Early Consensus in Message-passing System Enriched with a Perfect Failure Detector and its Application in the Theta Model

François Bonnet, Michel Raynal
IRISA / University of Rennes 1

EDCC 2010
Valencia, Spain
Outline

1. Introduction
 - The consensus problem
 - Failure detectors

2. Distributed system model
 - Asynchronous model
 - Perfect failure detector P

3. Consensus algorithms
 - Basic algorithm
 - Early-deciding algorithm

4. P in the θ model
 - The θ model
 - Algorithm

5. Conclusion
Consensus Problem

Consensus

Each process proposes a value \(v \) and have to decide a value s.t.:

- **Validity**: A decided value has been proposed by some process,
- **Agreement**: No two processes decide different values,
- **Termination**: All correct processes must decide.
Consensus Problem

Consensus

Each process proposes a value v and have to decide a value s.t.:

- **Validity**: A decided value has been proposed by some process,
- **Agreement**: No two processes decide different values,
- **Termination**: All correct processes must decide.

Consensus in synchronous system

- Easily solvable,
- Requires at least $t + 1$ rounds to tolerate t crashes,
Consensus Problem

Consensus

Each process proposes a value v and have to decide a value s.t.:

- **Validity**: A decided value has been proposed by some process,
- **Agreement**: No two processes decide different values,
- **Termination**: All correct processes must decide.

Consensus in synchronous system

- Easily solvable,
- Requires at least $t + 1$ rounds to tolerate t crashes,
- Can be solved in $\min(f + 2, t + 1)$ rounds (optimal result).
Consensus Problem

Consensus

Each process proposes a value v and have to decide a value s.t.:

- **Validity**: A decided value has been proposed by some process,
- **Agreement**: No two processes decide different values,
- **Termination**: All correct processes must must decide.

Consensus in asynchronous system

- Not solvable [well-known impossibility FLP].
How to circumvent the impossibility?

- **Weaken the Problem**
 - Conditions: Restrict the set of possible inputs.
 - Probabilistic termination: Use of randomization.
How to circumvent the impossibility?

Weaken the Problem

- Conditions: Restrict the set of possible inputs.
- Probabilistic termination: Use of randomization.

Strengthen the System

- Use of Failures Detectors (FD):
 - Give additional informations to each process.
Active research in FD

Find new FDs

- Make solvable some unsolvable problems,
- Rank FDs in some hierarchies.
Active research in FD

Find new FDs
- Make solvable some unsolvable problems,
- Rank FDs in some hierarchies.

Optimality
- Find the “weakest” FD for a given problem,
- Find the “best” algorithm for a given FD and problem.
Active research in FD

Find new FDs
- Make solvable some unsolvable problems.
- Rank FDs in some hierarchies.

Optimality
- Find the “weakest” FD for a given problem.
- Find the “best” algorithm for a given FD and problem.
Asynchronous Message-Passing Model

- Set \(\Pi = \{ p_1, p_2, \ldots, p_n \} \) of \(n \) processes,
- Up to \(0 \leq t < n \) crashes,
- Communication through asynchronous reliable channels;
 - No loss of message,
 - No duplication of message,
 - Finite but not bounded delivery time.
Asynchronous Message-Passing Model

Set $\Pi = \{p_1, p_2, \ldots, p_n\}$ of n processes,

- Up to $0 \leq t < n$ crashes,
- Communication through asynchronous reliable channels;
 - No loss of message,
 - No duplication of message,
 - Finite but not bounded delivery time.

Number of crashes in a given execution

- t: the bound on the number of crashes,
- f: the actual number of crashes; $0 \leq f \leq t$.
Perfect failure detector P

Some definitions (with an hidden global time)
- $Faulty(\tau)$: set of processes that crashed before τ,
- $Alive(\tau)$: set of processes that did not crashed before τ,
- Correct, Faulty: set of process that never (resp. ever) crashes.
Some definitions (with an hidden global time)

- **Faulty(\(\tau\))**: set of processes that crashed before \(\tau\),
- **Alive(\(\tau\))**: set of processes that did not crashed before \(\tau\),
- **Correct, Faulty**: set of process that never (resp. ever) crashes.

