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Abstract

We propose a new method to obtain bounds of dependability, performance or performability mea-

sures concerning complex systems modeled by a large Markov model. Its extends previous published

techniques mainly designed to the analysis of dependability measures only, and working under more

restrictive conditions. Our approach allows to obtain tight bounds of performance measures on cer-

tain cases, and in particular, on models having an infinite state space. We illustrate the method with

some analytically intractable open queuing networks, as well as with large dependability models.

Index Terms — Dependability evaluation, performance evaluation, Markov chains, numerical

analysis, bounding techniques.

1 Introduction

To derive performance, dependability or performability measures from a model of a complex system,

Markov chains, under different forms, are the most widely used mathematical tools. Sometimes, the

user directly builds a Markov chain from system specifications. Most often, the model is described

in a higher level language such as queues or networks of queues, stochastic Petri nets, etc., and some

tool constructs the stochastic process automatically. The usefulness of Markov chains is due to the



power of the theory and to the efficient algorithmic technology associated with. However, such a

power has a price. There are two major drawbacks when using Markov models. The first one is the

fact that, to be able to represent the more and more complex systems built nowadays, the state spaces

are larger and larger. In general, models having, say, hundreds or thousands of millions of states are

out of scope for exact numerical analysis. The second one is the so-called “rare events” problem,

meaning that in many cases (typically in models of highly available systems), the interesting events

(typically, the fact that the system is down) have very low probabilities, making problematic the use

of Monte Carlo techniques. This is usually related to high numerical values of the ratios between

different transition rates of the chain, which leads also to numerical problems in the exact analysis of

the models (stiffness). Often, the two problems appear simultaneously. To deal with them, a different

approach exists. It consists of computing bounds of the desired measures instead of exact values or

statistical estimations [1], [2], [3]. This is the subject of the paper.

Bounding techniques have been mainly developed for cases in which, at the same time, the model

is large and stiff. The second aspect is in fact used to help with dealing with the first one, as we see in

the paper. The intuition behind the approach is quite simple. When the model is stiff, the stochastic

process spends most of its time in a (small) part of the state space. It is then a natural attempt to try

to approximate the interesting measures by working basically with that part of the state space. This is

done by replacing, in some way, the rest of the state space by “a few” states. All the difficulty is how

to handle that large part of the state space of the model in order to have some control on the accuracy

of the method.

The system is represented by a continuous time homogeneous and irreducible Markov chainX

over the finite state spaceS with stationary distributionπ (row vector). We denoteπi = Pr(X∞ = i)

whereX∞ is a stationary version ofX. With each statei we associate a rewardri ≥ 0; r is the (row)

vector of rewards. This paper deals with the computation of

R = E(rX∞) =
∑
i∈S

riπi = πrT.

For instance, in a dependability context, the states are in general called “operational” when they

represent a system delivering its service as expected, and “unoperational” otherwise. If a reward equal

to 1 is associated with the operational states and equal to 0 with the unoperational ones, thenR is the

asymptotic availability of the system. In a performance context, suppose that the model is a queuing

network and that you are interested in the mean number of customers in queueq. If with each statei

we associate a reward equal to the number of customers in stationq when the model is in statei, the
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expectationR is equal to the desired mean number of customers inq. As a second example, ifri is

the number of active processors in some model of a fault-tolerant multi-processor computer when its

state isi, thenR is a performability measure (the meanpowerof the system).

In this paper we develop an approach that avoids an important drawback of previous works, by ex-

tending the class of evaluable pairs (models, measures). The main restriction of previous techniques,

which mainly concern dependability models, is that “almost” every state must have at least one tran-

sition corresponding to a repair. The approach proposed here works without this condition, but it has

a price: in some cases, large linear systems must still be solved. In the paper we illustrate the method

with cases where these systems are easy to solve (and with models that are such that previous tech-

niques do not apply). In a performance context, it is frequent to work with infinite state spaces. The

techniques we propose can, in some situations, deal with these cases as well. This is also developed

and illustrated here.

The paper is organized as follows. Next section states the context, defines some general notation

and recall basic previous results on bounds. In Section 3 we recall important fact about state aggrega-

tion in Markov chains. The objective of Section 4 is to explain the method of [3]. Section 5 presents

our technique together with some needed supplementary results. Section 6 explains how we deal with

models having infinite state spaces. In Section 7 we give examples, both in the dependability and in

the performance areas, both in the finite and the infinite cases. Section 8 concludes the paper.

2 Preliminaries

Generalities. We are given a finite and irreducible continuous time homogeneous Markov chainX

over the state spaceS, presumed to model some complex system. We denote byA the infinitesimal

generator ofX. The asymptotic distribution ofX is denoted byπ and it will be seen in the paper as

a row vector. We then haveπA = 0.

We are also given a vector of positive reals,r = (. . . ri . . .) overS. The goal is the evaluation of

bounds ofR = πrT, without computing vectorπ. To do this, we assume that we know a lower and

an upper bound of the rewards, that is, two reals%1 and%2 such that for alli ∈ S,

0 ≤ %1 ≤ ri ≤ %2 < ∞.

In Section 6 we develop an extension to the case of|S| = ∞ and%2 = ∞.
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The state spaceS is assumed to be decomposed (or decomposable) into two disjoint sets, denoted

by G andḠ. The idea is that the states inG are or include those frequently visited by the chain in

equilibrium. In many situations, the user is able to approximatively identify these sets. For instance, in

a dependability context, a model corresponding to a repairable system with high reliable components

leads to chooseG as the set of states having less than some fixed number of failed units. In a queuing

model in a light traffic situation, one can associateG with the states where the network has less

than some fixed number of customers. The techniques discussed here attempt to give bounds of the

asymptotic rewardR by working with auxiliary Markov obtained by replacinḡG (and the associated

rates) with a “few” states. The good situation is then to have|G| � |S|.

