4GM INSA Rennes, cours ARO07-MSSD

Random Models of Dynamical Systems Introduction to SDE's

Written Exam (aka DS)

January 3, 2022

Exercise 1: Refined discretization of a Brownian trajectory

Let $B(t)$ be a d-dimensional standard Brownian motion. The purpose of this exercise is to characterise the conditional probability distribution of the random vector $B(s)$ given the pair $\left(B\left(t_{i-1}\right), B\left(t_{i}\right)\right)$, with $t_{i-1} \leq s \leq t_{i}$.
(i) Show that the characteristic function of the conditional probability distribution of the random vector $B(s)$ given the pair ($B\left(t_{i-1}\right), B\left(t_{i}\right)$) satisfies the identity

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left\{i u^{*} B(s)\right\} \mid B\left(t_{i-1}\right), B\left(t_{i}\right)\right] \\
& \quad=\exp \left\{i u^{*} B\left(t_{i-1}\right)\right\} \mathbb{E}\left[\exp \left\{i u^{*}\left(B(s)-B\left(t_{i-1}\right)\right)\right\} \mid B\left(t_{i}\right)-B\left(t_{i-1}\right)\right] .
\end{aligned}
$$

Recall the following result about conditioning in Gaussian random vectors. Let (X, Y) be a Gaussian random vector, with mean vector and covariance matrix

$$
\binom{\mu_{X}}{\mu_{Y}} \quad \text { and } \quad\left(\begin{array}{cc}
Q_{X} & Q_{X Y} \\
Q_{Y X} & Q_{Y}
\end{array}\right)
$$

respectively. If the covariance matrix Q_{Y} is invertible, then the conditional probability distribution of X given Y is a Gaussian probability distribution, with mean vector and covariance matrix given by

$$
\mu_{X \mid Y}=\mu_{X}+Q_{X Y} Q_{Y}^{-1}\left(Y-\mu_{Y}\right) \quad \text { and } \quad Q_{X \mid Y}=Q_{X}-Q_{X Y} Q_{Y}^{-1} Q_{Y X},
$$

respectively.
(ii) Show that the $2 d$-dimensional random vector $\left(B(s)-B\left(t_{i-1}\right), B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)$ is Gaussian, with zero mean vector and a covariance matrix to be specified.
Conclude that, conditionally with respect to the increment $B\left(t_{i}\right)-B\left(t_{i-1}\right)$, the increment $B(s)-B\left(t_{i-1}\right)$ is a Gaussian random vector, with a mean vector and a covariance matrix to be specified.
(iii) Conclude that, conditionally with respect to the pair $\left(B\left(t_{i-1}\right), B\left(t_{i}\right)\right.$), the random variable $B(s)$ is Gaussian, with mean vector

$$
B_{\operatorname{lin}}=\frac{t_{i}-s}{t_{i}-t_{i-1}} B\left(t_{i-1}\right)+\frac{s-t_{i-1}}{t_{i}-t_{i-1}} B\left(t_{i}\right),
$$

and covariance matrix

$$
\frac{\left(t_{i}-s\right)\left(s-t_{i-1}\right)}{t_{i}-t_{i-1}} I .
$$

Exercise 2: Brownian motion on the circle

Let $B(t)$ be a one-dimensional standard Brownian motion, and consider the two-dimensional (bilinear) SDE

$$
X(t)=X(0)-\frac{1}{2} \int_{0}^{t} X(s) d s+\int_{0}^{t} R X(s) d B(s)
$$

with initial condition $X(0)=(1,0)$, and with the 2×2 matrix

$$
R=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

(i) Check that this SDE has a unique solution.
(ii) Write the Itô formula for the Itô process $X(t)$ and for the real-valued function $f(x)=|x|^{2}$ defined on \mathbb{R}^{2}. Conclude that the solution satisfies the invariant: $|X(t)|^{2}=1$ for any $t \geq 0$.

