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◮ à Rocquencourt jusqu’en 1983
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Organisation pratique du cours

◮ cours magistral (5 fois 2 heures)

◮ TD (3 fois 2 heures)

◮ TP informatique, MATLAB ou R ou Python (3 fois 2 heures)
• par binôme
• rapport écrit + code source
• en cas de difficulté, e–mail à francois.le gland@inria.fr

support de cours

◮ planches présentées en cours magistral

◮ énoncés des TD ou TP

ressources : articles à télécharger, archives, etc.

people.rennes.inria.fr/Francois.Le_Gland/insa-rennes/

et le moodle !
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objective: find (and study) a continuous–time analogue to discrete–time
stochastic models, such as

Xk = f (Xk−1,Wk)

where Wk ’s are independent (non necessarily Gaussian) random variables

shall we succeed? yes and no
concept of a stochastic differential equation (SDE)

dX (t) = b(X (t)) dt + σ(X (t)) dB(t)

interpretation as random perturbation of (ordinary) differential equation

Ẋ (t) = b(X (t))

or in integral form

X (t) = X (0) +

∫ t

0

b(X (s)) ds +

∫ t

0

σ(X (s)) dB(s)

where dB(t)’s are independent random variables, precisely: Brownian
motion increments B(tn)− B(tn−1), · · · ,B(t1)− B(t0) are independent
random variables for any finite subset t0 < t1 < · · · < tn, and for any
0 ≤ s ≤ t the distribution of the r.v. B(t)−B(s) depends only on (t − s)
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loss of generality: increments should necessarily be Gaussian +
noise–dependence is additive

yet some benefit: stochastic differential calculus, e.g. Itô formula (chain
rule) yields SDE for φ(X (t))

dφ(X (t)) = Lφ(X (t)) dt + φ′(X (t))σ(X (t)) dB(t)

this is in constrast with discrete–time counterpart: indeed, if

Xk = f (Xk−1) +Wk

holds with additive noise, this structure is not preserved under mapping,
i.e.

φ(Xk) = φ(f (Xk−1) +Wk)

does not exhibit additive noise structure
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Stochastic processes

Definition a stochastic process is a collection X = (X (t) , 0 ≤ t ≤ T ) or
X = (X (t) , t ≥ 0) of r.v.’s (measurable maps defined on a common
probability space (Ω,F ,P) and taking values in a space (E , E) (typically
E = R

d with its Borel σ–field E) indexed by I = [0,T ] or I = [0,∞)
respectively

Definition finite–dimensional distributions of the stochastic process X are
joint probability distributions of r.v.s such as (X (t1), · · · ,X (tn)) for any
finite subset t1 < · · · < tn of indices, i.e.

µt1 · · · tn(A1 × · · · × An) = P[X (t1) ∈ A1, · · · ,X (tn) ∈ An]
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Theorem 1 * [Kolmogorov extension theorem] given the collection of
finite–dimensional distributions defined for all possible finite subsets of I ,
there exists a unique probability distribution µX (called the probability
distribution of the process X ) on the set E I (of all mappings defined on I

and taking values in E ), whose restriction (marginals) to any finite subset
of indices coincides with the prescribed finite–dimensional distribution

in other words: the distribution of a stochastic process is completely
characterized by the collection of all its finite–dimensional distributions
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Definition a process X has almost surely continuous sample paths iff the
set

{ω ∈ Ω : the mapping t 7→ X (t, ω) is continuous on I}

has probability 1

in other words: a process with almost surely continuous sample paths on
I = [0,T ] can be seen as a r.v. on the functional space C ([0,T ],E ) of
continuous mappings

Theorem 2 * [Kolmogorov continuity criterion] if there exist positive
constants α, β > 0 and C > 0 such that for any t, s ≥ 0

E|X (t)− X (s)|β ≤ C |t − s|1+α

then almost surely the process X has continuous sample paths
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Brownian motion

Definition a Brownian motion B is a process with

◮ independent and stationary increments, i.e.
for any finite subset t0 < t1 < · · · < tn of indices the r.v.’s
B(tn)− B(tn−1), · · · ,B(t1)− B(t0) are independent, and
for any 0 ≤ s ≤ t the distribution of the r.v. B(t)− B(s) depends
only on (t − s)