Some notation associated with a subset of states.For any subset of statesC ⊆ S, we denote

• πC , the restriction ofπ to the setC (row vector with size equal to|C|), rC , the restriction ofr

to C, etc.,

• π(C) = Pr(X∞ ∈ C) =
∑

i∈C πi = πC1T, where1T is the transpose of a row vector having

all its entries equal to 1, the dimension being defined by the context,

• π̂C = distribution ofX∞ conditioned to the event{X∞ ∈ C}, (row) vector with size|C|, that

is, π̂C = 1
π(C)πC ,

• C̄ = the complementS − C of C,

• in(C) = {j ∈ C such that there existsi ∈ C̄ with Ai,j > 0},

• out(C) = {i ∈ C s.t. there existsj ∈ C̄ with Ai,j > 0},

• AC , the block ofA corresponding to the transitions inside subsetC,

• AC,C′ , the block ofA corresponding to the transitions from subsetC to subsetC
′
.

Forcing the entries in G by a fixed statej. The main idea comes from the basic initial work by

Courtois and Semal. It consists of building a family of Markov chains derived fromX in the following

way. For each statej ∈ in(G), let us construct the new continuous time homogeneous Markov chain

X(j), by forcing the transitions from̄G into G to enter by statej, as illustrated in Figure 1. The
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infinitesimal generator ofX(j) is denoted byA(j):

A(j) =

 AG AGḠ

A
(j)

ḠG
AḠ

 .

The transition rate from any statei ∈ Ḡ to j is equal to
∑

l∈in(G) Ai,l. In other words,A(j)

ḠG
=

AḠG1Tej , whereej is thejth row vector of the canonical base inR
|G|. The other transition rates of

X(j), that is insideG, from G to Ḡ and insideḠ, are as inX. First, we prove thatX(j) has an unique

stationary distribution by means of the following lemma.

Lemma 1 The Markov chainX(j) has an unique recurrent class; this class includes statej.

Proof. Denote bySj the class of statesi such thati is reachable fromj andj is reachable fromi. The

claim implies thatSj can be reached from every statek ∈ S. AssumeSj 6= S and letk ∈ S − Sj. If

k ∈ out(Ḡ), by definition ofout(), k is connected toj. If k ∈ Ḡ − out(Ḡ) then there is necessarily

a path fromk to somel ∈ out(Ḡ) (sinceX is irreducible), which is completely included in̄G, and

by definition ofX(j), l is connected toj. It remains the case of a statek ∈ G − {j}. If, in X, there

is a path fromk to j completely included inG, we are done. If not, sinceX is irreducible, there is at

least a path fromk to j passing through̄G, thus entering for the first timēG by some statel and then,

we are in the first discussed case. �

G

j

Ḡ
in(G) out(Ḡ)

Figure 1: The topology ofX(j)

It is easy to see that there can be transient states inX(j). For instance, think of this simple

situation: some statei ∈ G has only one transition out toj and one transition in fromk ∈ Ḡ. In X(j),

such a state is transient.
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SinceX(j) has an unique recurrent class, it has an unique stationary distribution which we denote

by π(j). Then, for each statej ∈ in(G), we have the following result, which is a slight extension of

results in [1]:

Theorem 1 There exists a positive vectorβ with supportin(G), that is, satisfyingβj = 0 if j 6∈
in(G), such thatβ1T = 1 and ∑

j∈in(G)

βjπ
(j) = π.

Proof. See Appendix A.

In [1], the authors show this result under the assumption that the chains are irreducible. In the

Appendix we show that the only necessary assumption is the existence of an unique stationary dis-

tribution for X(j). We also show that the result is still valid in the infinite state space case (used in

Section 8).

From this theorem, we derive the two following immediate results, put together as a corollary.

Corollary 1 If we denoteπ(j)(G) = P (X(j)
∞ ∈ G), we have

min
j∈in(G)

π(j)(G) ≤ π(G), (1)

and ifR(j) = π(j)rT, we have

min
j∈in(G)

R(j) ≤ R ≤ max
j∈in(G)

R(j). (2)

Proof. The proof is in [3], for the particular case of the asymptotic availability measure. The

extension to the general asymptotic reward measure is straightforward. �

Corollary 1 gives the relationships that will be used to derive bounds ofR. In the sequel, we

will develop a general approach to build a lower bound ofminj∈in(G) R(j) and an upper bound of

maxj∈in(G) R(j).
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3 Aggregation of states

To go further, we suppose that we are given a partition{CI , I = 0, 1, . . . ,M} of S and an integerK

with 0 < K < M , and thatG is defined as

G =
K−1⋃
I=0

CI .

GC0 C1 CK−1 CK CM

Figure 2: ChainX and the partition{CI , I = 0, 1, . . . ,M} of S

In a performance context, assuming that we deal with something like a queuing network or a

stochastic Petri net,CI can be, for instance, the set of states where the system, or some of its sub-

systems, hasI customers or tokens. In a dependability case, if we work with a model of some

fault-tolerant multi-component system,CI can be, for instance, the set of states corresponding to

I operational components. The good property for such a partition is that the higher the indexI, the

lower the probability thatX∞ belongs to the setCI .

In what follows, we assume that transitions from classCI to classCJ are not allowed ifJ ≤ I−2,

that is, that the following condition holds:

Condition 1 For any two integer indicesI and J such thatJ ≤ I − 2, for any statesi ∈ CI and

j ∈ CJ we haveAi,j = 0.

Observe that, given the irreducibility ofX, this implies that for all indexI > 0 there are at least two

statesi ∈ CI andj ∈ CI−1 such thatAi,j > 0.

