INSA Rennes, 4GM-AROM

Random Models of Dynamical Systems
 Introduction to SDE's

Written Exam (aka DS)

January 8, 2020

The objective of this problem is to characterize the first hitting time of a sphere centered at the origin, by the d-dimensional Brownian motion and by the two-dimensional OrnsteinUhlenbeck process (a Gaussian diffusion process).

Let B be a d-dimensional standard Brownian motion, and adapted to a given filtration \mathcal{F}. Let $\theta=(\theta(t), t \geq 0)$ be a d-dimensional stochastic process in $M^{2}=\bigcap_{T \geq 0} M^{2}([0, T])$, seen as a row-vector, adapted to the same filtration \mathcal{F}. Here is a first preliminary result.
(i) If

$$
\int_{0}^{t} \theta(s) \theta^{*}(s) d s=t
$$

almost surely for any $t \geq 0$, then the process defined by

$$
W(t)=\int_{0}^{t} \theta(s) d B(s),
$$

for any $t \geq 0$, satisfies

$$
\mathbb{E}[\exp \{i \lambda(W(t)-W(s))\} \mid \mathcal{F}(s)]=\exp \left\{-\frac{1}{2} \lambda^{2}(t-s)\right\}
$$

almost surely, for any scalar λ and for any $0 \leq s \leq t$, hence it is a onedimensional standard Brownian motion.
[Hint: Write the Itô formula for the process W and for the complex-valued function $f(x)=$ $\exp \{i \lambda x\}$ where the scalar λ is fixed, between the time instants s and t, with $0 \leq s \leq t$.]
\qquad Solution
Clearly, the complex-valued function $f(x)=\exp \{i \lambda x\}$ is twice continuously differentiable with $f^{\prime}(x)=i \lambda f(x)$ and $f^{\prime \prime}(x)=-\lambda^{2} f(x)$, and writing the Itô formula yields

$$
\begin{aligned}
\exp \{i \lambda W(t)\}= & \exp \{i \lambda W(s)\}+i \lambda \int_{s}^{t} \exp \{i \lambda W(u)\} d W(u) \\
& -\frac{1}{2} \lambda^{2} \int_{s}^{t} \exp \{i \lambda W(u)\} \theta(u) \theta^{*}(u) d u \\
= & \exp \{i \lambda W(s)\}+i \lambda \int_{s}^{t} \exp \{i \lambda W(u)\} \theta(u) d B(u) \\
& -\frac{1}{2} \lambda^{2} \int_{s}^{t} \exp \{i \lambda W(u)\} d u
\end{aligned}
$$

Note that

$$
\mathbb{E} \int_{0}^{T}|\exp \{i \lambda W(u)\}|^{2} \theta(u) \theta^{*}(u) d u=T<\infty
$$

for any $T \geq 0$, so that the stochastic integral is a square-integrable martingale, with zero expectation, hence

$$
\mathbb{E}\left[\int_{s}^{t} \exp \{i \lambda W(u)\} \theta(u) d B(u) \mid \mathcal{F}(s)\right]=0
$$

Therefore

$$
\mathbb{E}[\exp \{i \lambda W(t)\} \mid \mathcal{F}(s)]=\exp \{i \lambda W(s)\}-\frac{1}{2} \lambda^{2} \int_{s}^{t} \mathbb{E}[\exp \{i \lambda W(u)\} \mid \mathcal{F}(s)] d u
$$

so that the function defined by

$$
f(t)=\mathbb{E}[\exp \{i \lambda W(t)\} \mid \mathcal{F}(s)],
$$

satisfies the linear ODE

$$
f(t)=f(s)-\frac{1}{2} \lambda^{2} \int_{s}^{t} f(u) d u
$$

the explicit solution of which is

$$
f(t)=f(s) \exp \left\{-\frac{1}{2} \lambda^{2}(t-s)\right\}
$$

In other words

$$
\mathbb{E}[\exp \{i \lambda W(t)\} \mid \mathcal{F}(s)]=\exp \{i \lambda W(s)\} \exp \left\{-\frac{1}{2} \lambda^{2}(t-s)\right\}
$$

or equivalently

$$
\mathbb{E}\left[\exp \{i \lambda(W(t)-W(s)\} \mid \mathcal{F}(s)]=\exp \left\{-\frac{1}{2} \lambda^{2}(t-s)\right\}\right.
$$

This shows that the increment $(W(t)-W(s))$ is independent of $\mathcal{F}(s)$, normally distributed with zero mean and variance $(t-s)$. This holds for any $0 \leq s \leq t$, hence the process W is a one-dimensional standard Brownian motion, adapted to the filtration \mathcal{F}.

