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Stochastic integral in intrinsic clock = Brownian motion

Let B be a one–dimensional standard Brownian motion, with B(0) = 0, and adapted to a given
filtration F , and consider the stochastic process X defined by

X(t) =

∫ t

0
φ(u) dB(u) ,

for any t ≥ 0, where φ belongs to M2
loc, i.e.

A(t) =

∫ t

0
|φ(u)|2 du <∞ ,

almost surely, for any t ≥ 0.

(i) Write the Itô formula for the process X and for the complex–valued function
f(x) = exp{i λ x} where the scalar λ is fixed, between the time instants s and t,
with 0 ≤ s ≤ t.

For any t ≥ 0, define

τ(t) = inf{s ≥ 0 :

∫ s

0
|φ(u)|2 du ≥ t} ,

if such time exists, and τ(t) =∞ otherwise.

(ii) For any t ≥ 0, show that the random variable τ(t) is a stopping time, and that
the equivalent definition

τ(t) = inf{s ≥ 0 :

∫ s

0
|φ(u)|2 du = t} .

holds, hence A(τ(t)) = t.

Show that τ(t) ↑ ∞ almost surely as t ↑ ∞.
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From now on, it is assumed that ∫ ∞

0
|φ(u)|2 du =∞ ,

i.e. A(t) ↑ ∞ almost surely as t ↑ ∞, so that τ(t) <∞ for any t <∞.

(iii) Show (a simple graphic could help to prove (a) and (b)) that

(a) the mapping t 7→ τ(t) is non–decreasing and left–continuous,

(b) for any t, s ≥ 0
{A(t) ≥ s} = {τ(s) ≤ t} ,

(c) for any nonnegative Borel measurable function f and for any t ≥ 0∫ t

0
f(τ(s)) ds =

∫ τ(t)

0
f(s) dA(s) .

[Hint: just prove (c) for any function f of the form of an indicator function, defined by f(s) =
1(0 ≤ s ≤ L) for any s ≥ 0 and for some L > 0 (the same result for an arbitrary nonnegative

Borel function would follow by a monotone class argument).]

The mapping τ is called the intrinsic clock (or intrinsic time) for the stochastic process X, and
the time–changed stochastic process Z is defined by

Z(t) = X(τ(t)) =

∫ τ(t)

0
φ(u) dB(u) ,

for any t ≥ 0.

(iv) Using the representation obtained in question (i) and using the result obtained
in question (iii-c), show that

exp{i λZ(t)} = exp{i λZ(s)}+ i λ

∫ τ(t)

τ(s)
exp{i λX(u)}φ(u) dB(u)

− 1
2 λ

2

∫ t

s
exp{i λZ(u)} du ,

for any 0 ≤ s ≤ t.

Introduce the σ–algebra A(t) = F(τ(t)), i.e. A ∈ A(t) iff for any u ≥ 0

A ∩ {τ(t) ≤ u} ∈ F(u) .

If the stochastic process M , defined by the stochastic integral

M(t) =

∫ t

0
exp{i λX(u)}φ(u) dB(u) ,
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for any t ≥ 0, would be a martingale, and if the stopping time τ(t) would be almost surely
bounded, then the optional sampling theorem would yield

E[M(τ(t))−M(τ(s)) | A(s)] = E[

∫ τ(t)

τ(s)
exp{i λX(u)}φ(u) dB(u) | A(s)] = 0 ,

for any 0 ≤ s ≤ t. The purpose of the next question is to show that the same identity holds in
the more general case considered here, where φ does belong to M2

loc only.

(v) Show that the stopped process M τ(t2), defined by M τ(t2)(t) = M(t∧ τ(t2)) for any
t ≥ 0, is a square–integrable martingale, and that

E[

∫ τ(t2)

τ(t1)
exp{i λX(u)}φ(u) dB(u) | A(t1)] = 0 .

for any 0 ≤ t1 ≤ t2.

[Hint: recall that for a uniformly integrable martingale, the optional sampling theorem holds
for any almost surely finite (and not necessarily bounded) stopping times.]

(vi) Show that the following identity

E[ exp{i λ (Z(t)− Z(s))} | A(s)] = exp{−1
2 λ

2 (t− s)} ,

holds for the conditional chraracteristic function.

Conclude that the process Z = (Z(t) , t ≥ 0) is a standard Brownian motion
w.r.t. the filtration A = (A(t) , t ≥ 0).

(vii) Show that ∫ T

0
φ(u) dB(u)∫ T

0
|φ(u)|2 du

−→ 0

almost surely as T ↑ ∞.

[Hint: use the law of large numbers for Brownian motion.]

Sequential maximum likelihood estimation

Consider the following statistical model: there exist a parametric family (Pθ , θ ∈ R) of proba-
bility measures and a one–dimensional stochastic process X, such that under Pθ it holds

dX(t) = θ b(X(t)) dt+ dWθ(t) ,

where Wθ is a standard Brownian motion, and where the drift function b satisfies the global
Lipschitz and linear growth conditions.

3



It is assumed that the maximum likelihood estimator of the parameter θ based on the observation
of (X(t) , 0 ≤ t ≤ T ) in the time interval [0, T ] is given by the following expression

θ̂(T ) =

∫ T

0
b(X(t)) dX(t)∫ T

0
|b(X(t))|2 dt

.

Let θ0 denote the (unknown) true value of the parameter, and let P0 = Pθ0 denote the corre-
sponding probability measure.

(viii) Show that under P0 the maximum likelihood estimator satisfies

θ̂(T ) = θ0 +

∫ T

0
b(X(t)) dW0(t)∫ T

0
|b(X(t))|2 dt

,

where W0 is a standard Brownian motion.

Note that this expression cannot be used in practice, since neither is (W0(t) , 0 ≤ t ≤ T ) observed
(available), nor is θ0 known. The purpose of this expression is rather to analyze the behaviour
of the estimator θ̂(T ), for instance its asymptotic behaviour as T ↑ ∞.

(ix) Show that under P0 the maximum likelihood estimator is strongly consistent,
i.e. θ̂(T )→ θ0 almost surely as T ↑ ∞.

Actually, studying the ratio of two random variables is not so easy, and it is more convenient to
study the time–changed estimator

θ(H) = θ̂(τ(H)) where τ(H) = inf{T ≥ 0 :

∫ T

0
|b(X(t))|2 dt = H} .

(x) Show that under P0 the time–changed maximum likelihood estimator satisfies

θ(H) = θ0 +
1

H

∫ τ(H)

0
b(X(t)) dW0(t) .

The benefit of considering the time–changed maximum likelihood estimator is that the denom-
inator is now deterministic, and the problem reduces to studying a stochastic integral under its
intrinsic clock.

(xi) Using the results obtained in the first part, show that under P0 the time–
changed maximum likelihood estimator

• is strongly consistent, i.e. θ(H)→ θ0 almost surely as H ↑ ∞,

• is unbiased (i.e. has a mean equal to the true value θ0),

• has a (nonasymptotic) variance equal to 1/H,

• is normally distributed, with mean θ0 and variance 1/H.
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