INSA Rennes, 4GM-AROM

Random Models of Dynamical Systems Introduction to SDE's

Written Exam (aka DS)

January 8, 2019

STOCHASTIC INTEGRAL IN INTRINSIC CLOCK = BROWNIAN MOTION

Let B be a one-dimensional standard Brownian motion, with B(0) = 0, and adapted to a given filtration \mathcal{F} , and consider the stochastic process X defined by

$$X(t) = \int_0^t \phi(u) \, dB(u) \; ,$$

for any $t \geq 0$, where ϕ belongs to M_{loc}^2 , i.e.

$$A(t) = \int_0^t |\phi(u)|^2 du < \infty ,$$

almost surely, for any $t \geq 0$.

(i) Write the Itô formula for the process X and for the complex-valued function $f(x) = \exp\{i \, \lambda \, x\}$ where the scalar λ is fixed, between the time instants s and t, with $0 \le s \le t$.

For any $t \geq 0$, define

$$\tau(t) = \inf\{s \ge 0 : \int_0^s |\phi(u)|^2 du \ge t\}$$
,

if such time exists, and $\tau(t) = \infty$ otherwise.

(ii) For any $t \ge 0$, show that the random variable $\tau(t)$ is a stopping time, and that the equivalent definition

$$\tau(t) = \inf\{s \ge 0 : \int_0^s |\phi(u)|^2 du = t\} .$$

holds, hence $A(\tau(t)) = t$.

Show that $\tau(t) \uparrow \infty$ almost surely as $t \uparrow \infty$.

From now on, it is assumed that

$$\int_0^\infty |\phi(u)|^2 du = \infty ,$$

i.e. $A(t) \uparrow \infty$ almost surely as $t \uparrow \infty$, so that $\tau(t) < \infty$ for any $t < \infty$.

- (iii) Show (a simple graphic could help to prove (a) and (b)) that
 - (a) the mapping $t \mapsto \tau(t)$ is non–decreasing and left–continuous,
 - (b) for any $t, s \ge 0$

$${A(t) \ge s} = {\tau(s) \le t}$$
,

(c) for any nonnegative Borel measurable function f and for any t > 0

$$\int_0^t f(\tau(s)) ds = \int_0^{\tau(t)} f(s) dA(s) .$$

[Hint: just prove (c) for any function f of the form of an indicator function, defined by $f(s) = 1_{(0 \le s \le L)}$ for any $s \ge 0$ and for some L > 0 (the same result for an arbitrary nonnegative Borel function would follow by a monotone class argument).]

The mapping τ is called the *intrinsic clock* (or *intrinsic time*) for the stochastic process X, and the time–changed stochastic process Z is defined by

$$Z(t) = X(\tau(t)) = \int_0^{\tau(t)} \phi(u) dB(u) ,$$

for any $t \geq 0$.

(iv) Using the representation obtained in question (i) and using the result obtained in question (iii-c), show that

$$\exp\{i \,\lambda \, Z(t)\} \, = \, \exp\{i \,\lambda \, Z(s)\} + i \,\lambda \, \int_{\tau(s)}^{\tau(t)} \exp\{i \,\lambda \, X(u)\} \,\phi(u) \,dB(u)$$
$$- \, \frac{1}{2} \,\lambda^2 \, \int_s^t \exp\{i \,\lambda \, Z(u)\} \,du \,\,,$$

for any $0 \le s \le t$.

Introduce the σ -algebra $\mathcal{A}(t) = \mathcal{F}(\tau(t))$, i.e. $A \in \mathcal{A}(t)$ iff for any $u \geq 0$

$$A \cap \{\tau(t) \le u\} \in \mathcal{F}(u)$$
.

If the stochastic process M, defined by the stochastic integral

$$M(t) = \int_0^t \exp\{i \lambda X(u)\} \phi(u) dB(u) ,$$

for any $t \geq 0$, would be a martingale, and if the stopping time $\tau(t)$ would be almost surely bounded, then the optional sampling theorem would yield

$$\mathbb{E}[M(\tau(t)) - M(\tau(s)) \mid \mathcal{A}(s)] = \mathbb{E}[\int_{\tau(s)}^{\tau(t)} \exp\{i \, \lambda \, X(u)\} \, \phi(u) \, dB(u) \mid \mathcal{A}(s)] = 0 \ ,$$

for any $0 \le s \le t$. The purpose of the next question is to show that the same identity holds in the more general case considered here, where ϕ does belong to $M_{\rm loc}^2$ only.