Formal definition of \(P\)

\(P\) outputs to \(p_i\) at time \(\tau\) a set \(\text{suspected}_i^{\tau}\) of process identities such that:

- Completeness.
 \[\exists \tau : \forall \tau' \geq \tau, \forall i \in \text{Correct}, \forall j \in \text{Faulty} : j \in \text{suspected}_i^{\tau'}\]
- Strong accuracy.
 \[\forall \tau : \forall i, j \in \text{Alive}(\tau) : j \notin \text{suspected}_i^{\tau}\]
Our goals

Reach the synchronous bounds in asynchronous system

- Solve the consensus in $t + 1$ rounds with P,
- Solve the consensus in $\min(f + 2, t + 1)$ rounds with P,
- Implement P in the θ model.
Comparison with synchronous system

Problem: Bad phenomenon due to asynchrony

- $i \in \text{suspected}_j$
- $i \not\in \text{suspected}_j$ (forever)

Solution: Eliminate the variations of P

Each process p_i maintains a set crashed_i such that:

$\text{crashed}_i \leftarrow \text{crashed}_i \cup \text{suspected}_i$.

F. Bonnet, and M. Raynal
Comparison with synchronous system

Problem: Bad phenomenon due to asynchrony

Solution: Eliminate the variations of P

Each process p_i maintains a set $crashed_i$ such that:

- $crashed_i$ is a monotonous version of P:

 $$crashed_i \leftarrow crashed_i \cup suspected_i.$$
Basic algorithm with P

operation propose (v_i):

1. $est_i \leftarrow v_i$; $r_i \leftarrow 1$;
2. **while** $r_i \leq t + 1$ do
 3. **begin** asynchronous round
 4. broadcast $EST (r_i, est_i)$;
 5. **wait until** ($\forall j \notin crashed_i$: ($EST (r_i, -)$ received from p_j));
 6. let $rec_from_i = \{1, \ldots, n\} \setminus crashed_i$;
 7. let $est_rec_i = \{est$ from the processes in $rec_from_i\}$;
 8. $est_i \leftarrow \min(est_rec_i)$;
 9. $r_i \leftarrow r_i + 1$
10. **end** asynchronous round
11. **end** while;
12. return (est_i).
Basic algorithm with P

operation propose (v_i):

1. $est_i \leftarrow v_i$; $r_i \leftarrow 1$;
2. while $r_i \leq t + 1$ do
 3. begin asynchronous round
 4. broadcast est (r_i, est_i);
 5. wait until ($\forall j \notin crashed_i$: $(est \ (r_i, _)$ received from $p_j)$;
 6. let $rec_{from_i} = \{1, \ldots, n\} \setminus crashed_i$;
 7. let $est_{rec_i} = \{est \ from \ the \ processes \ in \ rec_{from_i}\}$;
 8. $est_i \leftarrow \min(est_{rec_i})$;
 9. $r_i \leftarrow r_i + 1$
10. end asynchronous round
11. end while;
12. return (est_i).

Efficiency

Always decide in $t + 1$ rounds.
Problem of the previous algorithm

It always requires $t + 1$ rounds even if there are few crashes (or no crash at all).
Early-decision

Problem of the previous algorithm

It always requires \(t + 1 \) rounds even if there are few crashes (or no crash at all).

Solution

Adapt the number of rounds to the real number of crashes \(f \).
Implementation of early-decision

Conditions to decide/stop

A process decides and stops iff it knows that:

- it has the smallest estimate in the system,
- at least one correct process knows that value.
Implementation of early-decision

Conditions to decide/stop

A process decides and stops iff it knows that:
- it has the smallest estimate in the system,
- at least one correct process knows that value.

Implementation

Each process p_i manages two additional variables
- i_know_i: boolean that indicates if it has the smallest estimate,
- $they_know_i$: set of processes that (from p_i’s point of view) have the smallest estimate,
Early-deciding algorithm with P

operation propose (v_i):