◮ continuous in probability sample paths, i.e. for any δ > 0

P[|B(t + h)− B(t)| > δ] → 0

as h ↓ 0
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Remark * necessarily, such a process is Gaussian, and for any 0 ≤ s ≤ t

the variance of the increment B(t)− B(s) is proportional (t − s)

if X is a Gaussian r.v. with zero mean and variance σ2, then
E|X |4 = 3σ4, hence

E|B(t)− B(s)|4 = C |t − s|2

and it follows from the Kolmogorov criterion that a Brownian motion has
almost surely continuous sample paths

Remark necessarily, these sample paths cannot be differentiable (even in
a weak sense) since

E|
B(t + h)− B(t)

h
|2 = C

1

h

does not have a finite limit as h ↓ 0
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this discussion justifies the following equivalent

Definition a Brownian motion B is a process with
◮ independent and Gaussian increments, i.e.

for any finite subset t0 < t1 < · · · < tn of indices the r.v.’s
B(tn)− B(tn−1), · · · ,B(t1)− B(t0) are independent, and
for any 0 ≤ s ≤ t the distribution of the r.v. B(t)− B(s) is
N (0, (t − s)σ2)

◮ almost surely continuous sample paths

without loss of generality, it is assumed that B(0) = 0, i.e. a Brownian
motion starts at zero

if σ2 = 1 in the definition, the Brownian motion is called a standard
Brownian motion

Proposition 3 a process B is a Brownian motion iff B is a zero mean
Gaussian process with correlation function

K (s, t) = E[B(t)B(s)] = (s ∧ t)σ2

and almost surely continuous sample paths
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Proof ’only if’ part: for any finite subset t0 < t1 < · · · < tn of indices,
the r.v. (B(t0),B(t1), · · · ,B(tn)) is a linear transformation of the r.v.
(B(t0)−B(0),B(t1)−B(t0), · · · ,B(tn)−B(tn−1)) (a Gaussian r.v. since
its components are Gaussian independent r.v.’s) hence it is Gaussian

clearly, if 0 ≤ s ≤ t then

E[B(t)] = E[B(t)− B(s)] + E[B(s)] = E[B(s)] = E[B(0)] = 0

and

K (s, t) = E[B(t)B(s)] = E[(B(t)− B(s))B(s)] + E|B(s)|2 = s σ2
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’if’ part: conversely, for any finite subset t0 < t1 < · · · < tn of indices,
the r.v. (B(t1)− B(t0), · · · ,B(tn)− B(tn−1)) is a linear transformation
of the Gaussian r.v. (B(t0),B(t1), · · · ,B(tn)) hence it is Gaussian

clearly, for any i = 1 · · · n

E[(B(ti )− B(ti−1))
2]

= K (ti , ti )− 2K (ti−1, ti ) + K (ti−1, ti−1)

= (ti − 2 ti−1 + ti−1)σ
2 = (ti − ti−1)σ

2

and for any i , j = 1 · · · n with i 6= j , for instance tj−1 < tj ≤ ti−1 < ti

E[(B(tj)− B(tj−1)) (B(ti )− B(ti−1))]

= K (tj , ti )− K (tj , ti−1)− K (tj−1, ti ) + K (tj−1, ti−1)

= (tj − tj + tj−1 − tj−1)σ
2 = 0

hence the Gaussian r.v.’s B(tn)− B(tn−1), · · · ,B(t1)− B(t0) are
independent �
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multi–dimensional version

Definition a d–dimensional Brownian motion B with d × d covariance
matrix Σ is a process with

◮ independent and Gaussian increments, i.e.
for any finite subset t0 < t1 < · · · < tn of indices the r.v.’s
B(tn)− B(tn−1), · · · ,B(t1)− B(t0) are independent, and
for any 0 ≤ s ≤ t the distribution of the r.v. B(t)− B(s) is
N (0, (t − s) Σ)

◮ almost surely continuous sample paths

Proposition 4 * a process B is a d–dimensional Brownian motion with
d × d covariance matrix Σ iff B is a zero mean Gaussian process with
matrix–valued correlation function

K (s, t) = E[B(t)B∗(s)] = (s ∧ t) Σ

and almost surely continuous sample paths
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Exercise if B is a standard Brownian motion, then the processes defined
by: rescaling