Thinking in terms of polar coordinates, it follows from question (ii) that the process $X(t)$ takes its values on the unit circle, i.e. the radial component of the process $X(t)$ is constant, and it remains to describe the angular component of the process $X(t)$. Write

$$
X(t)=\binom{\cos \theta(t)}{\sin \theta(t)}
$$

and assume that the angular component $\theta(t)$ has the representation

$$
\theta(t)=\theta(0)+\int_{0}^{t} \psi(s) d s+\int_{0}^{t} \phi(s) d B(s),
$$

as a one-dimensional Itô process. For instance, the initial condition $X(0)=(1,0)$ would imply that $\theta(0)=0$ modulo 2π.
(iii) Get a representation of the process $X_{1}(t)=\cos \theta(t)$ as an Itô process.
[Hint: Write the Itô formula for the Itô process $\theta(t)$ and for the real-valued function $f_{1}(\theta)=$ $\cos \theta$.]
(iv) Similarly, get a representation of the process $X_{2}(t)=\sin \theta(t)$ as an Itô process.
[Hint: Write the Itô formula for the Itô process $\theta(t)$ and for the real-valued function $f_{2}(\theta)=$ $\sin \theta$.]
(v) Using the results obtained at questions (iii) and (iv), show that the process $X(t)$ has the representation

$$
X(t)=X(0)+\int_{0}^{t}\left[R X(s) \psi(s)-\frac{1}{2} X(s) \phi^{2}(s)\right] d s+\int_{0}^{t} R X(s) \phi(s) d B(s)
$$

as an Itô process.
(vi) Comparing the two representations of the process $X(t)$ as an an Itô process the representation provided by the SDE , and the representation obtained at question (\mathbf{v}) - show that the coefficients $\psi(s)$ and $\phi(s)$ are uniquely defined as $\psi(s)=0$ and $\phi(s)=1$ for any $s \geq 0$.
Conclude that the angular component $\theta(t)$ is a Brownian motion.
[Hint: The decomposition of a stochastic process as an Itô process is unique.]

Exercise 3: Bilinear SDE (GEneral case)

Let $B(t)$ be a p-dimensional standard Brownian motion, i.e. the components $B_{1}(t), \cdots, B_{p}(t)$ are p independent one-dimensional standard Brownian motions.
(i) Let the coefficients $\psi(s)$ and $\phi(s)=\left(\phi_{1}(s), \cdots, \phi_{p}(s)\right)$ be a scalar and a p-dimensional row vector, respectively. Show that the one-dimensional process $Z(t)$ is positive and has the representation

$$
Z(t)=Z(0)+\int_{0}^{t} Z(s) \psi(s) d s+\int_{0}^{t} Z(s) \phi(s) d B(s)
$$

as an Itô process, if and only if it has the explicit expression

$$
Z(t)=Z(0) \exp \left\{\int_{0}^{t}\left[\psi(s)-\frac{1}{2}|\phi(s)|^{2}\right] d s+\int_{0}^{t} \phi(s) d B(s)\right\}
$$

Both the representation as an Itô process and the explicit expression will be denoted by $\mathcal{E}(\psi, \phi)$.
[Hint: For the 'only if' part, write the Itô formula for the Itô process $Z(t)$ and for the real-valued function $g(z)=\log z$ defined on $(0, \infty)$. For the 'if' part, write the Itô formula for the Itô process $Y(t)=\log Z(t)$ and for the real-valued function $f(y)=\exp \{y\}$.]