Bessel Processes

(ii) Write the Itô formula for the d-dimensional standard Brownian motion B and for the real-valued function $f(x)=|x|^{2}=x^{*} x$.
\qquad
Clearly

$$
f^{\prime}(x)=2 x^{*} \quad \text { and } \quad f^{\prime \prime}(x)=2 I,
$$

hence

$$
\begin{aligned}
|B(t)|^{2} & =|B(0)|^{2}+2 \int_{0}^{t} B^{*}(s) d B(s)+\frac{1}{2} \int_{0}^{t} \operatorname{trace}(2 I) d s \\
& =|B(0)|^{2}+d t+2 \int_{0}^{t} B^{*}(s) d B(s),
\end{aligned}
$$

since $\operatorname{trace}(I)=d$ for the $d \times d$ identity matrix I.
(iii) Using the result proved at question (i), show that the squared Bessel process defined by $V(t)=|B(t)|^{2}$ for any $t \geq 0$, satisfies the SDE

$$
V(t)=V(0)+d t+2 \int_{0}^{t} \sqrt{V(s)} d W(s)
$$

for any $t \geq 0$, and for some one-dimensional standard Brownian motion W.
\qquad
Note that

$$
\int_{0}^{t} B^{*}(s) d B(s)=\int_{0}^{t} B^{*}(s) 1_{(B(s) \neq 0)} d B(s)=\int_{0}^{t}|B(s)| \frac{B^{*}(s)}{|B(s)|} 1_{(B(s) \neq 0)} d B(s)
$$

Introducing

$$
\theta(s)=\frac{B^{*}(s)}{|B(s)|} 1_{(B(s) \neq 0)}
$$

it holds

$$
\theta(s) \theta^{*}(s)=\frac{B^{*}(s)}{|B(s)|} \frac{B(s)}{|B(s)|} 1_{(B(s) \neq 0)}=1_{(B(s) \neq 0)}
$$

hence

$$
\int_{0}^{t} \theta(s) \theta^{*}(s) d s=\int_{0}^{t} 1_{(B(s) \neq 0)} d s=t-\int_{0}^{t} 1_{(B(s)=0)} d s
$$

Finally, using the Fubini theorem yields

$$
\mathbb{E} \int_{0}^{t} 1_{(B(s)=0)} d s=\int_{0}^{t} \mathbb{P}[B(s)=0] d s=0
$$

hence

$$
\int_{0}^{t} 1_{(B(s)=0)} d s=0
$$

almost surely, since a nonnegative random variable with zero expectation is almost surely equal to zero. Therefore

$$
\int_{0}^{t} \theta(s) \theta^{*}(s) d s=t
$$

almost surely for any $t \geq 0$, and it follows from the result proved at question (i) that the process defined by

$$
W(t)=\int_{0}^{t} \theta(s) d B(s)
$$

for any $t \geq 0$, is a one-dimensional standard Brownian motion, and

$$
\int_{0}^{t} B^{*}(s) d B(s)=\int_{0}^{t}|B(s)| \theta(s) d B(s)=\int_{0}^{t}|B(s)| d W(s)
$$

It can be shown that there exists a unique solution (even though the diffusion coefficient is only Hölder continuous) to this one-dimensional SDE. The boundary $\{0\}$ is never reached, and if the initial condition is $V(0)=0$ then the boundary $\{0\}$ is left immediately and never returned to.