Following with the examples used a few lines before, in the case of a queuing model or a Petri net,

this means, for instance, that simultaneous departures are not allowed. In the dependability example,

the condition says that simultaneous repairs are not allowed.
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For each statej ∈ in(G), we will consider now the following aggregation ofX(j). We define a

continuous time homogeneous Markov chainX(j)agg which is constructed fromX(j) by collapsing

the classesCK , CK+1, . . . , CM of the partition into single statescK , cK+1, . . . , cM .

j

G

C0 CK−1 cK cM

Figure 3: The topology ofX(j)agg

If we denote byA(j)agg the infinitesimal generator ofX(j)agg, recalling thatπ(j)(CI) is the prob-

ability thatX(j)
∞ belongs toCI , the transition rates ofX(j)agg are given by the following expressions:

• for all h ∈ G (or h ∈ out(G)), and for allI ≥ K,

A
(j)agg
h,cI

=
∑
i∈CI

Ah,i, (3)

• for anyI > K,

A(j)agg
cI ,cI−1

= µ
(j)
I =

∑
i∈CI

π
(j)
i

∑
l∈CI−1

Ai,l

π(j)(CI)
, (4)

•
A

(j)agg
cK ,j = µ

(j)
K =

∑
i∈CK

π
(j)
i

∑
l∈CK−1

Ai,l

π(j)(CK)
, (5)

• for anyI ≥ K andJ > I,

A(j)agg
cI ,cJ

= λ
(j)
I,J =

∑
i∈CI

π
(j)
i

∑
l∈CJ

Ai,l

π(j)(CI)
. (6)

We denote bySagg = G ∪ {cK , cK+1, . . . , cM} the state space ofX(j)agg. SinceX(j) has an

unique recurrent class (Lemma 1), it is immediate to see thatX(j)agg has also an unique recurrent
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class includingj. Let us denoteπ(j)agg
i = Pr(X(j)agg

∞ = i), i ∈ Sagg, whereX
(j)agg
∞ denotes a

stationary version ofX(j)agg. We then have the following well known result on aggregation:

for anyg ∈ G, π
(j)agg
g = π

(j)
g , and for anyI ≥ K, π

(j)agg
cI = π(j)(CI). (7)

The chainX(j)agg is called in [1] “the exact aggregation ofX(j) with respect to the given parti-

tion”. We adopt here this terminology (in [4], it is called “the pseudo-aggregation ofX(j) w.r.t. the

given partition”). Of course, to build it we need the stationary distributionπ(j) of X(j), which is un-

known. We define in the next subsection another chain which “bounds”, in some way, chainX(j)agg,

and from which the desired bounds ofR will be computed.

4 “Bounding” the Markov chain X(j)agg

For each statej ∈ in(G), let us define a homogeneous and irreducible Markov chainY (j) overSagg

with the same topology as the aggregated chainX(j)agg, in the following way. We keep the same tran-

sition rates inside the subsetG and fromG to thecI ’s, which are computable without the knowledge

of the stationary distribution ofX(j). The transitions inside the set of states{cK , cK+1, . . . , cM} and

from cK to j are changed as follows: we replace the (unknown) exact aggregated rates fromcI to cJ ,

I < J , by someλ+
I,J ; we replace the (unknown) exact aggregated rates fromcI to cI−1, I > K, by

someµ−
I , and the (unknown) exact aggregated rate fromcK to j, by µ−

K . These modifications must

satisfy

for K ≤ I > J ≤ M, λ+
I,J ≥ λ

(j)
I,J , (8)

for I ≥ K, 0 < µ−
I ≤ µ

(j)
I . (9)

Then, between the three chainsX(j), X(j)agg andY (j), the following relation holds.

Theorem 2 If we denote byy(j) the stationary distribution ofY (j), we have

π̂
(j)
G = π̂

(j)agg
G = ŷ(j)

G . (10)

Proof. Let us denote byP (j) (respectively byP
′(j)) the stochastic matrix ofX(j) (respectively of

Y (j)). We have:

P (j) =

 PG PGḠ

P
(j)

ḠG
PḠ

 , P
′(j) =

 PG P
′
GḠ

P
′(j)
ḠG

P
′
Ḡ

 ,
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where the matrixP
′
GḠ

is equal to(PGCK
1T, . . . , PGCM

1T).

Given thatπ(j)P (j) = π(j) andy(j)P
′(j) = y(j), we have: π̂

(j)
G

(
PG − PGḠP−1

Ḡ
P

(j)

ḠG

)
= π̂

(j)
G

ŷ(j)
G

(
PG − P

′
GḠ

(P
′
Ḡ
)−1P

′(j)
ḠG

)
= ŷ(j)

G

From [1, theorem 8], it follows that̂π(j)
G andŷ(j)

G belong to the polyhedronP((I − PG)−1). From

Appendix A, Lemma 8,̂π(j)
G andŷ(j)

G are both equal to thejth vertex ofP((I − PG)−1). From (7),

we have directly the first equality betweenπ̂
(j)
G andπ̂

(j)agg
G �

Theorem 3 Betweeny(j)(G) = Pr(Y (j)
∞ ∈ G) whereY

(j)
∞ is a stationary version ofY (j), and

π(j)agg(G) = π(j)(G), we have the relation

y(j)(G) ≤ π(j)(G). (11)

If one of the inequalities (8) or (9) is strict, theny(j)(G) < π(j)(G).

Proof. See Appendix B. �

Define overSagg the two reward vectorsr1 andr2 obtained by completing vectorrG with rewards

on the aggregated statescK , cK+1, . . . , cM equal to%1 in r1 and equal to%2 in r2.

Theorem 4

min
j∈in(G)

y(j)rT
1 ≤ R, (12)

max
j∈in(G)

y(j)rT
2 ≥ R. (13)

Proof. Let us consider the expression ofy(j)rT
1 :

y(j)rT
1 = y(j)

G rT
G + %1y

(j)(Ḡ)

= y(j)(G)
(
ŷ(j)

G rT
G − %1

)
+ %1.