(v) Show that the stopped process $M^{\tau(t_2)}$, defined by $M^{\tau(t_2)}(t) = M(t \wedge \tau(t_2))$ for any $t \geq 0$, is a square–integrable martingale, and that

$$\mathbb{E}\left[\int_{\tau(t_1)}^{\tau(t_2)} \exp\{i \lambda X(u)\} \phi(u) dB(u) \mid \mathcal{A}(t_1)\right] = 0.$$

for any $0 \le t_1 \le t_2$.

[Hint: recall that for a uniformly integrable martingale, the optional sampling theorem holds for any almost surely *finite* (and not necessarily *bounded*) stopping times.]

(vi) Show that the following identity

$$\mathbb{E}\left[\exp\left\{i\lambda\left(Z(t)-Z(s)\right)\right\} \mid \mathcal{A}(s)\right] = \exp\left\{-\frac{1}{2}\lambda^2\left(t-s\right)\right\} ,$$

holds for the conditional chraracteristic function.

Conclude that the process $Z=(Z(t)\,,\,t\geq 0)$ is a standard Brownian motion w.r.t. the filtration $\mathcal{A}=(\mathcal{A}(t)\,,\,t\geq 0)$.

(vii) Show that

$$\frac{\int_0^T \phi(u) dB(u)}{\int_0^T |\phi(u)|^2 du} \longrightarrow 0$$

almost surely as $T \uparrow \infty$.

[Hint: use the law of large numbers for Brownian motion.]

SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION

Consider the following statistical model: there exist a parametric family $(\mathbb{P}_{\theta}, \theta \in \mathbb{R})$ of probability measures and a one–dimensional stochastic process X, such that under \mathbb{P}_{θ} it holds

$$dX(t) = \theta b(X(t)) dt + dW_{\theta}(t)$$
,

where W_{θ} is a standard Brownian motion, and where the drift function b satisfies the global Lipschitz and linear growth conditions.

It is assumed that the maximum likelihood estimator of the parameter θ based on the observation of $(X(t), 0 \le t \le T)$ in the time interval [0, T] is given by the following expression

$$\widehat{\theta}(T) = \frac{\int_0^T b(X(t)) dX(t)}{\int_0^T |b(X(t))|^2 dt}.$$

Let θ_0 denote the (unknown) true value of the parameter, and let $\mathbb{P}_0 = \mathbb{P}_{\theta_0}$ denote the corresponding probability measure.

(viii) Show that under \mathbb{P}_0 the maximum likelihood estimator satisfies

$$\widehat{\theta}(T) = \theta_0 + \frac{\int_0^T b(X(t)) dW_0(t)}{\int_0^T |b(X(t))|^2 dt} ,$$

where W_0 is a standard Brownian motion.

Note that this expression cannot be used in practice, since neither is $(W_0(t), 0 \le t \le T)$ observed (available), nor is θ_0 known. The purpose of this expression is rather to analyze the behaviour of the estimator $\hat{\theta}(T)$, for instance its asymptotic behaviour as $T \uparrow \infty$.

(ix) Show that under \mathbb{P}_0 the maximum likelihood estimator is strongly consistent, i.e. $\widehat{\theta}(T) \to \theta_0$ almost surely as $T \uparrow \infty$.

Actually, studying the ratio of two random variables is not so easy, and it is more convenient to study the time-changed estimator

$$\overline{\theta}(H) = \widehat{\theta}(\tau(H))$$
 where $\tau(H) = \inf\{T \ge 0 : \int_0^T |b(X(t))|^2 dt = H\}$.

(x) Show that under \mathbb{P}_0 the time-changed maximum likelihood estimator satisfies

$$\overline{\theta}(H) = \theta_0 + \frac{1}{H} \int_0^{\tau(H)} b(X(t)) dW_0(t) .$$

The benefit of considering the time–changed maximum likelihood estimator is that the denominator is now deterministic, and the problem reduces to studying a stochastic integral under its intrinsic clock.

- (xi) Using the results obtained in the first part, show that under \mathbb{P}_0 the time-changed maximum likelihood estimator
 - is strongly consistent, i.e. $\bar{\theta}(H) \to \theta_0$ almost surely as $H \uparrow \infty$,
 - is unbiased (i.e. has a mean equal to the true value θ_0),
 - has a (nonasymptotic) variance equal to 1/H,
 - is normally distributed, with mean θ_0 and variance 1/H.