Consider the hitting time

$$
T_{a}=\inf \{t \geq 0: V(t) \geq a\}=\inf \{t \geq 0:|B(t)| \geq \sqrt{a}\},
$$

and the related Laplace transform

$$
u(x)=\mathbb{E}_{0, x}\left[\exp \left\{-\lambda T_{a}\right\}\right],
$$

defined for any $0 \leq x \leq a$ and for any $\lambda>0$. Clearly, the function $u(x)$ is finite near $x=0$, and takes the value 1 at $x=a$.
(iv) Give the expression of the second-order partial differential operator associated with the squared Bessel process.
Let $\nu=\frac{1}{2}(d-2)$. Prove that the Laplace transform $u(x)$ satisfies the ODE

$$
\begin{equation*}
2 x u^{\prime \prime}(x)+2(\nu+1) u^{\prime}(x)-\lambda u(x)=0, \tag{1}
\end{equation*}
$$

for any $0<x<a$, and give the two boundary conditions satisfied near $x=0$ and at $x=a$.

The second-order partial differential operator associated with the squared Bessel process is

$$
L=2 x \frac{d^{2}}{d x^{2}}+2(\nu+1) \frac{d}{d x},
$$

with $\nu=\frac{1}{2}(d-2)$ so that $d=2(\nu+1)$, hence the PDE

$$
L u(x)-\lambda u(x)=0,
$$

satisfied by the Laplace transform $u(x)$ reduces to the ODE

$$
2 x u^{\prime \prime}(x)+2(\nu+1) u^{\prime}(x)-\lambda u(x)=0,
$$

for any $0<x<a$, with the two constraints that

- it should be finite near $x=0$, i.e. $u(0+)$ is finite,
- it should take the value 1 at $x=a$, i.e. $u(a)=1$.

The explicit solution to this boundary-value problem involves modified Bessel functions: some facts about these special functions are collected in the Appendix.
(v) Check that if the function $w(x)$ is a particular solution of (3), then the function defined by $u(x)=(\sqrt{x})^{-\nu} w(\sqrt{2 \lambda x})$ for any $x \geq 0$ is a particular solution of (1).
[Hint: Lengthy calculations, skip this.]

If the function $w(x)$ solves the ODE

$$
x^{2} w^{\prime \prime}(x)+x w^{\prime}(x)-\left(x^{2}+\nu^{2}\right) w(x)=0
$$

then upon an obvious change of variable it holds

$$
2 \lambda x w^{\prime \prime}(\sqrt{2 \lambda x})+\sqrt{2 \lambda x} w^{\prime}(\sqrt{2 \lambda x})-\left(2 \lambda x+\nu^{2}\right) w(\sqrt{2 \lambda x})=0
$$

for any $x \geq 0$. Using the chain rule, the function $w_{0}(x)=w(\sqrt{2 \lambda x})$ satisfies

$$
w_{0}^{\prime}(x)=\sqrt{2 \lambda} \frac{1}{2 \sqrt{x}} w^{\prime}(\sqrt{2 \lambda x})
$$

and

$$
w_{0}^{\prime \prime}(x)=-\sqrt{2 \lambda} \frac{1}{4 x \sqrt{x}} w^{\prime}(\sqrt{2 \lambda x})+2 \lambda \frac{1}{4 x} w^{\prime \prime}(\sqrt{2 \lambda x})
$$

hence $u(x)=(\sqrt{x})^{-\nu} w_{0}(x)$ satisfies

$$
\begin{aligned}
u^{\prime}(x) & =-\frac{1}{2} \nu(\sqrt{x})^{-\nu-2} w_{0}(x)+(\sqrt{x})^{-\nu} w_{0}^{\prime}(x) \\
& =-\frac{1}{2} \nu(\sqrt{x})^{-\nu-2} w(\sqrt{2 \lambda x})+\frac{1}{2} \sqrt{2 \lambda}(\sqrt{x})^{-\nu-1} w^{\prime}(\sqrt{2 \lambda x})
\end{aligned}
$$