X (t) = λB(
t

λ2
)

time inversion

X (t) =











t B(
1

t
) if t > 0

0 if t = 0

refreshing

X (t) = B(t + t0)− B(t0)

time reversal for 0 ≤ t ≤ T

X (t) = B(T − t)− B(T )

are also standard Brownian motions, i.e. have the same distribution as B
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Subdivisions
Definition for any n ≥ 1, let 0 = tn0 < tn1 < · · · < tnn = t be a subdivision
of [0, t] with ∆n = max

i=1···n
(tni − tni−1)

◮ a convergent subdivision scheme is such that ∆n → 0 as n ↑ ∞
◮ a fast subdivision scheme is any subsequence such that

∞
∑

k=1

∆n(k) < ∞

Remark clearly, ∆n ≥ t/n hence

∞
∑

n=1

∆n ≥ t

∞
∑

n=1

1

n
= ∞

i.e. the condition does not hold without taking a subsequence

Remark the dyadic subdivision, with n(k) = 2k and t
(k)
i = t i 2−k for

i = 0 · · · 2k , is a fast subdivision: indeed ∆n(k) = t 2−k and

∞
∑

k=1

∆n(k) = t

∞
∑

n=1

2−k = t < ∞
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Quadratic variation

Proposition 5 [quadratic variation] let B be a standard Brownian motion
and let 0 = tn0 < tn1 < · · · < tnn = t be a convergent subdivision of [0, t],
then

Vn(t) =

n
∑

i=1

(B(tni )− B(tni−1))
2 → t

in L
2 as n ↑ ∞, and the convergence holds almost surely along a fast

subdivision

Remark necessarily, Brownian motion sample paths cannot have finite
variation since

Vn(t) ≤ max
i=1···n

|B(tni )− B(tni−1)|
n

∑

i=1

|B(tni )− B(tni−1)|

19 / 46



Introduction Stochastic processes Brownian motion Continuous martingales

Proof interpretation as a sum of independent zero–mean r.v.’s

Vn(t)− t =
n

∑

i=1

[(B(tni )− B(tni−1))
2 − (tni − tni−1)]

expansion

|Vn(t)− t|2 =

n
∑

i=1

n
∑

j=1

[(B(tni )− B(tni−1))
2 − (tni − tni−1)]

[(B(tnj )− B(tnj−1))
2 − (tnj − tnj−1)]

and expectation yield

E|Vn(t)− t|2 =
n

∑

i=1

E|(B(tni )− B(tni−1))
2 − (tni − tni−1)|

2
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if X is a Gaussian r.v. with zero mean and variance σ2, then

E|X 2 − σ2|2 = E|X |4 − σ4 = 2σ4

in particular for X = B(tni )− B(tni−1), a Gaussian r.v. with zero mean
and variance σ2 = tni − tni−1, it holds

E|(B(tni )− B(tni−1))
2 − (tni − tni−1)|

2 = 2 (tni − tni−1)
2

hence

E|Vn(t)− t|2 = 2

n
∑

i=1

(tni − tni−1)
2

≤ 2 sup
i=1···n

(tni − tni−1)

n
∑

i=1

(tni − tni−1)

= 2 t∆n → 0

as n ↑ ∞, which shows the first part
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it follows from the Markov inequality that for any δ > 0

P[|Vn(k)(t)− t| > δ] ≤
1

δ2
E|Vn(k)(t)− t|2 ≤

2 t

δ2
∆n(k)

just as in the Borel–Cantelli lemma, notice that the events

Ap =
⋃

k≥p

{|Vn(k)(t)− t| > δ}

form a non–increasing sequence, i.e. Ap ⊆ Ap−1, hence

P[
⋂

p≥1

⋃

k≥p

{|Vn(k)(t)− t| > δ} ] = lim
p↑∞

P[
⋃

k≥p

{|Vn(k)(t)− t| > δ} ]

≤ lim
p↑∞

∑

k≥p

P[|Vn(k)(t)− t| > δ]

