Online Monitoring of Software System Reliability

Roberto Pietrantuono
The Mobilab Research Group
Computer Science and Systems department
University of Naples Federico II
80125 Naples, Italy
roberto.pietrantuono@unina.it

Stefano Russo
The Mobilab Research Group
Computer Science and Systems department
University of Naples Federico II
80125 Naples, Italy
Stefano.Russo@unina.it

Kishor S. Trivedi
Dept. of Electrical & Computer Engineering
Duke University
Durham, NC 27708
USA
kst@ee.duke.edu
Context

Software Reliability

- Assuring software reliability is gaining importance
- “Reactive” vs. “proactive” policies for reliability/availability assurance
- “Proactive” means acting before the system failure occurrence
 - by attempting to forecast the failure and
 - by taking proper actions to avoid the system failure

Software Reliability Evaluation

- Proactively acting to assure a reliability level at runtime requires evaluating reliability during the execution

OUR GOAL: propose a solution for Online Software Reliability Evaluation
Reliability Evaluation Solutions

Model-based

- Compositional approaches
- Decomposition/aggregation
- Derived from high level specification

- A relevant class is *Architecture-based models*
 - State-based
 - Path-based
 - Additive

- Reliability usually estimated statically in the development phase

- *Models can be not enough representative of actual runtime behavior* => i.e., inaccuracy due to the necessary assumptions
Measurements-based

✓ Relies on operational data and statistical inference techniques

✓ However, real data are not always available

✓ Few insights about the internal dependencies among system components

✓ They are not suited for predictions on reliability aimed at taking proactive actions
Proposed Approach

- A method to estimate reliability at runtime, in two phases:
 1. A preliminary modeling phase, based on the development phase
 - An **architecture-based model** is used to give an estimate at software release
 2. A refinement phase, where data that become available as the execution proceeds are used to refine the model results
 - A **dynamic analysis tool** is used to continuously evaluate the “impact” of operational data on the current estimate
 - Real operational data are used to counterbalance potential errors due to the model simplifications and assumptions

Key idea: combine modeling power with operational data representativeness
Proposed Approach (2)
Modelling Phase

- Represent the system as an absorbing DTMC where
 - states are software components
 - transitions are the flow of control among them

- With this model, reliability can be estimated as:

\[
E[R_{sys}] \sim (\Pi_{i}^{n-1} R_{i} E[X_{1,i}]) \times R_{n}
\]

- \(E[X_{1,i}]\) is the expected number of visits from component 1 to \(i\), a.k.a. Visit Counts
- \(R_{i}\) are component reliabilities

\(R_{i}\) estimated as \(1 - \lim_{n_{i}} f_{i}/n_{i}\) with \(f_{i}\) being the number of failures and \(n_{i}\) the number of executions in \(N\) randomly generated test cases.
What affects the inaccuracy of this estimation are the assumptions on which it is based, e.g.:

1. First-order Markov chain
2. Operational profile mismatch
3. Components fail independently

To overcome these limitations a runtime refinement phase is carried out.
Runtime Phase

✓ As for the error type I, we record real “visits” among components and give an estimate of the random variables V_i.

✓ As for the error type II, we use dynamic analysis tool (Daikon) to:

 Testing Phase

 ✓ Instrument and Monitor components
 ✓ describe their behavior by observing interactions and building invariants on exchanged value
 ✓ (i.e., we build the “expected” behavioral model)

 Runtime Phase

 ✓ Detect at runtime deviations from the defined expected behavior.
 ✓ Each time components interact with each other in unexpected ways, a “penalty function” properly lowers the R_i value
Component reliabilities need to be reduced to consider new online behaviors, by a **penalty function**.

However, a deviation (**violation**) can be either an **incorrect behavior** or a **false-positive**.

At each time T a “penalty value” has to be chosen.

It considers a **risk** associated with the set of all violations occurred in that interval (called **Risk Factor, RF**)

Risk that the observed set of violations are incorrect behaviors
The risk that observed violations represent incorrect behaviors depends on:

- The number of **occurred violations**
- The number of **distinct program points** that experienced violations
- The **robustness** of the model (i.e., the confidence that can be given to the invariants)

\[RF_i = \frac{\#\text{Violation}}{\#\text{MaxViolation}} \times \frac{\#\text{DistinctPoints}}{\#\text{MonitoredPoints}} \]

\[R_{\text{ONLINE}i}^n = R_{\text{ONLINE}i}^{(n-1)} - R_{\text{ONLINE}i}^{(n-1)} \times RF_i \times W \]

- \(W \) is a parameter to tune how much RF has to impact on penalization:
 - Related to the confidence parameter in the built invariants
Evaluation

Case-study: a queuing systems simulator

Based on javasim

5426 LoC (without the jFreeChart code)

Components Identification: we considered Java packages as component granularity, getting to a set of 12 components
Testing Phase

