2λx)

= λx (
√
x)−ν−2 w′′(

√
2λx)

+ [−(ν + 1
2) + (ν + 1)]

√
2λ (
√
x)−ν−1 w′(

√
2λx)

+ [ν (12 ν + 1)− ν (ν + 1)] (
√
x)−ν−2 w(

√
2λx)− λ (

√
x)−ν w(

√
2λx)

= 1
2 (
√
x)−ν−2 [2λx w′′(

√
2λx) +

√
2λx w′(

√
2λx)− (2λx+ ν2) w(

√
2λx)]

and it follows from (?) that

2xu′′(x) + 2 (ν + 1)u′(x)− λu(x) = 0

2

Clearly, the functions defined by u1(x) = (
√
x)−ν Iν(

√
2λx) and by u2(x) = (

√
x)−ν Kν(

√
2λx)

for any x ≥ 0 are two particular solutions of (1). These two particular solutions are linearly
independent, so that any solution of (3) is a linear combination

u(x) = c1 u1(x) + c2 u2(x) = c1 (
√
x)−ν Iν(

√
2λx) + c2 (

√
x)−ν Kν(

√
2λx) .

(vi) Show that the Laplace transform is given by

u(x) = (

√
a√
x

)ν
Iν(
√

2λx)

Iν(
√

2λa)
,

and in particular

u(0) =
(12
√

2λ)ν

Γ(ν + 1)

(
√
a)ν

Iν(
√

2λa)
,

at x = 0.

Solution
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The two particular solutions u1(x) and u2(x) differ by their asymptotic behaviour near x = 0.
Indeed

Iν(
√

2λx) ∼
(12
√

2λx)ν

Γ(ν + 1)
=

(12
√

2λ)ν

Γ(ν + 1)
(
√
x)ν ,

hence

u1(x) = (
√
x)−ν Iν(

√
2λx) ∼

(12
√

2λ)ν

Γ(ν + 1)
,

meets the constraint that the solution should be finite near x = 0. On the other hand, if ν > 0
then

Kν(
√

2λx) ∼ 1
2

Γ(ν)

(12
√

2λx)ν
= 1

2

Γ(ν)

(12
√

2λ)ν
(
√
x)−ν ,

hence

u2(x) = (
√
x)−ν Kν(

√
2λx) ∼ 1

2

Γ(ν)

(12
√

2λ)ν
x−ν ,

does not meet the constraint that the solution should be finite near x = 0, and similarly if ν = 0
then

u2(x) = K0(
√

2λx) ∼ − log
√

2λx ,

does not meet the constraint that the solution should be finite near x = 0. Therefore, a solution
of (1) that meets the constraint that it should be finite near x = 0 is necessarily of the form

u(x) = c1 (
√
x)−ν Iν(

√
2λx) ,

and the integration constant c1 is determined by the constraint that the solution should take
the value 1 at x = a, hence

c1 =
1

(
√
a)−ν Iν(

√
2λa)

,

and

u(x) =
(
√
x)−ν Iν(

√
2λx)

(
√
a)−ν Iν(

√
2λa)

= (

√
a√
x

)ν
Iν(
√

2λx)

Iν(
√

2λa)
,

and in particular

u(0) =
(12
√

2λ)ν

Γ(ν + 1)

(
√
a)ν

Iν(
√

2λa)
,

at x = 0.

2

Squared radial Ornstein–Uhlenbeck process

Let B = (B(t) , t ≥ 0) be a two–dimensional standard Brownian motion, with B(0) = 0.
Consider the two–dimensional (linear) SDE already considered in the MATLAB practical session

X(t) = X(0) +

∫ t

0
(−c I +R)X(s) ds+B(t) ,
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with c > 0 and with the 2× 2 matrices

I =

(
1 0
0 1

)
and R =

(
0 −1
1 0

)
.

It is further assumed that the initial condition X(0) has zero mean E[X(0)] = 0 and finite
variance E[X(0)X∗(0)].

This SDE has a unique solution X = (X(t) , t ≥ 0), also known as the Ornstein–Uhlenbeck
process, with zero mean E[X(t)] = 0 and finite variance E[X(t)X∗(t)] for any t ≥ 0.

(vii) Write the Itô formula for the two–dimensional Itô process X and for the real–
valued function f(x) = |x|2 = x∗ x.