and using the Leibniz rule yields

$$
\begin{aligned}
u^{\prime \prime}(x)= & \frac{1}{2} \nu\left(\frac{1}{2} \nu+1\right)(\sqrt{x})^{-\nu-4} w_{0}(x)-2 \frac{1}{2} \nu(\sqrt{x})^{-\nu-2} w_{0}^{\prime}(x)+(\sqrt{x})^{-\nu} w_{0}^{\prime \prime}(x) \\
= & \frac{1}{2} \nu\left(\frac{1}{2} \nu+1\right)(\sqrt{x})^{-\nu-4} w(\sqrt{2 \lambda x})-\frac{1}{2} \nu \sqrt{2 \lambda}(\sqrt{x})^{-\nu-3} w^{\prime}(\sqrt{2 \lambda x}) \\
& -\frac{1}{4} \sqrt{2 \lambda}(\sqrt{x})^{-\nu-3} w^{\prime}(\sqrt{2 \lambda x})+\frac{1}{2} \lambda(\sqrt{x})^{-\nu-2} w^{\prime \prime}(\sqrt{2 \lambda x}) \\
= & \frac{1}{2} \nu\left(\frac{1}{2} \nu+1\right)(\sqrt{x})^{-\nu-4} w(\sqrt{2 \lambda x})-\frac{1}{2}\left(\nu+\frac{1}{2}\right) \sqrt{2 \lambda}(\sqrt{x})^{-\nu-3} w^{\prime}(\sqrt{2 \lambda x}) \\
& +\frac{1}{2} \lambda(\sqrt{x})^{-\nu-2} w^{\prime \prime}(\sqrt{2 \lambda x})
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& 2 x u^{\prime \prime}(x)+ 2(\nu+1) u^{\prime}(x)-\lambda u(x) \\
&=2 x\left[\frac{1}{2} \nu\left(\frac{1}{2} \nu+1\right)(\sqrt{x})^{-\nu-4} w(\sqrt{2 \lambda x})-\frac{1}{2}\left(\nu+\frac{1}{2}\right) \sqrt{2 \lambda}(\sqrt{x})^{-\nu-3} w^{\prime}(\sqrt{2 \lambda x})\right. \\
&\left.+\frac{1}{2} \lambda(\sqrt{x})^{-\nu-2} w^{\prime \prime}(\sqrt{2 \lambda x})\right] \\
&+2(\nu+1)\left[-\frac{1}{2} \nu(\sqrt{x})^{-\nu-2} w(\sqrt{2 \lambda x})+\frac{1}{2} \sqrt{2 \lambda}(\sqrt{x})^{-\nu-1} w^{\prime}(\sqrt{2 \lambda x})\right] \\
&-\lambda(\sqrt{x})^{-\nu} w(\sqrt{2 \lambda x}) \\
&= \lambda x(\sqrt{x})^{-\nu-2} w^{\prime \prime}(\sqrt{2 \lambda x}) \\
&+\left[-\left(\nu+\frac{1}{2}\right)+(\nu+1)\right] \sqrt{2 \lambda}(\sqrt{x})^{-\nu-1} w^{\prime}(\sqrt{2 \lambda x}) \\
&+\left[\nu\left(\frac{1}{2} \nu+1\right)-\nu(\nu+1)\right](\sqrt{x})^{-\nu-2} w(\sqrt{2 \lambda x})-\lambda(\sqrt{x})^{-\nu} w(\sqrt{2 \lambda x}) \\
&= \frac{1}{2}(\sqrt{x})^{-\nu-2}\left[2 \lambda x w^{\prime \prime}(\sqrt{2 \lambda x})+\sqrt{2 \lambda x} w^{\prime}(\sqrt{2 \lambda x})-\left(2 \lambda x+\nu^{2}\right) w(\sqrt{2 \lambda x})\right]
\end{aligned}
$$

and it follows from (\star) that

$$
2 x u^{\prime \prime}(x)+2(\nu+1) u^{\prime}(x)-\lambda u(x)=0
$$

Clearly, the functions defined by $u_{1}(x)=(\sqrt{x})^{-\nu} I_{\nu}(\sqrt{2 \lambda x})$ and by $u_{2}(x)=(\sqrt{x})^{-\nu} K_{\nu}(\sqrt{2 \lambda x})$ for any $x \geq 0$ are two particular solutions of (1). These two particular solutions are linearly independent, so that any solution of (3) is a linear combination

$$
u(x)=c_{1} u_{1}(x)+c_{2} u_{2}(x)=c_{1}(\sqrt{x})^{-\nu} I_{\nu}(\sqrt{2 \lambda x})+c_{2}(\sqrt{x})^{-\nu} K_{\nu}(\sqrt{2 \lambda x})
$$