≤
2 t

δ2
lim
p↑∞

∑

k≥p

∆n(k) = 0

hence
P[

⋃

p≥1

⋂

k≥p

{|Vn(k)(t)− t| ≤ δ} ] = 1 �
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Corollary 6 let B be a standard Brownian motion, and let
0 = tn0 < tn1 < · · · < tnn = t be a convergent subdivision of [0, t], then

n
∑

i=1

1
2 (B(t

n
i ) + B(tni−1)) (B(t

n
i )− B(tni−1)) =

1
2 B

2(t)

and
n

∑

i=1

B(tni−1) (B(t
n
i )− B(tni−1)) →

1
2 (B

2(t)− t)

in L
2 as n ↑ ∞, and the convergence holds almost surely along a fast

subdivision
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Proof interpretation as a telescopic sum yields
n

∑

i=1

(B(tni ) + B(tni−1)) (B(t
n
i )− B(tni−1))

=

n
∑

i=1

(B2(tni )− B2(tni−1)) = B2(tnn )− B2(tn0 ) = B2(t)

and using the identity

x = 1
2 (x

′ + x)− 1
2 (x

′ − x)

yields
n

∑

i=1

B(tni−1) (B(t
n
i )− B(tni−1))

= 1
2

n
∑

i=1

(B(tni ) + B(tni−1)) (B(t
n
i )− B(tni−1))

− 1
2

n
∑

i=1

(B(tni )− B(tni−1))
2

�
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multi–dimensional version

Proposition 7 [quadratic co–variation] let B be a d–dimensional
Brownian motion with covariance matrix Σ, and let
0 = tn0 < tn1 < · · · < tnn = t be a convergent subdivision of [0, t], then

Vn(t) =

n
∑

i=1

(B(tni )− B(tni−1)) (B(t
n
i )− B(tni−1))

∗ → t Σ

in L
2 as n ↑ ∞, and the convergence holds almost surely along a fast

subdivision
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Proof for any u ∈ R
d , the one–dimensional process u∗ B(t) is a Brownian

motion with variance σ2 = u∗ Σ u, hence

u∗ Vn(t) u =

n
∑

i=1

(u∗ (B(tni )− B(tni−1)))
2

=
n

∑

i=1

(
u∗ (B(tni )− B(tni−1))

σ
)2 u∗ Σ u

→ t u∗ Σ u

and by polarization, for any u, v ∈ R
d

u∗ Vn(t) v → t u∗ Σ v

in L
2 as n ↑ ∞, and the convergence holds almost surely along a fast

subdivision �
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Filtrations

Definition a filtration is a non–decreasing collection F = (F(t) , t ≥ 0)
of σ–algebras, and a stochastic process X = (X (t) , t ≥ 0) is said
adapted w.r.t. F (or simply adapted) if for any t ≥ 0 the r.v. X (t) is
measurable w.r.t. F(t)

Definition an adapted standard Brownian motion B is a process with

◮ independent and Gaussian increments, i.e.
for any 0 ≤ s ≤ t the r.v. B(t)− B(s) is independent of F(s) and
its distribution is N (0, (t − s))

◮ almost surely continuous sample paths
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Martingales

Definition a stochastic process M = (M(t) , t ≥ 0) is a martingale (or a
submartingale, or a supermartingale), iff

◮ it is adapted and integrable, i.e. for any t ≥ 0 the r.v. M(t) is
measurable w.r.t. F(t) and E|M(t)| < ∞

◮ for any 0 ≤ s ≤ t

E[M(t) | F(s)] = M(s)

(or

E[M(t) | F(s)] ≥ M(s) or E[M(t) | F(s)] ≤ M(s)

respectively)
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Proposition 8 let M be martingale and φ be a convex function
if the process N defined by N(t) = φ(M(t)) is integrable, then it is a
submartingale

Proof for any 0 ≤ s ≤ t, the Jensen inequality yields

E[N(t) | F(s)] = E[φ(M(t)) | F(s)]

≥ φ(E[M(t) | F(s)]) = φ(M(s)) = N(s) �

Example let B be a Brownian motion, then B and the processes M and
Z defined by

M(t) = B2(t)− t and Z (t) = exp{λB(t)− 1
2 λ

2 t}

are martingales
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Doob inequality
Theorem 9 [Doob maximal inequality] let M be a continuous martingale
with finite p–th moments (i.e. E|M(t)|p < ∞ for any t ≥ 0) for some
p > 1, then for any λ > 0

P[ max
0≤s≤t

|M(s)| ≥ λ] ≤
1

λp
E|M(t)|p

Remark the maximum is controlled by the final value, i.e. uniform control
holds in terms of the final value

Remark this inequality generalizes the Markov inequality valid in the
static case for a single square integrable r.v.