Solution

Recall that
f ′(x) = 2x∗ and f ′′(x) = 2 I ,

hence

|X(t)|2 = |X(0)|2 + 2

∫ t

0
X∗(s) dX(s) + 1

2

∫ t

0
trace(2 I) ds

= |X(0)|2 + 2 t+ 2

∫ t

0
X∗(s) ((−c I +R)X(s) ds+ dB(s)) ,

since trace(I) = 2 for the 2× 2 identity matrix I. Note that x∗Rx = x∗R∗ x = −x∗Rx, since
the matrix R is antisymmetric, hence x∗Rx = 0 for any x ∈ R2, and

|X(t)|2 = |X(0)|2 + 2 t− 2 c

∫ t

0
|X(s)|2 ds+ 2

∫ t

0
X∗(s) dB(s) .

2

(viii) Using the result proved at question (i), show that the squared radial Ornstein–
Uhlenbeck process defined by V (t) = |X(t)|2 for any t ≥ 0, satisfies the SDE

V (t) = V (0) + 2 t− 2 c

∫ t

0
V (s) ds+ 2

∫ t

0

√
V (s) dW (s) ,

for any t ≥ 0, and for some one–dimensional standard Brownian motion W .

Solution

Proceeding as in the answer to question (iii), note that∫ t

0
X∗(s) dB(s) =

∫ t

0
X∗(s) 1(X(s) 6= 0) dB(s) =

∫ t

0
|X(s)| X

∗(s)

|X(s)|
1(X(s) 6= 0) dB(s) .
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Introducing

θ(s) =
X∗(s)

|X(s)|
1(X(s) 6= 0) ,

it holds

θ(s) θ∗(s) =
X∗(s)

|X(s)|
X(s)

|X(s)|
1(X(s) 6= 0) = 1(X(s) 6= 0) ,

hence ∫ t

0
θ(s) θ∗(s) ds =

∫ t

0
1(X(s) 6= 0) ds = t−

∫ t

0
1(X(s) = 0) ds .

Finally, using the Fubini theorem yields

E
∫ t

0
1(X(s) = 0) ds =

∫ t

0
P[X(s) = 0] ds = 0 ,

hence ∫ t

0
1(X(s) = 0) ds = 0 ,

almost surely, since a nonnegative random variable with zero expectation is almost surely equal
to zero. Therefore ∫ t

0
θ(s) θ∗(s) ds = t ,

almost surely for any t ≥ 0, and it follows from the result proved at question (i) that the process
defined by

W (t) =

∫ t

0
θ(s) dB(s) ,

for any t ≥ 0, is a one–dimensional standard Brownian motion, and∫ t

0
X∗(s) dB(s) =

∫ t

0
|X(s)| θ(s) dB(s) =

∫ t

0
|X(s)| dW (s) .

2

It can be shown that there exists a unique solution (even though the diffusion coefficient is only
Hölder continuous) to this one–dimensional SDE. The boundary {0} is never reached, and if the
initial condition is V (0) = 0 then the boundary {0} is left immediately and never returned to.

Consider the hitting time

Ta = inf{t ≥ 0 : V (t) ≥ a} = inf{t ≥ 0 : |X(t)| ≥
√
a} ,

and the related Laplace transform

u(x) = E0,x[exp{−λTa}] ,

defined for any 0 ≤ x ≤ a and for any λ > 0. Clearly, the function u(x) is finite near x = 0, and
takes the value 1 at x = a.
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(ix) Give the expression of the second–order partial differential operator associated
with the squared Ornstein–Uhlenbeck process.

Prove that the Laplace transform u(x) satisfies the ODE

2xu′′(x) + (2− 2 c x)u′(x)− λu(x) = 0 , (2)

for any 0 < x < a, and give the two boundary conditions satisfied near x = 0
and at x = a.

Solution

The second–order partial differential operator associated with the squared radial Ornstein–
Uhlenbeck process is

L = 2x
d2

dx2
+ (2− 2 c x)

d

dx
,

hence the PDE
Lu(x)− λu(x) = 0 ,

satisfied by the Laplace transform u(x) reduces to the ODE

2xu′′(x) + (2− 2 c x)u′(x)− λu(x) = 0 ,

for any 0 < x < a, with the two constraints that

• it should be finite near x = 0, i.e. u(0+) is finite,

• it should take the value 1 at x = a, i.e. u(a) = 1.

2

The explicit solution to this boundary–value problem involves confluent hypergeometric func-
tions: some facts about these special functions are collected in the Appendix.