(vi) Show that the Laplace transform is given by

$$
u(x)=\left(\frac{\sqrt{a}}{\sqrt{x}}\right)^{\nu} \frac{I_{\nu}(\sqrt{2 \lambda x})}{I_{\nu}(\sqrt{2 \lambda a})}
$$

and in particular

$$
u(0)=\frac{\left(\frac{1}{2} \sqrt{2 \lambda}\right)^{\nu}}{\Gamma(\nu+1)} \frac{(\sqrt{a})^{\nu}}{I_{\nu}(\sqrt{2 \lambda a})}
$$

at $x=0$.

The two particular solutions $u_{1}(x)$ and $u_{2}(x)$ differ by their asymptotic behaviour near $x=0$. Indeed

$$
I_{\nu}(\sqrt{2 \lambda x}) \sim \frac{\left(\frac{1}{2} \sqrt{2 \lambda x}\right)^{\nu}}{\Gamma(\nu+1)}=\frac{\left(\frac{1}{2} \sqrt{2 \lambda}\right)^{\nu}}{\Gamma(\nu+1)}(\sqrt{x})^{\nu}
$$

hence

$$
u_{1}(x)=(\sqrt{x})^{-\nu} I_{\nu}(\sqrt{2 \lambda x}) \sim \frac{\left(\frac{1}{2} \sqrt{2 \lambda}\right)^{\nu}}{\Gamma(\nu+1)}
$$

meets the constraint that the solution should be finite near $x=0$. On the other hand, if $\nu>0$ then

$$
K_{\nu}(\sqrt{2 \lambda x}) \sim \frac{1}{2} \frac{\Gamma(\nu)}{\left(\frac{1}{2} \sqrt{2 \lambda x}\right)^{\nu}}=\frac{1}{2} \frac{\Gamma(\nu)}{\left(\frac{1}{2} \sqrt{2 \lambda}\right)^{\nu}}(\sqrt{x})^{-\nu}
$$

hence

$$
u_{2}(x)=(\sqrt{x})^{-\nu} K_{\nu}(\sqrt{2 \lambda x}) \sim \frac{1}{2} \frac{\Gamma(\nu)}{\left(\frac{1}{2} \sqrt{2 \lambda}\right)^{\nu}} x^{-\nu}
$$

does not meet the constraint that the solution should be finite near $x=0$, and similarly if $\nu=0$ then

$$
u_{2}(x)=K_{0}(\sqrt{2 \lambda x}) \sim-\log \sqrt{2 \lambda x}
$$

does not meet the constraint that the solution should be finite near $x=0$. Therefore, a solution of (1) that meets the constraint that it should be finite near $x=0$ is necessarily of the form

$$
u(x)=c_{1}(\sqrt{x})^{-\nu} I_{\nu}(\sqrt{2 \lambda x})
$$

and the integration constant c_{1} is determined by the constraint that the solution should take the value 1 at $x=a$, hence

$$
c_{1}=\frac{1}{(\sqrt{a})^{-\nu} I_{\nu}(\sqrt{2 \lambda a})}
$$

and

$$
u(x)=\frac{(\sqrt{x})^{-\nu} I_{\nu}(\sqrt{2 \lambda x})}{(\sqrt{a})^{-\nu} I_{\nu}(\sqrt{2 \lambda a})}=\left(\frac{\sqrt{a}}{\sqrt{x}}\right)^{\nu} \frac{I_{\nu}(\sqrt{2 \lambda x})}{I_{\nu}(\sqrt{2 \lambda a})}
$$

and in particular

$$
u(0)=\frac{\left(\frac{1}{2} \sqrt{2 \lambda}\right)^{\nu}}{\Gamma(\nu+1)} \frac{(\sqrt{a})^{\nu}}{I_{\nu}(\sqrt{2 \lambda a})}
$$

at $x=0$.

Squared radial Ornstein-Uhlenbeck process

Let $B=(B(t), t \geq 0)$ be a two-dimensional standard Brownian motion, with $B(0)=0$. Consider the two-dimensional (linear) SDE already considered in the MATLAB practical session

$$
X(t)=X(0)+\int_{0}^{t}(-c I+R) X(s) d s+B(t)
$$

with $c>0$ and with the 2×2 matrices

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

It is further assumed that the initial condition $X(0)$ has zero mean $\mathbb{E}[X(0)]=0$ and finite variance $\mathbb{E}\left[X(0) X^{*}(0)\right]$.