180 test cases generated randomly picking valid combination of input parameters

- E.g., *interarrival time distribution, service time distribution, queue length, number of jobs, simulation method (independent replication or batch means), interarrival and service time means*

- Execution traces produced by Daikon

- R_i estimated as $1 - \frac{N_f}{N}$, with $N = 360$ additional executions
 - In our case $R_{EXP} = 0.9972$
 - Usually leads to overestimations, since the system is tested for its intended use
 - Runtime phase is responsible for adjusting it
Results

Evaluation Procedure

Runtime Phase

Defined equivalence classes from input parameters and generated 3 operational profiles

- a set of 30 executions per profile => the monitor is evaluated over 90 executions

Violations and **Visits** are observed at each T => RF_i and V_i estimation

$=> R_{ONLINE_i}$ computation $=> R_{ONLINE}$ (fixing R_{EXP} overestimation)

Parameters setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold (THR)</td>
<td>0.0027</td>
</tr>
<tr>
<td>$R_{MIN} = R_{EXP} - THR$</td>
<td>0.9945</td>
</tr>
<tr>
<td>T</td>
<td>30 sec.</td>
</tr>
<tr>
<td>W</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Results

Experiments that caused an alarm triggering

<table>
<thead>
<tr>
<th>Test Case #</th>
<th>Lowest Estimated Reliability</th>
<th>False Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.9939</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>0.9921</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>0.9941</td>
<td>No</td>
</tr>
<tr>
<td>19</td>
<td>0.9943</td>
<td>Yes</td>
</tr>
<tr>
<td>20</td>
<td>0.9936</td>
<td>Yes</td>
</tr>
<tr>
<td>21</td>
<td>0.9927</td>
<td>No</td>
</tr>
<tr>
<td>32</td>
<td>0.9944</td>
<td>Yes</td>
</tr>
<tr>
<td>36</td>
<td>0.9936</td>
<td>Yes</td>
</tr>
<tr>
<td>41</td>
<td>0.9939</td>
<td>Yes</td>
</tr>
<tr>
<td>52</td>
<td>0.9942</td>
<td>Yes</td>
</tr>
<tr>
<td>66</td>
<td>0.9932</td>
<td>No</td>
</tr>
<tr>
<td>71</td>
<td>0.9944</td>
<td>Yes</td>
</tr>
<tr>
<td>73</td>
<td>0.9939</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- 28 out of 90 executions reported violations w.r.t. the built invariants
- 13 alarms raised
- 9 false positives
- 4 detected failures
- 1 false negative (no alarm triggering)

Results per Operational Profile

<table>
<thead>
<tr>
<th>Operational Profile</th>
<th>Failures</th>
<th>False-Negatives</th>
<th>False-positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile 1</td>
<td>3</td>
<td>0</td>
<td>3 of 6</td>
</tr>
<tr>
<td>Profile 2</td>
<td>1</td>
<td>0</td>
<td>2 of 3</td>
</tr>
<tr>
<td>Profile 3</td>
<td>1</td>
<td>1</td>
<td>4 of 4</td>
</tr>
</tbody>
</table>
Results

- Experiment 83 is a false-negative.
- Reliability can increase at some time intervals.
 - Changes in the usage => different visit counts.

Operational Profile 1

Operational Profile 2

Operational Profile 3
Overhead

Testing phase

- Invariants construction => *Daikon* overhead
 - Execution traces production and invariant inference
 - The *Daikon* overhead is
 - Linear in the number of "true" invariants
 - Linear to the test suite size
 - Linear in the instrumented points (proportional to the program size)
 - In our case it took 2283” (i.e., about 38’). It is an “offline” cost

Runtime Phase

- *Runtime-checker* instrumentation (before the execution)
 - Experienced a 1.04 slowing down in the average
 - Time to compute reliability equation (negligible)
Overhead

- However ... overhead is tightly related to the number of invariants to check and to the actual value taken by variables => highly variable

- The number of invariants to check is known in advance => it can be used for predicting purposes

- Several solutions to reduce instrumentation and invariants construction cost (at the expense of accuracy)
 - Reducing the number of instrumented points
 - Reducing the number of executions
 - Reducing the number of variables

- The evaluation time interval T is also important => further trade-off parameter between accuracy and overhead
 - Dependent on application requirements
In the **future** we aim to:

- Provide the system with the ability *to automatically learn* violations that did not result in a failure

- Consider an **adaptive threshold** value
 - The monitor should set the threshold based on past experience (i.e., number of observed false-positives) and to the user needs (the desired level of false-positives/false-negatives)
 - A combination with online diagnosis mechanisms is envisaged

- Consider and evaluate alternative dynamic analysis tools

- Extend experiments to more case studies
Thank You!!

Questions?
Comments?

Contact info:
roberto.pietrantuono@unina.it
http://www.mobilab.unina.it