(x) Check that if the function w(x) is a particular solution of (4) with a =
λ

2c
and

b = 1, then the function defined by u(x) = w(c x) for any x ≥ 0 is a particular
solution of (2).

Solution

If the function w(x) solves the ODE

xw′′(x) + (1− x)w′(x)− λ

2c
w(x) = 0 ,

then upon an obvious change of variable it holds

c xw′′(c x) + (1− c x)w′(c x)− λ

2c
w(c x) = 0 , (??)
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for any x ≥ 0. Using the chain rule, the function u(x) = w(c x) satisfies

u′(x) = cw′(c x) and u′′(x) = c2w′′(c x) .

Therefore

2xu′′(x) + (2− 2 c x)u′(x)− λu(x)

= 2x c2 w′′(c x) + (2− 2 c x) c w′(c x)− λw(c x)

= 2 c [c x w′′(c x) + (1− c x) w′(c x)− λ

2 c
w(c x)] ,

and it follows from (??) that

2xu′′(x) + (2− 2 c x)u′(x)− λu(x) = 0 .

2

Clearly, the functions defined by u1(x) = M(
λ

2c
, 1, c x) and by u2(x) = U(

λ

2c
, 1, c x) for any

x ≥ 0 are two particular solutions of (2) These two particular solutions are linearly independent,
so that any solution of (2) is a linear combination

u(x) = c1 u1(x) + c2 u2(x) = c1M(
λ

2c
, 1, c x) + c2 U(

λ

2c
, 1, c x) .

(xi) Show that the Laplace transform is given by

u(x) =
M(

λ

2c
, 1, c x)

M(
λ

2c
, 1, c a)

,

and in particular

u(0) =
1

M(
λ

2c
, 1, c a)

,

at x = 0.

Solution

The two particular solutions u1(x) and u2(x) differ by their asymptotic behaviour near x = 0.
Indeed

u1(x) = M(
λ

2c
, 1, c x) ∼ 1 ,

meets the constraint that the solution should be finite near x = 0. On the other hand

u2(x) = U(
λ

2c
, 1, c x)→∞ ,
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does not meet the constraint that the solution should be finite near x = 0. Therefore, a solution
of (2) that meets the constraint that it should be finite near x = 0 is necessarily of the form

u(x) = c1M(
λ

2c
, 1, c x) ,

and the integration constant c1 is determined by the constraint that the solution should take
the value 1 at x = a, hence

c1 =
1

M(
λ

2c
, 1, c a)

,

and

u(x) =
M(

λ

2c
, 1, c x)

M(
λ

2c
, 1, c a)

,

and in particular

u(0) =
1

M(
λ

2c
, 1, c a)

,

at x = 0.

2

Appendix: special functions

Here are collected some facts about some special functions of interest, the modified Bessel
functions and the confluent hypergeometric functions.

I The modified Bessel function of the first kind Iν(x) (the exact expression of which is irrelevant
here and which is available under MATLAB for instance) is a particular solution of the ODE

x2w′′(x) + xw′(x)− (x2 + ν2)w(x) = 0 . (3)

Another particular solution of (3) is the modified Bessel function of the second kind Kν(x) (the
exact expression of which is irrelevant here as well). These two particular solutions differ by
their asymptotic behaviour near x = 0. Indeed

Iν(x) ∼
(12 x)ν

Γ(ν + 1)
for any ν ≥ 0,

K0(x) ∼ − log x for ν = 0,

Kν(x) ∼ 1
2

Γ(ν)

(12 x)ν
for any ν > 0.

Moreover, these two particular solutions are linearly independent, so that any solution of (3) is
a linear combination c1 Iν(x) + c2 Kν(x).
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I The confluent hypergeometric function of the first kind M(a, b, x) (also known as the Kummer
function, the exact expression of which is irrelevant here) is a particular solution of the ODE

xw′′(x) + (b− x)w′(x)− aw(x) = 0 . (4)

Another particular solution of (4) is the confluent hypergeometric function of the second kind
U(a, b, x) (also known as the Tricomi function, the exact expression of which is irrelevant here
as well). These two particular solutions differ by their asymptotic behaviour near x = 0. Indeed

M(a, b, x) ∼ 1 and U(a, b, x)→∞ .

Moreover, these two particular solutions are linearly independent, so that any solution of (4) is
a linear combination c1M(a, b, x) + c2 U(a, b, x).
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