This SDE has a unique solution $X=(X(t), t \geq 0)$, also known as the Ornstein-Uhlenbeck process, with zero mean $\mathbb{E}[X(t)]=0$ and finite variance $\mathbb{E}\left[X(t) X^{*}(t)\right]$ for any $t \geq 0$.
(vii) Write the Itô formula for the two-dimensional Itô process X and for the realvalued function $f(x)=|x|^{2}=x^{*} x$.

Solution \qquad
Recall that

$$
f^{\prime}(x)=2 x^{*} \quad \text { and } \quad f^{\prime \prime}(x)=2 I
$$

hence

$$
\begin{aligned}
|X(t)|^{2} & =|X(0)|^{2}+2 \int_{0}^{t} X^{*}(s) d X(s)+\frac{1}{2} \int_{0}^{t} \operatorname{trace}(2 I) d s \\
& =|X(0)|^{2}+2 t+2 \int_{0}^{t} X^{*}(s)((-c I+R) X(s) d s+d B(s))
\end{aligned}
$$

since $\operatorname{trace}(I)=2$ for the 2×2 identity matrix I. Note that $x^{*} R x=x^{*} R^{*} x=-x^{*} R x$, since the matrix R is antisymmetric, hence $x^{*} R x=0$ for any $x \in \mathbb{R}^{2}$, and

$$
|X(t)|^{2}=|X(0)|^{2}+2 t-2 c \int_{0}^{t}|X(s)|^{2} d s+2 \int_{0}^{t} X^{*}(s) d B(s)
$$

(viii) Using the result proved at question (i), show that the squared radial OrnsteinUhlenbeck process defined by $V(t)=|X(t)|^{2}$ for any $t \geq 0$, satisfies the SDE

$$
V(t)=V(0)+2 t-2 c \int_{0}^{t} V(s) d s+2 \int_{0}^{t} \sqrt{V(s)} d W(s)
$$

for any $t \geq 0$, and for some one-dimensional standard Brownian motion W.

Proceeding as in the answer to question (iii), note that

$$
\int_{0}^{t} X^{*}(s) d B(s)=\int_{0}^{t} X^{*}(s) 1_{(X(s) \neq 0)} d B(s)=\int_{0}^{t}|X(s)| \frac{X^{*}(s)}{|X(s)|} 1_{(X(s) \neq 0)} d B(s)
$$

Introducing

$$
\theta(s)=\frac{X^{*}(s)}{|X(s)|} 1_{(X(s) \neq 0)},
$$

it holds

$$
\theta(s) \theta^{*}(s)=\frac{X^{*}(s)}{|X(s)|} \frac{X(s)}{|X(s)|} 1_{(X(s) \neq 0)}=1_{(X(s) \neq 0)}
$$

hence

$$
\int_{0}^{t} \theta(s) \theta^{*}(s) d s=\int_{0}^{t} 1_{(X(s) \neq 0)} d s=t-\int_{0}^{t} 1_{(X(s)=0)} d s
$$

Finally, using the Fubini theorem yields

$$
\mathbb{E} \int_{0}^{t} 1_{(X(s)=0)} d s=\int_{0}^{t} \mathbb{P}[X(s)=0] d s=0
$$

hence

$$
\int_{0}^{t} 1_{(X(s)=0)} d s=0
$$

almost surely, since a nonnegative random variable with zero expectation is almost surely equal to zero. Therefore

$$
\int_{0}^{t} \theta(s) \theta^{*}(s) d s=t
$$

almost surely for any $t \geq 0$, and it follows from the result proved at question (i) that the process defined by

$$
W(t)=\int_{0}^{t} \theta(s) d B(s)
$$

for any $t \geq 0$, is a one-dimensional standard Brownian motion, and

$$
\int_{0}^{t} X^{*}(s) d B(s)=\int_{0}^{t}|X(s)| \theta(s) d B(s)=\int_{0}^{t}|X(s)| d W(s)
$$

It can be shown that there exists a unique solution (even though the diffusion coefficient is only Hölder continuous) to this one-dimensional SDE. The boundary $\{0\}$ is never reached, and if the initial condition is $V(0)=0$ then the boundary $\{0\}$ is left immediately and never returned to.