Given thatπ(j)(G) = π(j)agg(G) from (7), thatŷ(j)
G rT

G ≥ %1 (sinceri ≥ %1 for all statei) and

using Theorem 2, we have the following inequality:

y(j)rT
1 ≤ π(j)(G)

(
π̂

(j)
G rT

G − %1

)
+ %1

= π(j)rT
1 = R

(j)
1 ≤ R(j).
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From Corollary 1, we have:

min
j∈in(G)

y(j)rT
1 ≤ min

j∈in(G)
R

(j)
1 ≤ min

j∈in(G)
R(j) ≤ R. (14)

In the same way, denotingR(j)
2 = π(j)rT

2 and writing

y(j)rT
2 = y(j)(G)

(
ŷ(j)

G rT
G − %2

)
+ %2

and observing that̂y(j)
G rT

G − %2 ≤ 0, we obtain

y(j)rT
2 ≥ R

(j)
2 ≥ R(j),

and thus

max
j∈in(G)

y(j)rT
2 ≥ max

j∈in(G)
R

(j)
2 ≥ max

j∈in(G)
R(j) ≥ R. (15)

�

Resuming, the bounds ofR are obtained using (14) and (15). To do this, we must be able to build

chainY (j), that is, to build boundsλ+
I,J andµ−

I of the corresponding (unknown) transition rates in

X(j)agg (relations (8) and (9)). We describe now the way this is done in [3]. Next section describes

our technique, which has the same goal.

The approach of [3]. Recall that we want to computeλ+
I,J andµ−

I without the knowledge ofπ(j),

the (unknown) stationary distribution ofX(j) for eachj ∈ in(G), it would be nice to use

∀I, J s.t. K ≤ I < J ≤ M, λ+
I,J = max

i∈CI

∑
l∈CJ

Ai,l, (16)

∀I s.t. K ≤ I ≤ M, µ−
I = min

i∈CI

∑
l∈CI−1

Ai,l, (17)

This is the idea followed in [3]. The use of relation (16) immediately implies thatλ+
I,J > 0. Let us

examine now the boundsµ−
I . In order to haveµ−

I > 0 for any value ofK, we need a supplementary

condition to be satisfied byX:

Condition 2 For any indexI 6= 0, for all statei ∈ CI there exists at least a statej ∈ CI−1 such that

Ai,j > 0.

This can be quite restrictive as we will illustrate later, but the interest relies in the fact that it allows

to obtain direct lower bounds of theµ(j)
I ’s. In Section 5, we develop a new approach that does not

need this assumption, allowing to work with much more general models.
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Other related works. Before presenting the method that we propose, let us briefly describe other

related papers in the area. First note the approach of [5] who construct from the original model two

new models which respectively lower and upper bound the measure using particular job-local-balance

equations. However this technique doesn’t give tight bounds and becomes more complicated to apply

with complex systems [5]. The starting work from which papers like this one are built are [1] and [2].

In [6], these results are improved, following the same research lines. A different improvement is [3]

and we follow here this approach to obtain a more powerful bounding technique. Briefly, in [6] the

author derives a general iterative bounding technique having the following main differences with [3]

and with our work: it can be applied without restrictions (while ours or the method of [3] needs some

conditions to work) but is more expensive. The final form of the approach of [6] is quite different,

however: it is presented as an iterative process where one bounds the conditional distributions the

π̂CI
’s, several times if necessary, and of the probabilitiesπ(C(I)), in order to derive bounds on the

total vectorπ and then onR. The key point in the complexity comparison is that [6] basically needs

the inversion of a matrix to obtain each necessary bound (for vectorsπ̂CI
’s and for probabilities

π(C(I))’s). The technique in [3] exploits the strong Condition 2 to obtain a less expensive process.

Our technique is more expensive than this one, but it needs much less restrictive conditions. This last

feature allows us to obtain tight bound for some performance models on infinite state spaces, as shown

in our paper.

To reduce the computational cost of the bounds obtained by the first algorithm of [3], a technique

of “duplication of states” is proposed in [3], [7] and [8]. The main objective in [3] is to reduce the

number of linear systems to solve. In [7], the authors propose a “multi-step bounding algorithm” to

improve the bounds by increasing the thresholdK without restarting the work from the beginning.

That is, the results for levelK + 1 can use those corresponding to levelK. But the spread between

the bounds has a non-zero limiting value [8]. This problem is handled in [8] using a technique called

“bound spread reduction” to reduce the error introduced at each step of the previous iterative pro-

cedure. A simple heuristic to choose between the “multi-step bounding algorithm” and the “bound

spread reduction” is developed and illustrated in [8]. The method that we propose here can also use

the same technique to improve its efficiency (however, we do not develop this point in the paper).

The same authors [9] have chosen another approach to bound mean response times in heteroge-

neous multi-server queuing systems. From the original model, they construct two new models, one to

obtain a lower bound of the considered measure and another one to obtain an upper bound. Another
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line of research is [10] which, improving previous work by the same author, gives better bounds when

additional information (“distance to failure”) is available. In that paper the number of linear systems

to be solved is also reduced.

5 The proposed method

This is the main part of the paper. Its goal is to derive a method to avoid Condition 2 and still be able

to bound the measureR. We start by introducing the idea informally. Then, we recall some results of

[4], where the authors analyze the sojourn times of a Markov chainX in a part of its state space, and

the asymptotic behavior of these (in general dependent) random variables, and we derive a new one

(Lemma 3), which we need to formalize the method.

5.1 The idea underlying our method

Consider a birth and death process and denoteλi (respectivelyµi) the birth rate (respectively death

rate) associated with statei. The mean sojourn time in statei (or mean holding time) ishi = 1/(λi +

µi) and the probability that after visitingi the next state isi − 1 is pi = µi/(λi + µi). Observe then

that

µi =
pi

hi
. (18)

The intuitive idea leading to our bounding technique is to write the (exact) aggregated rate inX(j)

from classCI from CI−1, that is, the transition rate fromcI to cI−1 in X(j)agg, µ(j)
I , in a similar form

than (18). In the next subsection we write it as (relation (24))

µ
(j)
I =

p
(j)
I

h
(j)
I

,

and we derive useful expressions ofp
(j)
I andh

(j)
I allowing us to obtain a bound ofµ(j)

I .