Doob maximal inequality is a consequence of the following

Proposition 10 let X be a continuous non–negative submartingale, then
for any λ > 0

P[ max
0≤s≤t

X (s) ≥ λ] ≤
1

λ
E[X (t) 1{ max

0≤s≤t
X (s) ≥ λ}] ≤

1

λ
E[X (t)]

30 / 46



Introduction Stochastic processes Brownian motion Continuous martingales

Proof of Doob maximal inequality (as a consequence of the Proposition)
if M is a continuous martingale with finite p–th moments, then |M|p is a
continuous non–negative submartingale, and applying the Proposition
yields

P[ max
0≤s≤t

|M(s)| ≥ λ] = P[ max
0≤s≤t

|M(s)|p ≥ λp] ≤
1

λp
E|M(t)|p

Proof of the Proposition the estimate if first proved for the maximum
over any finite subdivision 0 = tn0 < tn1 < · · · < tnn = t of [0, t]

the submartingale property yields

E[X (t) | F(tni )] ≥ X (tni )

let K = min{i = 0 · · · n : X (tni ) ≥ λ} or K = +∞ if such an index does
not exist, clearly {K = i} ∈ F(tni ) and

E[1{K = i} X (tni )] ≥ λ P[K = i ]
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P[ max
i=0···n

X (tni ) ≥ λ] = P[K ≤ n] =

n
∑

i=0

P[K = i ]

≤
1

λ

n
∑

i=0

E[1{K = i} X (tni )]

≤
1

λ

n
∑

i=0

E[1{K = i} E[X (t) | F(tni )] ]

=
1

λ

n
∑

i=0

E[1{K = i} X (t)]

=
1

λ
E[X (t) 1{K ≤ n}]

≤
1

λ
E[X (t) 1{ max

0≤s≤t
X (s) ≥ λ}]
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notice that the dyadic subdivision at level k is a refined subdivision of the
dyadic subdivision at coarser level (k − 1), since

{t i 2−(k−1) , i = 0 · · · 2k−1} = {t i 2−k , i = 0 · · · 2k , for even i}

⊂ {t i 2−k , i = 0 · · · 2k}

hence the events
Ak = { max

i=0···2k
X (t

(k)
i ) ≥ λ}

form a non–decreasing sequence, i.e. Ak ⊇ Ak−1

furthermore, continuity of sample paths yields

P[ max
0≤s≤t

X (s) ≥ λ] = P[
⋃

k≥1

{ max
i=0···2k

X (t
(k)
i ) ≥ λ} ]

= lim
k↑∞

P[ max
i=0···2k

X (t
(k)
i ) ≥ λ]

≤
1

λ
E[X (t) 1{ max

0≤s≤t
X (s) ≥ λ}] ≤

1

λ
E[X (t)] �
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Corollary 11 [Doob inequality] let M be a continuous martingale with
finite p–th moments (i.e. E|M(t)|p < ∞ for any t ≥ 0) for some p > 1,
then

{E( max
0≤s≤t

|M(s)|)p}1/p ≤
p

p − 1
{E|M(t)|p}1/p

Doob inequality is a consequence of the following

Lemma 12 let Y and Z be two non–negative r.v.’s such that for any
λ > 0

P[Y ≥ λ] ≤
1

λ
E[Z 1{Y ≥ λ}]

let F be a continuous non–decreasing function defined on [0,∞) (hence
F has finite variation) and null at 0, then

E[F (Y )] ≤ E[Z

∫ Y

0

1

λ
F (dλ) ]

in particular, if Z has finite p–th moments, then

{E[Y p]}1/p ≤
p

p − 1
{E[Z p]}1/p
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Proof of Doob inequality (as a consequence of the Lemma) if M is a
continuous martingale (with finite p–th moments), then |M| is a
continuous non–negative submartingale (also with finite p–th moments),
hence