Consider the hitting time

$$
T_{a}=\inf \{t \geq 0: V(t) \geq a\}=\inf \{t \geq 0:|X(t)| \geq \sqrt{a}\}
$$

and the related Laplace transform

$$
u(x)=\mathbb{E}_{0, x}\left[\exp \left\{-\lambda T_{a}\right\}\right],
$$

defined for any $0 \leq x \leq a$ and for any $\lambda>0$. Clearly, the function $u(x)$ is finite near $x=0$, and takes the value 1 at $x=a$.
(ix) Give the expression of the second-order partial differential operator associated with the squared Ornstein-Uhlenbeck process.
Prove that the Laplace transform $u(x)$ satisfies the ODE

$$
\begin{equation*}
2 x u^{\prime \prime}(x)+(2-2 c x) u^{\prime}(x)-\lambda u(x)=0, \tag{2}
\end{equation*}
$$

for any $0<x<a$, and give the two boundary conditions satisfied near $x=0$ and at $x=a$.
\qquad
The second-order partial differential operator associated with the squared radial OrnsteinUhlenbeck process is

$$
L=2 x \frac{d^{2}}{d x^{2}}+(2-2 c x) \frac{d}{d x},
$$

hence the PDE

$$
L u(x)-\lambda u(x)=0,
$$

satisfied by the Laplace transform $u(x)$ reduces to the ODE

$$
2 x u^{\prime \prime}(x)+(2-2 c x) u^{\prime}(x)-\lambda u(x)=0,
$$

for any $0<x<a$, with the two constraints that

- it should be finite near $x=0$, i.e. $u(0+)$ is finite,
- it should take the value 1 at $x=a$, i.e. $u(a)=1$.

The explicit solution to this boundary-value problem involves confluent hypergeometric functions: some facts about these special functions are collected in the Appendix.
(x) Check that if the function $w(x)$ is a particular solution of (4) with $a=\frac{\lambda}{2 c}$ and $b=1$, then the function defined by $u(x)=w(c x)$ for any $x \geq 0$ is a particular solution of (2).

If the function $w(x)$ solves the ODE

$$
x w^{\prime \prime}(x)+(1-x) w^{\prime}(x)-\frac{\lambda}{2 c} w(x)=0
$$

then upon an obvious change of variable it holds

$$
c x w^{\prime \prime}(c x)+(1-c x) w^{\prime}(c x)-\frac{\lambda}{2 c} w(c x)=0,
$$

for any $x \geq 0$. Using the chain rule, the function $u(x)=w(c x)$ satisfies

$$
u^{\prime}(x)=c w^{\prime}(c x) \quad \text { and } \quad u^{\prime \prime}(x)=c^{2} w^{\prime \prime}(c x)
$$

Therefore

$$
\begin{aligned}
& 2 x u^{\prime \prime}(x)+(2-2 c x) u^{\prime}(x)-\lambda u(x) \\
& \quad=2 x c^{2} w^{\prime \prime}(c x)+(2-2 c x) c w^{\prime}(c x)-\lambda w(c x) \\
& \quad=2 c\left[c x w^{\prime \prime}(c x)+(1-c x) w^{\prime}(c x)-\frac{\lambda}{2 c} w(c x)\right]
\end{aligned}
$$

and it follows from $(\star \star)$ that

$$
2 x u^{\prime \prime}(x)+(2-2 c x) u^{\prime}(x)-\lambda u(x)=0
$$

Clearly, the functions defined by $u_{1}(x)=M\left(\frac{\lambda}{2 c}, 1, c x\right)$ and by $u_{2}(x)=U\left(\frac{\lambda}{2 c}, 1, c x\right)$ for any $x \geq 0$ are two particular solutions of (2) These two particular solutions are linearly independent, so that any solution of (2) is a linear combination

$$
u(x)=c_{1} u_{1}(x)+c_{2} u_{2}(x)=c_{1} M\left(\frac{\lambda}{2 c}, 1, c x\right)+c_{2} U\left(\frac{\lambda}{2 c}, 1, c x\right)
$$

(xi) Show that the Laplace transform is given by

$$
u(x)=\frac{M\left(\frac{\lambda}{2 c}, 1, c x\right)}{M\left(\frac{\lambda}{2 c}, 1, c a\right)}
$$

and in particular

$$
u(0)=\frac{1}{M\left(\frac{\lambda}{2 c}, 1, c a\right)}
$$

at $x=0$.