5.2 Sojourn times and aggregation of states

Let us denote byH(j)
I,n the length of thenth sojourn ofX(j)

∞ in classCI . The first visited state ofCI

during this sojourn is denoted byV (j)
I,n (V (j)

I,n ∈ in(CI)) and after leavingCI , the next visited state is

denoted byW (j)
I,n (W (j)

I,n ∈ in(C̄I)).
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The distribution ofV (j)
I,n , as a row vectorv(j)

I (n) defined overCI , is given by the following

expression [4]:

v
(j)
I (n) = v

(j)
I (1)(B(j)

CI
)n−1,

whereB
(j)
CI

is the stochastic matrixA−1
CI

A
(j)

CI ,C̄I
A−1

C̄I
A

(j)

C̄I ,CI
andv

(j)
I (1) = π

(j)
CI

−π
(j)

C̄I
A−1

C̄I
A

(j)

C̄I ,CI
. Of

course for alln > 1, v
(j)
I (n) has non-zero entries only on statesi belonging toin(CI).

The distribution ofH(j)
I,n is given by [4]

Pr(H(j)
I,n > t) = v

(j)
I (n) exp(ACI

t)1T

and its mean is

E(H(j)
I,n) = −v

(j)
I (n)A−1

CI
1T.

In [4] it is in particular shown that vector

v
(j)
I =

π
(j)
CI

ACI

π
(j)
CI

ACI
1T

(19)

is the stationary distribution of the Markov chain(V (j)
I,n )n, that is, ifv(j)

I (1) = v
(j)
I thenv

(j)
I (n) =

v
(j)
I for all n ≥ 1. We denote byv(j)

I,i the component ofv(j)
I corresponding to statei ∈ CI . We

should also note thatv(j)
G = ej , whereej is thejth row vector of the canonical base inR

|G|.

Let us consider now some relationships between chainsX(j) andX(j)agg from the sojourn time

point of view. We denote byh(j)
I the mean holding time ofX(j)agg in statecI , K ≤ I ≤ M , that is,

for I ≥ K, h
(j)
I =

1

µ
(j)
I +

∑
J>I λ

(j)
I,J

. (20)

A result needed here is given in the following lemma:

Lemma 2

For anyI ≥ K, h
(j)
I = −v

(j)
I A−1

CI
1T. (21)

For the proof, see [4], basically Corollary 4.6. Lemma 2 says that the mean holding time (i.e. the

mean sojourn time) ofX(j)agg in cI is equal to the mean sojourn time ofX(j) in CI when it enters

CI by statei with probability v
(j)
I,i (for instance, think of the first sojourn inCI of a version ofX(j)

having as initial distribution the vectorα(j) such thatα(j)
CI

= v
(j)
I ).

Let us denote bŷhi,I the mean sojourn time ofX(j) in CI conditioned to the fact that the process

enters the setCI by statei. Observe that, for allj ∈ in(G),

ĥi,I = E(H(j)
I,n | V

(j)
I,n = i) for all n ≥ 1. (22)
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From Relations (21) and (22), we can write

h
(j)
I =

∑
i∈in(CI )

v
(j)
I,i ĥi,I . (23)

Now, for the purposes of this paper, we have to consider the event “when thenth sojourn ofX(j)

in CI ends, the next visited state belongs toCI−1”, that is,{W (j)
I,n ∈ CI−1}. It is straightforward to

verify that the probability of this event is

for I > K, Pr(W (j)
I,n ∈ CI−1) = −v

(j)
I (n)A−1

CI
ACI ,CI−1

1T.

WhenI = K, we also have

Pr(W (j)
K,n = j ∈ in(G)) = −v

(j)
K (n)A−1

CK
A

(j)
CK ,CK−1

1T,

whereA
(j)
CK ,CK−1

is the matrix equal toACK ,CK−1
1Tej , andej is thejth row vector of the canonical

base inR|CK−1|.

The event similar to{W (j)
I,n ∈ CI−1} in the aggregated chainX(j)agg is “when leaving statecI ,

the chain jumps tocI−1”. Its probability is

p
(j)
I =

µ
(j)
I

µ
(j)
I +

∑
J>I λ

(j)
I,J

.

Observe that the transition rateµ(j)
I from cI to cI−1 in X(j)agg is

µ
(j)
I =

p
(j)
I

h
(j)
I

. (24)

The following result (similar to Lemma 2) holds:

Lemma 3

For anyI > K, p
(j)
I = −v

(j)
I A−1

CI
ACI ,CI−1

1T (25)

and

p
(j)
K = −v

(j)
K A−1

CK
A

(j)
CK ,CK−1

1T. (26)

Proof.

Let I > K. From (6) and from (4), we can write

λ
(j)
I,J =

π
(j)
CI

ACI ,CJ
1T

π
(j)
CI

1T
, µ

(j)
I =

π
(j)
CI

ACI ,CI−1
1T

π
(j)
CI

1T
.
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Then,

µ
(j)
I +

∑
J>I

λ
(j)
I,J =

π
(j)
CI

ACI ,C̄I
1T

π
(j)
CI

1T

= −π
(j)
CI

ACI
1T

π
(j)
CI

1T

(sinceACI ,C̄I
1T = −ACI

1T).

This leads to

p
(j)
I =

µ
(j)
I

µ
(j)
I +

∑
J>I λ

(j)
I,J

=
π

(j)
CI

ACI ,CI−1
1T

π
(j)
CI

1T

(
− π

(j)
CI

1T

π
(j)
CI

ACI
1T

)

= −π
(j)
CI

ACI ,CI−1
1T

π
(j)
CI

ACI
1T

.

It remains to check that the last expression is equal to−v
(j)
I A−1

CI
ACI ,CI−1

1T. The case of classCK

is proven in the same way. �

As for Lemma 2, Lemma 3 says that the probability thatX(j)agg will jump to cI−1 when leaving

cI is the same as the conditional probability forX(j) to jump toCI−1 when leavingCI , given that

X(j) entersCI by statei with probabilityv
(j)
I,i . This implies that, if we denote bŷpi,I the conditional

probability thatX(j) jumps toCI−1 when leavingCI , given that the sojourn started in statei ∈ CI ,

we have

p
(j)
I =

∑
i∈in(CI )

v
(j)
I,i p̂i,I . (27)

5.3 The bounding algorithm

Let us assume that Condition 2 is not satisfied. To obtain the bounds ofR given in (12) and (13), we

proceed as in [3]. The problem is the computation of lower bounds of theµ
(j)
I ’s.