P[ max
0≤s≤t

|M(s)| ≥ λ] ≤
1

λ
E[ |M(t)| 1{ max

0≤s≤t
|M(s)| ≥ λ}]

and the result follows from applying the Lemma with

Y = max
0≤s≤t

|M(s)| and Z = |M(t)| �
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Proof of the Lemma by definition

E[F (Y )] = E[

∫ Y

0

F (dλ) ]

= E[

∫ ∞

0

1{0 ≤ λ ≤ Y } F (dλ) ]

=

∫ ∞

0

P[Y ≥ λ] F (dλ)

≤

∫ ∞

0

1

λ
E[Z 1{Y ≥ λ}] F (dλ)

= E[Z

∫ ∞

0

1

λ
1{Y ≥ λ} F (dλ) ]

= E[Z

∫ Y

0

1

λ
F (dλ) ]
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in particular for F (λ) = λp, it holds

E[Y p] ≤ p E[Z

∫ Y

0

1

λ
λp−1 dλ ] =

p

p − 1
E[Z Y p−1]

the Hölder inequality with conjugate exponents p, p′ yields

E[Z Y p−1] ≤ {E[Z p]}1/p {E[Y (p−1) p′

]}1/p
′

= {E[Z p]}1/p {E[Y p]}1/p
′

since (p − 1) p′ = p, and finally

E[Y p] ≤
p

p − 1
E[Z Y p−1] ≤

p

p − 1
{E[Z p]}1/p {E[Y p]}1/p

′

or equivalently

{E[Y p]}1/p ≤
p

p − 1
{E[Z p]}1/p �
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Stopping times

Definition a stopping time τ is a r.v. with values in [0,+∞) ∪ {+∞}
such that for all t ≥ 0

{τ ≤ t} ∈ F(t)

i.e. whether τ ≤ t or not, can be decided given events up to time t

Example let X be a continuous process with values in R
d and let F ⊆ R

d

be a closed subset, then the hitting time

τF =







inf{t ≥ 0 : X (t) ∈ F} if such a time exists

+∞ otherwise

is a stopping time
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Definition the σ–algebra of events determined prior to the stopping time

τ is defined by: A ∈ F(τ) iff for any t ≥ 0

A ∩ {τ ≤ t} ∈ F(t)

Theorem 13 [optional sampling] let M be a continuous martingale (or a
submartingale), and let 0 ≤ σ ≤ τ ≤ cst < ∞ be two bounded stopping
times, then

E[M(τ) | F(σ)] = M(σ)

(or
E[M(τ) | F(σ)] ≥ M(σ)

respectively)
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Proof assume 0 ≤ σ ≤ τ ≤ T < ∞, and let 0 = tn0 < tn1 < · · · < tnn = T

be a convergent subdivision of [0,T ], so that the sequence defined by
Mn

k = M(tnk ) is a discrete–time martingale for the filtration Fn
k = F(tnk )

clearly, the r.v. defined by

τn =







tnk if tnk−1 < τ ≤ tnk

tn1 if τ ≤ tn1

is a stopping time: indeed

{τn = tnk } = {tnk−1 < τ ≤ tnk } hence {τn ≤ tnk } = {τ ≤ tnk } ∈ F(tnk )

moreover τn ↓ τ almost surely as n ↑ ∞, since 0 ≤ τn − τ ≤ ∆n, so that
M(τn) → M(τ) almost surely as n ↑ ∞ by continuity of the sample paths

note also that the r.v. defined by

K =







k if tnk−1 < τ ≤ tnk

1 if τ ≤ tn1

is a stopping time (for the discrete–time filtration), and M(τn) = Mn
K
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similarly, let

σn =







tnk if tnk−1 < σ ≤ tnk

tn1 if σ ≤ tn1

so that M(σn) → M(σ) almost surely as n ↑ ∞, and let

J =







k if tnk−1 < σ ≤ tnk

1 if σ ≤ tn1

so that M(σn) = Mn
J

clearly 0 ≤ σn ≤ τn ≤ T and 1 ≤ J ≤ K ≤ n, and the optional sampling
theorem for discrete–time martingales yields