Solution \qquad
The two particular solutions $u_{1}(x)$ and $u_{2}(x)$ differ by their asymptotic behaviour near $x=0$. Indeed

$$
u_{1}(x)=M\left(\frac{\lambda}{2 c}, 1, c x\right) \sim 1
$$

meets the constraint that the solution should be finite near $x=0$. On the other hand

$$
u_{2}(x)=U\left(\frac{\lambda}{2 c}, 1, c x\right) \rightarrow \infty
$$

does not meet the constraint that the solution should be finite near $x=0$. Therefore, a solution of (2) that meets the constraint that it should be finite near $x=0$ is necessarily of the form

$$
u(x)=c_{1} M\left(\frac{\lambda}{2 c}, 1, c x\right)
$$

and the integration constant c_{1} is determined by the constraint that the solution should take the value 1 at $x=a$, hence

$$
c_{1}=\frac{1}{M\left(\frac{\lambda}{2 c}, 1, c a\right)}
$$

and

$$
u(x)=\frac{M\left(\frac{\lambda}{2 c}, 1, c x\right)}{M\left(\frac{\lambda}{2 c}, 1, c a\right)}
$$

and in particular

$$
u(0)=\frac{1}{M\left(\frac{\lambda}{2 c}, 1, c a\right)}
$$

at $x=0$.

Appendix: SPECIAL FUNCTIONS

Here are collected some facts about some special functions of interest, the modified Bessel functions and the confluent hypergeometric functions.

- The modified Bessel function of the first kind $I_{\nu}(x)$ (the exact expression of which is irrelevant here and which is available under MATLAB for instance) is a particular solution of the ODE

$$
\begin{equation*}
x^{2} w^{\prime \prime}(x)+x w^{\prime}(x)-\left(x^{2}+\nu^{2}\right) w(x)=0 \tag{3}
\end{equation*}
$$

Another particular solution of (3) is the modified Bessel function of the second kind $K_{\nu}(x)$ (the exact expression of which is irrelevant here as well). These two particular solutions differ by their asymptotic behaviour near $x=0$. Indeed

$$
\begin{aligned}
& I_{\nu}(x) \sim \frac{\left(\frac{1}{2} x\right)^{\nu}}{\Gamma(\nu+1)} \quad \text { for any } \nu \geq 0 \\
& K_{0}(x) \sim-\log x \quad \text { for } \nu=0 \\
& K_{\nu}(x) \sim \frac{1}{2} \frac{\Gamma(\nu)}{\left(\frac{1}{2} x\right)^{\nu}} \quad \text { for any } \nu>0
\end{aligned}
$$

Moreover, these two particular solutions are linearly independent, so that any solution of (3) is a linear combination $c_{1} I_{\nu}(x)+c_{2} K_{\nu}(x)$.

- The confluent hypergeometric function of the first kind $M(a, b, x)$ (also known as the Kummer function, the exact expression of which is irrelevant here) is a particular solution of the ODE

$$
\begin{equation*}
x w^{\prime \prime}(x)+(b-x) w^{\prime}(x)-a w(x)=0 . \tag{4}
\end{equation*}
$$

Another particular solution of (4) is the confluent hypergeometric function of the second kind $U(a, b, x)$ (also known as the Tricomi function, the exact expression of which is irrelevant here as well). These two particular solutions differ by their asymptotic behaviour near $x=0$. Indeed

$$
M(a, b, x) \sim 1 \quad \text { and } \quad U(a, b, x) \rightarrow \infty
$$

Moreover, these two particular solutions are linearly independent, so that any solution of (4) is a linear combination $c_{1} M(a, b, x)+c_{2} U(a, b, x)$.