First let us consider a new subset of states ofCI , in(CI)∗, which is the set of entry pointsi of CI

such that ifX(j) entersCI by i, there is a non-null probability that the next visited class isCI−1:

in(CI)∗ = {i ∈ in(CI) | p̂i,I > 0}.

Our methods needs then that the two setsin(CI)∗ andin(CI) are equal. Let us put it explicitly.
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Condition 3 For all I > 1 and all i ∈ in(CI), the probability to jump fromCI to CI−1 when the

sojourn inCI starts ini, is not null (that is,in(CI)∗ = in(CI)).

This condition is obviously much less restrictive than Condition 2. We did not find any realistic

model where it does not hold. Under Condition 3, lower bounds of theµ
(j)
I ’s are given in the following

result.

Theorem 5 For all I ≥ K, for all j ∈ in(G),

µ∗
I = min

i∈in(CI )

p̂i,I

ĥi,I

≤ µ
(j)
I . (28)

Proof. The result simply follows from relations (23) and (27), writing that, for anyI ≥ K,

µ
(j)
I =

p
(j)
I

h
(j)
I

=

∑
i∈in(CI ) v

(j)
I,i p̂i,I∑

i∈in(CI ) v
(j)
I,i ĥi,I

,

and then using the fact that
∑

i∈CI
v
(j)
I,i = 1. �

Let us resume the algorithm. The input data are the partition and a given levelK. The steps to be

followed are the following:

• Once the partition and the thresholdK fixed, compute the starred bounds given by (28). To do

this,

– for each classCI , I ≥ K, compute thêpi,I ’s and thêhi,I ’s ; alternatively, lower bounds

of the p̂i,I ’s and upper bounds of thêhi,I ’s can be used (we will see in next section that

the infinite models are analyzed this way)

– computeµ∗
I using (28).

• GenerateG and then, for anyj ∈ in(G), find the stationary distributiony(j) of the chainY (j)

with the choiceµ−
I = µ∗

I . Possibly, use the techniques in [8] or in [10] to reduce the number of

linear systems to solve.

• Compute the lower and upper bounds ofR using (12) and (13).

The main drawback of this algorithm is that the computation of thep̂i,I ’s and thêhi,I ’s may be

numerically intractable due to the possible size of classCI . Moreover, even if they can be calculated,
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the induced cost may be too high for the user. A possible way to handle this problem is to try to obtain

new bounds on these numbers. We are following this direction in our current research work. In this

paper, we want only to illustrate the use of our approach in cases where deriving the bounds can be

done analytically. However we can note that if Condition 2 holds, the bounds obtained by the new

algorithm are better than those of [3], as stated in next result.

Lemma 4 If Condition 2 holds (which implies that Condition 3 holds as well), then for allI ≥ K,

µ−
I ≤ µ∗

I ≤ µI .

Proof. Let us denote byei the vector whose entries are 0 except theith one, which is equal to 1. From

Lemmas 2 and 3, we have:

ĥi,I = −eiA
−1
CI

1T, (29)

p̂i,I = −eiA
−1
CI

ACI ,CI−1
1T. (30)

Let us consider the vectorACI ,CI−1
1T. Each one of its components are greater thanmini∈CI

∑
j∈CI−1

Ai,j ,

that is, greater thanµ−
I . From the relations above, we have

p̂i,I ≥ µ−
I ĥi,I

which ends the proof. �

6 Bounding R in infinite models

In this section, we adapt the method described before to the case of an infinite state spaceS and finite

classescI ’s (implying thatM = ∞). We assume thatX is ergodic. We also assume, of course, that

R < ∞. Given that each class is finite, the cardinality ofin(G) is also finite. Observe first that when

|S| = ∞, the arguments used in Lemma 1 remain valid, proving here that from any statei there is a

finite path toj in X(j). Now, since the infinitesimal generator ofX(j) is the same as the infinitesimal

generator ofX except for a finite part ofS, necessaryX(j) is also ergodic, and therefore, with a single

positive recurrent class containingj. In Appendix C, we show that the conclusions of Theorem 1 are

still valid in the infinite state space case. Moreover, sinceR < ∞, we necessarily haveR(j) < ∞ as

well. To see this, observe that if for somej0 ∈ in(G) we haveR(j0) = π(j0)rT = ∞, then from the

expression

R = πrT =
∑

j∈in(G)

βjπ
(j)rT
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we obtainR = ∞, in contradiction with our starting assumption.

To simplify the analysis, we add the assumption that the transitions fromCI to CJ are null if

I − J > 1. If this condition is not verified, the corresponding relations are more complex, but the

method still applies.

Assume that Conditions 1 and 3 hold. We can compute the starred bounds of previous subsection.

For eachj ∈ in(G), let us define a new chainZ(j) over the state spaceG ∪ {c} with the same

transition rates thanX insideG. From anyg ∈ G to c the transition rate is equal toA(j)agg
g,cK as in

X(j)agg. Fromc to G, there exists a single non-null transition rate which is fromc to j, denoted by

νj, and defined by

νj =
µ

(j)
K∑∞

I=K θ
(j)
I

(31)

whereθ
(j)
K = 1 and, forI > K,

θ
(j)
I =

λ
(j)
K,K+1 . . . λ

(j)
I−1,I

µ
(j)
K+1 . . . µ

(j)
I

. (32)

Observe that sinceX is assumed to be ergodic,
∑

I θ
(j)
I < ∞.

Denoting byz(j) the stationary distribution ofZ(j), we have

Lemma 5

z(j)
c =

∞∑
I=K

π(j)agg
cI

and for all g ∈ G,

z(j)
g = π(j)agg

g .

Proof. The proof is immediate by writing the equilibrium equations forX
(j)agg
∞

π(j)agg
cI

λ
(j)
I,I+1 = π(j)agg

cI+1
µ

(j)
I+1,

which imply that

π(j)agg
cI

= θ
(j)
I π(j)agg

cK
.

