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STOCHASTIC INTEGRAL IN INTRINSIC CLOCK = BROWNIAN MOTION

Let B be a one-dimensional standard Brownian motion, with B(0) = 0, and adapted to a given
filtration F, and consider the stochastic process X defined by

X(t) = /0 6(u) dB(u)

for any ¢t > 0, where ¢ belongs to ]\412 ie.

oc’

At) = /0 () ? du < oo

almost surely, for any ¢ > 0.

(i) Write the It6 formula for the process X and for the complex—valued function
f(z) = exp{i Az} where the scalar \ is fixed, between the time instants s and t,
with 0 <s <t.

For any t > 0, define
7(t) =inf{s > 0 : / |p(w)|? du >t} |
0

if such time exists, and 7(¢) = oo otherwise.

(ii) For any t > 0, show that the random variable 7(¢) is a stopping time, and that
the equivalent definition

7(t) =inf{s >0 : /OS |p(u)|? du =t} .

holds, hence A(7(t)) = t.
Show that 7(¢) 1 co almost surely as t 1 co.



From now on, it is assumed that
OO 2
|10t du = oo
0
i.e. A(t) T oo almost surely as ¢ 1 0o, so that 7(t) < oo for any t < oo.

(iii) Show (a simple graphic could help to prove (a) and (b)) that
(a) the mapping t — 7(t) is non—decreasing and left—continuous,

(b) for any t,s >0
{A@) = s} = {7(s) <t} ,

(c) for any nonnegative Borel measurable function f and for any ¢ > 0
t 7(t)
| renas= [ raac)

0

[Hint: just prove (c) for any function f of the form of an indicator function, defined by f(s) =
1 (0<s<L for any s > 0 and for some L > 0 (the same result for an arbitrary nonnegative

Borel function would follow by a monotone class argument).]

The mapping 7 is called the intrinsic clock (or intrinsic time) for the stochastic process X, and
the time—changed stochastic process Z is defined by

7(t)
Z(t) = X(7(t)) = ¢(u) dB(u) ,

for any t > 0.

(iv) Using the representation obtained in question (i) and using the result obtained
in question (iii-c), show that

()
exp{iAZ(t)} = exp{iAZ(s)} +i\ / exp{i A\ X (u)} ¢(u) dB(u)

7(s)
t
— 1) / exp{iA\Z(u)}du ,
for any 0 < s < t.

Introduce the o—algebra A(t) = F(7(t)), i.e. A € A(t) iff for any u >0
An{r(t) <u} e F(u) .
If the stochastic process M, defined by the stochastic integral

M(t) = /0 exp{i A X (u)} 6(u) dB(u) .
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for any t > 0, would be a martingale, and if the stopping time 7(¢) would be almost surely
bounded, then the optional sampling theorem would yield

7(t)

E[M(7(t)) = M(7(s)) | A(s)] = E[/ exp{i A X (u)} ¢(u) dB(u) [ A(s)] =0,

T(S

for any 0 < s < t. The purpose of the next question is to show that the same identity holds in
the more general case considered here, where ¢ does belong to Ml%c only.

(v) Show that the stopped process M7(2), defined by M7™(2)(t) = M(t A7(ts)) for any
t > 0, is a square—integrable martingale, and that

7(t2)
| / expli A X (u)} 6(u) dB(u) | A(t1)] = 0 .
7(t1)

for any 0 < t; <ts.

[Hint: recall that for a uniformly integrable martingale, the optional sampling theorem holds
for any almost surely finite (and not necessarily bounded) stopping times.]

(vi) Show that the following identity
E[exp{i A (Z(t) = Z(s))} | A(s)] = exp{—3 \* (t = 5)} ,

holds for the conditional chraracteristic function.

Conclude that the process Z = (Z(t),t > 0) is a standard Brownian motion
w.r.t. the filtration A = (A(t), t > 0).

(vii) Show that

T
| otwasw

& — 0
| 16w du

0
almost surely as T 1 co.

[Hint: use the law of large numbers for Brownian motion.]
SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION

Consider the following statistical model: there exist a parametric family (Py, 6 € R) of proba-
bility measures and a one—dimensional stochastic process X, such that under Py it holds

dX (t) = 0b(X(t)) dt + dWp(t) ,

where Wy is a standard Brownian motion, and where the drift function b satisfies the global
Lipschitz and linear growth conditions.



It is assumed that the maximum likelihood estimator of the parameter # based on the observation
of (X(t),0<t<T)in the time interval [0,T] is given by the following expression

T
/0 b(X (1)) dX (1)

T
/O Ib(X ()2 dt

Let 6y denote the (unknown) true value of the parameter, and let Py = Py, denote the corre-
sponding probability measure.

0(T) =

(viii) Show that under Py the maximum likelihood estimator satisfies

T
/ b(X (1)) dWo ()

0 T
/0 B (1)) 2 e

where Wj is a standard Brownian motion.

é\(T) =00+

)

Note that this expression cannot be used in practice, since neither is (Wy(t), 0 < ¢ < T') observed
(available), nor is 0o known. The purpose of this expression is rather to analyze the behaviour
of the estimator (T'), for instance its asymptotic behaviour as T" 1 co.

(ix) Show that under Py the maximum likelihood estimator is strongly consistent,
i.e. §(T) — 6p almost surely as T 1 co.

Actually, studying the ratio of two random variables is not so easy, and it is more convenient to
study the time—changed estimator

T
O(H) =0(T(H)) where T(H)=inf{T >0 : / b(X(t)]*dt = H} .
0
(x) Show that under P, the time—changed maximum likelihood estimator satisfies
0(H) 90+/ )) dWo(t) .

The benefit of considering the time—changed maximum likelihood estimator is that the denom-
inator is now deterministic, and the problem reduces to studying a stochastic integral under its
intrinsic clock.

(xi) Using the results obtained in the first part, show that under Py the time-—
changed maximum likelihood estimator

e is strongly consistent, i.e. §(H) — 6y almost surely as H 1 oo,
e is unbiased (i.e. has a mean equal to the true value 6),
e has a (nonasymptotic) variance equal to 1/H,

e is normally distributed, with mean 6, and variance 1/H.