This preliminary result will not be used before question (iv). Consider the d-dimensional SDE

$$
X(t)=X(0)+\int_{0}^{t} A_{0} X(s) d s+\sum_{i=1}^{p} \int_{0}^{t} A_{i} X(s) d B_{i}(s)
$$

where $A_{0}, A_{1}, \cdots, A_{p}$ are $d \times d$ matrices. Equivalently, introducing the $d \times p$ matrix

$$
A \cdot x=\left(A_{1} x \cdots A_{p} x\right)
$$

defined for any $x \in \mathbb{R}^{d}$, the p columns of which are d-dimensional column vectors, it holds

$$
X(t)=X(0)+\int_{0}^{t} A_{0} X(s) d s+\int_{0}^{t}(A \cdot X(s)) d B(s)
$$

in coordinate-free notation. Note that A is a linear mapping defined on \mathbb{R}^{d} and taking values in the space of $d \times p$ matrices, so that $A \cdot x$ is a $d \times p$ matrix for any $x \in \mathbb{R}^{d}$, however A alone is not a matrix.

(ii) Check that this SDE has a unique solution.

Thinking in terms of spherical coordinates, introduce the two processes

$$
\xi(t)=\frac{X(t)}{|X(t)|} \quad \text { and } \quad \rho(t)=\log |X(t)|
$$

a spherical component taking values in the $(d-1)$-dimensional unit sphere $S^{d-1} \subset \mathbb{R}^{d}$ and a \log-radial component taking values in the real line \mathbb{R}, respectively.
(iii) Get a representation of the process $Z(t)=|X(t)|^{2}$ as an Itô process.
[Hint: Write the Itô formula for the Itô process $X(t)$ and for the real-valued function $f(x)=|x|^{2}$ defined on \mathbb{R}^{d}.]
The next question relies on the preliminary result obtained at question (i).
(iv) Check that the process $Z(t)=|X(t)|^{2}$ has the representation $\mathcal{E}\left(\psi^{(2)}, \phi^{(2)}\right)$ as an Itô process with coefficients

$$
\psi^{(2)}(s)=2 \xi^{*}(s) A_{0} \xi(s)+\left|A_{1} \xi(s)\right|^{2}+\cdots+\left|A_{p} \xi(s)\right|^{2}
$$

and

$$
\phi^{(2)}(s)=2\left(\xi^{*}(s) A_{1} \xi(s), \cdots, \xi^{*}(s) A_{p} \xi(s)\right)
$$

a scalar and a p-dimensional row vector, respectively.

Get a representation of the log-radial component $\rho(t)$ as an Itô process, with coefficients that depend on the spherical component only, and not on the radial component.
Check that the process $|X(t)|$ has the representation $\mathcal{E}\left(\psi^{(1)}, \phi^{(1)}\right)$ as an Itô process with coefficients

$$
\begin{aligned}
\psi^{(1)}(s)= & \frac{1}{2} \psi^{(2)}(s)-\frac{1}{8}\left|\phi^{(2)}(s)\right|^{2} \\
= & \xi^{*}(s) A_{0} \xi(s)+\frac{1}{2}\left|A_{1} \xi(s)\right|^{2}+\cdots+\frac{1}{2}\left|A_{p} \xi(s)\right|^{2} \\
& \quad-\left[\frac{1}{2}\left(\xi^{*}(s) A_{1} \xi(s)\right)^{2}+\cdots+\frac{1}{2}\left(\xi^{*}(s) A_{p} \xi(s)\right)^{2}\right],
\end{aligned}
$$

and

$$
\phi^{(1)}(s)=\frac{1}{2} \phi^{(2)}(s)=\left(\xi^{*}(s) A_{1} \xi(s), \cdots, \xi^{*}(s) A_{p} \xi(s)\right),
$$

a scalar and a p-dimensional row vector, respectively.
[Hint: Use the preliminary result obtained at question (i) and simple algebra. In other words, stochastic calculus and the Itô formula are not needed here.]
(v) Show that the spherical component $\xi(t)$ is the solution of an autonomous SDE, with drift and diffusion coefficients that depend on the spherical component only, and not on the radial component.
[Hint: Write the Itô formula for the Itô process $(V(t), W(t))$ where $V(t)=u^{*} X(t), u$ is an arbitrary d-dimensional vector and $W(t)=|X(t)|$, and for the real-valued function $f(v, w)=$ v / w defined on $\mathbb{R} \times(0, \infty)$.]