1. $est_i \leftarrow v_i$; $r_i \leftarrow 1$; $they_know_i \leftarrow \emptyset$; $i_know_i \leftarrow false$;
2. while $r_i \leq t + 1$ do
3. begin asynchronous round
4. broadcast $est (r_i, est_i, i_know_i)$;
5. wait until $\forall j \notin ((crashed \cup they_know_i) \setminus \{i\})$: $(est (r_i, -, -))$ received from p_j;
(N1) let crashed_or_knowing$_i$ be the set $(crashed \cup they_know_i)$ when the wait terminates;
6. let rec_from$_i$ = $\{1, \ldots, n\} \setminus$ crashed_or_knowing$_i$;
7. let est_rec$_i$ = $\{est$ received during r_i from the processes in rec_from$_i\}$;
8. $est_i \leftarrow \min(\text{est_rec}_i)$;
(N2) $they_know_i \leftarrow they_know_i \cup \{x \mid est (r_i, -, true) \text{ rec. from } p_x \text{ with } x \in \text{rec_from}_i\}$;
(N3) if $(|crashed \cup they_know_i| \geq t + 1) \land i_know_i$ then return (est_i) end if;
(N4) let some_known$_i = (\exists est (r_i, -, true) \text{ received from } p_x \text{ with } x \in \text{rec_from}_i)$;
(N5) $i_know_i \leftarrow (some_known_i) \lor (|\text{rec_from}_i| \geq n - r_i + 1)$;
9. $r_i \leftarrow r_i + 1$
10. end asynchronous round
11. end while;
12. return (est_i).
Early-deciding algorithm with P

operation propose (v_i):

1. $est_i \leftarrow v_i$; $r_i \leftarrow 1$; $they_know_i \leftarrow \emptyset$; $i_know_i \leftarrow false$;
2. while $r_i \leq t + 1$ do
 3. begin asynchronous round
 4. broadcast $EST\ (r_i, est_i, i_know_i)$;
 5. wait until $(\forall j \notin ((crashed_i \cup they_know_i) \setminus \{i\}) : \ (EST\ (r_i, ___, ___) \text{ received from } p_j)$;
 6. let $crashed_or_knowing_i$ be the set $(crashed_i \cup they_know_i)$ when the wait terminates;
 7. let $est_rec_i = \{ est \text{ received during } r_i \text{ from the processes in } rec_from_i \}$;
 8. $est_i \leftarrow \min(est_rec_i)$;
 9. $they_know_i \leftarrow they_know_i \cup \{x | \ (EST\ (r_i, ___, true) \text{ rec. from } p_x \text{ with } x \in rec_from_i \}$;
 10. if $(|crashed_i \cup they_know_i| \geq t + 1) \land i_know_i)$ then return (est_i) end if;
 11. let $some_knows_i = (\exists \ (EST\ (r_i, ___, true) \text{ received from } p_x \text{ with } x \in rec_from_i)$;
 12. $i_know_i \leftarrow (some_knows_i) \lor (|rec_from_i| \geq n - r_i + 1)$;
 13. $r_i \leftarrow r_i + 1$
14. end asynchronous round
15. end while;
16. return (est_i).

Efficiency

Decide in $\min(f + 2, t + 1)$ rounds.
The asynchronous θ model (informally)

Bound θ on transmission delays

- δ^+ denotes the maximal transit time for a message,
- δ^- denotes the minimal transit time for a message,
- $\theta \geq \left\lceil \frac{\delta^+}{\delta^-} \right\rceil$.
The asynchronous θ model (informally)

Bound θ on transmission delays

- δ^+ denotes the maximal transit time for a message,
- δ^- denotes the minimal transit time for a message,
- $\theta \geq \lceil \frac{\delta^+}{\delta^-} \rceil$.

Remarks

- Only θ is known by processes,
- The system does not refer directly to real time.
Ping/Pong

Key idea to build P (example with $\theta = 3$)

$3(2 \times \delta^-)$

$2 \times \delta^+$
Building P in the θ model

```
init suspected_i ← \emptyset;
    for each j \neq i do send PING () to p_j end for.

when PING () is received from p_j: send PONG () to p_j.

when PONG () is received from p_j:
    for each k \neq j do
        if (k \notin suspected_i) then
            count_i[j, k] ← count_i[j, k] + 1;
            if (count_i[j, k] > \theta) then
                suspected_i ← suspected_i \cup \{k\}
            else
                count_i[k, j] ← 0
            end if
        end if
    end for;
    send PING () to p_j.
```
Contributions

- Early-deciding algorithm in asynchronous system enriched with P,
- Implementation of P in the θ asynchronous model.

Open problems

- Find easier algo/proof for early-deciding consensus,
- Prove formally the optimality.