E[M(τn)] = E[Mn
K ] = E[Mn

J ] = E[M(σn)]

and also

E[M(T ) | F(τn)] = E[Mn
n | Fn

K ] = Mn
K = M(τn)
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it follows that the sequence M(τn) is uniformly integrable, and similarly
the sequence M(σn) is uniformly integrable, therefore
E[M(τn)] → E[M(τ)] and similarly E[M(σn)] → E[M(σ)] as n ↑ ∞, and
uniqueness of the limit yields

E[M(τ)] = E[M(σ)]

this identity holds for any stopping times σ and τ such that
0 ≤ σ ≤ τ ≤ T < ∞ holds, and notice that for any B ∈ F(σ), the r.v.’s

σB = σ 1B + T 1Bc and τB = τ 1B + T 1Bc

are stopping times such 0 ≤ σB ≤ τB ≤ T < ∞ holds: indeed

{τB ≤ t} = B ∩ {τ ≤ t} ∪ Bc ∩ {T ≤ t} = B ∩ {τ ≤ t} ∈ F(t)

for any 0 ≤ t < T (and trivially for any t ≥ T ), hence

E[M(τ) 1B ] + E[M(T ) 1Bc ] = E[M(σ) 1B ] + E[M(T ) 1Bc ]

or equivalently
E[M(τ) | F(σ)] = M(σ) �
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Corollary 14 let M be a continuous martingale (or submartingale), and let
0 ≤ s ≤ τ ≤ cst < ∞ for a bounded stopping time τ , then

E[M(τ) | F(s)] = M(s)

(or
E[M(τ) | F(s)] ≥ M(s)

respectively)

Theorem 15 [stopped martingale] let M be a continuous martingale (or
submartingale) and let τ be a (not necessarily finite) stopping time, then
the stopped process

X (t) = M(t ∧ τ) =







M(t) if τ ≥ t

M(τ) if τ ≤ t

is a continuous martingale (or submartingale, respectively)

43 / 46



Introduction Stochastic processes Brownian motion Continuous martingales

Proof let t ≥ s and notice that {τ ≤ s} ∈ F(s) and {τ > s} ∈ F(s)

firstly, on the event {τ ≤ s} and since 0 ≤ s ≤ t, then necessarily
0 ≤ τ ≤ s ≤ t and (t ∧ τ) = (s ∧ τ) = τ , hence

1{τ ≤ s} E[M(t ∧ τ) | F(s)] = E[1{τ ≤ s} M(t ∧ τ) | F(s)]

= E[1{τ ≤ s} M(s ∧ τ) | F(s)]

= 1{τ ≤ s} M(s ∧ τ)

secondly, on the event {τ > s} and since 0 ≤ s ≤ t, then necessarily
(t ∧ τ) ≥ s and ((t ∧ τ) ∨ s) = (t ∧ τ), hence

1{τ > s} E[M(t ∧ τ) | F(s)] = E[1{τ > s} M(t ∧ τ) | F(s)]

= E[1{τ > s} M((t ∧ τ) ∨ s) | F(s)]

= 1{τ > s} E[M((t ∧ τ) ∨ s) | F(s)]
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since 0 ≤ s ≤ t, then necessarily s ≤ ((t ∧ τ) ∨ s) ≤ t without any
condition on the stopping time τ , and the optional sampling theorem for
the bounded stopping time ((t ∧ τ) ∨ s) yields

E[M((t ∧ τ) ∨ s) | F(s)] = M(s)

and therefore

1{τ > s} E[M(t ∧ τ) | F(s)] = 1{τ > s} E[M((t ∧ τ) ∨ s) | F(s)]

= 1{τ > s} M(s)

= 1{τ > s} M(s ∧ τ)

the identity

E[X (t) | F(s)] = E[M(t ∧ τ) | F(s)] = M(s ∧ τ) = X (s)

holds on the event {τ ≤ s} and on the complement event {τ > s}, hence
it holds almost everywhere �
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Quadratic variation

Proposition 16 * [quadratic variation] let M be a continuous
square–integrable martingale and let 0 = tn0 < tn1 < · · · < tnn = t be a
convergent subdivision of [0, t], then

Vn(t) =
n

∑

i=1

(M(tni )−M(tni−1))
2 → 〈M〉(t)

in probability as n ↑ ∞, where the limit process 〈M〉 is the nondecreasing
process associated with the Doob decomposition of the submartingale
M2, i.e. the process M2 − 〈M〉 is a martingale
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