In order to have the equalityz(j)
c =

∑∞
I=K π

(j)agg
cI we need

νj =
π

(j)agg
cK µ

(j)
K∑∞

I=K π
(j)agg
cI

.

The result follows by writingπ(j)agg
cI as a function ofπ(j)agg

cK in this last relation. �
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In the same way, let us define another irreducible Markov chainZ
′(j) and its stationary distribution

z
′(j) overG ∪ {c}, with the same rates than forZ(j) insideG and from anyg ∈ G to c. The only

entry inG from c is j and the transition rate fromc to j, denoted byν
′
j, is defined as follows:

ν
′
j =

µ∗
K∑∞

I=K θ∗I
(33)

where

∀I > K, θ∗I =
λ+

K,K+1 . . . λ+
I−1,I

µ∗
K+1 . . . µ∗

I

, θ∗K = 1. (34)

Then, we have the following results:

Lemma 6 WhenY (j) is built using ratesλ+
I,I+1 andµ∗

I , I ≥ K, we have

z
′(j)
c =

∞∑
I=K

y(j)
cI

and for all g ∈ G,

z
′(j)
g = y(j)

g .

Proof. The proof is as for Lemma 5. �

At this point, you should note thatν
′
j ≤ νj , since

µ∗
K

∞∑
I=K

θI ≤ µK

∞∑
I=K

θ∗I ,

and thatν
′
j is in fact independent ofj because we use an upper bound ofλ

(j)
I which is independent of

j itself.

Let us come back to our bounds. Let us define overG ∪ {c}, the two reward vectorsr
′
1 and

r
′
2 obtained by completing vectorrG with a reward on the aggregated statec equal to%1 in r

′
1 and

denoted byrc in r
′
2. Since0 ≤ %1 < ∞, to obtain a lower bound onR we proceed exactly as in the

previous section. The problem can arise in the case of%2 = ∞. First, let us consider the case when

%2 is finite.

Theorem 6 If %2 < ∞, let rc be equal to%2. Then, we have the following bounds ofR:

min
j∈in(G)

z
′(j)r

′T
1 ≤ R, (35)

max
j∈in(G)

z
′(j)r

′T
2 ≥ R. (36)

20



Proof. From Lemma 6, we know that

z
′(j)r

′T
1 = y(j)

G rT
G + (1 − y(j)(G))%1,

and

z
′(j)r

′T
2 = y(j)

G rT
G + (1 − y(j)(G))%2.

Then, the proof is identical to the proof of Theorem 4. �

Assume now that%2 = ∞ and denote byrcI
an upper bound of the rewards onCI . Then we have

the following preliminary result:

Lemma 7 If %2 = ∞, under the condition
∞∑

I=K

θ
(j)
I rcI

< ∞,

letting

rc = max

{
max

j∈in(G)

∑∞
I=K θ

(j)
I rcI∑∞

I=K θ
(j)
I

,max
i∈G

ri

}
, (37)

an upper bound of the expected rewardR is

max
j∈in(G)

(∑
i∈G

z
(j)
i ri + rcz

(j)
c

)
≥ R. (38)

Proof. For anyj ∈ in(G),

π(j)rT = π
(j)
G rT

G + π
(j)

Ḡ
rT
Ḡ

= π
(j)agg
G rT

G + π
(j)

Ḡ
rT
Ḡ

≤ π
(j)agg
G rT

G +
∞∑

I=K

π(j)agg
cI

rcI
.

From the proof of Lemma 5,π(j)agg
cI = θ

(j)
I π

(j)agg
cK , so, given that

∑∞
I=K θ

(j)
I rcI

< ∞,

π(j)rT ≤ z
(j)
G rT

G + π(j)agg
cK

∞∑
I=K

θ
(j)
I rcI

.

From the definition ofrc, we have

π(j)rT ≤ z
(j)
G rT

G + z(j)
c rc.

�

Thus, obtaining an upper bound ofrc allows us to derive an upper bound ofR, as stated in the

next theorem:
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Theorem 7 If r∗c ≥ rc, then an upper bound of the expected rewardR is

max
j∈in(G)

(∑
i∈G

z
′(j)
i ri + r∗cz

′(j)
c

)
≥ R. (39)

Proof. Consider the expression ofz
′(j)r

′T
2

z
′(j)r

′T
2 = z

′(j)
G rT

G + z
′(j)
c rc.

From Theorem 2, we have

ẑ
′(j)
G = ẑ

(j)
G .

Using the remark above,ν
′
j ≤ νj , and Theorem 3, we also havez

′(j)(G) ≤ z(j)(G), and so,

z
′(j)
c ≥ z(j)

c .

Then given thatrc ≥ ri, ∀i ∈ in(G),

z(j)r
′T
2 ≤ z

′(j)r
′T
2 .

It follows that ∑
i∈G

z
(j)
i ri + rcz

(j)
c ≤

∑
i∈G

z
′(j)
i ri + rcz

′(j)
c .

Then if r∗c ≥ rc, we obtain (39). �

This tells us that if we can compute an upper bound ofrc, we have in the right hand side of (39)

an upper bound ofR.

A particular case

Let us analyze what happens whenλ+
I,J andµ∗

I are constant and respectively equal toλ andµ. A

condition for the stability of the model is given byλ < µ. Denoting% = λ/µ, we have

θ∗I = %I−K , ν
′
j = µ(1 − %).

In the examples that follow (7.2 and 7.3), we are in this particular case. We just have to boundrc with

r∗c = max
(

max
i∈G

ri,

∑∞
I=K θ∗IrcI∑∞

I=K θ∗I

)
= max

(
max
i∈G

ri, (1 − %)
∞∑

I=K

%I−KrcI

)
.

This is the technique that we will use to obtain bounds in the queuing models of next section.
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7 Illustrations

This section illustrates the efficiency of the bounding method proposed in the paper. First, we use a

standard dependability model, a “Machine Repairman Model”, which leads to a large finite Markov

chain that can not be handled by the technique published in [3]. The second example is an open

queuing network composed by two queues in series, leading to an infinite Markov chain with no

known analytical solution. In this case, we bound the mean number of customers in each node. We

can observe that this model can not be handled by matrix-geometric techniques. The third example is

another open tandem of queues. Here, there are blocking mechanisms since we consider finite buffers

in all the nodes except the first one, and we bound blocking probabilities. These two open examples

can be transformed into closed versions by limiting the total allowed number of customers and in this

case, the conditions necessary to use the method of [3] do not hold neither, as in the first example.

7.1 Bounding the asymptotic availability of a MRM

Our first example is a standard multi-component system subject to failures and repairs. There are two

types of components. The number of components of typek is denoted byNk and their time to failure

is exponentially distributed with parameterλk, k = 1, 2. Think for instance of a communication

network where the components are nodes or lines. In such a system we can easily find a large number

of components leading in turn to models with huge state spaces.

After a failure, the components enter a repair facility with one server and repair time distributed

according to adk-stage Coxian distribution for typek machines, with meanmk. Type 1 components

are served with higher priority than type 2, and the priority is non preemptive. We assume that type 2

units are put immediately in operation when repaired, but that type 1 ones need a delay exponentially

distributed (with parameterµ) to come back to operation. Thus, in the model, type 1 customers go to

a second infinite server queue. This allows us to illustrate the method when the repair subsystem is

more complex than a single queue.

To define the state space, we usen1 (respectivelyn2) to represent the number of machines of type

1 (respectively2) in the repair queue; we denote byk the type of the machine being repaired (with

value 0 if the repair station is empty) and byd be the phase of the current service with1 ≤ d ≤ dk

(d = 0 if the repair station is empty). Denote byn3 the number of machines of type1 in transit (that

is, in the delay station). We are interested in bounding the asymptotic availability of the system. Let
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Figure 4: A Machine Repair Model

us assume that the system is operational as soon as there are at leastnMin1 machines of type1 and at

leastnMin2 machines of type2 operating.

On statess = (n1, n2, d, k, n3) we have a Markov chain on which we consider the subsets of

statesCI defined by

CI = {s | n1 + n2 + n3 = I}

with 0 ≤ I ≤ N1 + N2. They define a partition of the state space. Observe that Condition 2 is not

satisfied and thus that the method in [3] can not be applied. On the contrary, Condition 3 holds.

Let us consider the following parameter values:

• N1 = 80, N2 = 120, nMin1 = 79, nMin2 = 115, λ1 = 0.00004, λ2 = 0.00003, m1 = m2 =

1.0, d1 = 6, d2 = 5 andµ = 3.0. The size of the whole state space is|S| = 4344921. Using

two small values ofK, we obtain the following numerical results:

K |Sagg| Lower bound Upper bound

5 226 0.9997597121 0.9997597466

10 1826 0.9997597349 0.9997597349

• If we change the definition of operational system allowing 77 type 1 units as the threshold,

that is, if we changenMin1 to nMin1 = 77, we have again a state spaceS with cardinality
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|S| = 4344921 and for the same values ofK we obtain

K |Sagg| Lower bound Upper bound

5 226 0.9999999698 0.9999999852

10 1826 0.9999999841 0.9999999841

leading to a significant improvement of the availability of such a system.

As a technique to check the used software, let us consider the following situation. Let us keep the

previous example with the valuesN1 = 80 andN2 = 120. We consider Coxian distributions for the

repair times with 2 phases or stages (that is,d1 = d2 = 2) but we choose their parameters in such a

way that they are equivalent to exponential service times: ifνk,d is the parameter of thedth stage for a

typek component and ifld is the probability that phased is the last one (ldk
= 1), then for all phased

we haveνk,dld = 1/mk (technically, we put ourselves in astrong lumpabilitysituation). Moreover, if

the scheduling of the repair facility is changed to preemptive priorities, then type 2 units are invisible

to type 1 ones, and with respect to type 1 components we have a product form queueing network.

Standard algorithms can then be used to compute, for instance, the mean number of type 1 machines

in the repair subsystem which we denote byN̄1. Using the QNAP2 product of Simulog, we obtain for

λ1 = 0.00004, m1 = 0.2 andµ = 3.0, the valueN̄1 = 0.0006404. Using our algorithm withK = 3

we obtain0.0006403 < N̄1 < 0.0006413.

7.2 Bounding the mean number of customers in a two-node tandem

Consider the following simple open queuing network with 2 FIFO nodes (Figure 5). In this example,

customers arrive from outside according to a Poisson process with rateλ. Each queue has infinite

capacity and the service times at both nodes have the same Erlang distribution with2-stages and

expectation equal to2/ν.

λ
ννν ν

Figure 5: A two-node open queuing network

We consider the usual Markov representation of the states of this queuing system,s = (n1, d1, n2, d2),

with ni customers in nodei and phasedi in the server of nodei, i = 1, 2, with the convention that
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di = 0 if ni = 0. Let us define the partition(CI)I≥0 of the state space with

CI = {(n1, d1, n2, d2) | n1 + n2 = I}.

This model does not possess a known closed form solution and it is not possible to solve it directly

due to its infinite state space cardinality. Moreover, given that Condition 2 is not satisfied, the method

in [3] can not be applied. The matrix-geometric approach [11] can not be used neither, since the state

space has a 2-dimensional structure and both dimensions are unbounded.

Let us apply our method to bound the mean number of customers in each node. In both cases, the

a priori bound%2 on the rewards is infinite. First, we should note thatλ is an upper bound ofλ+
I,I+1

for all I. Concerning the needed lower bound on theµI ’s, we use the regular structure of theCI ’s.

It is a matter of standard Markov analysis to verify that that for eachCI , I ≥ 1, the value ofµ∗
I is

obtained for state(I, 1, 0, 0) and that this value is the same for everyI; it is given by

µ∗
I = µ∗ =

λν4

(λ + ν)4 − ν4
.

If we set% = λ/µ∗, we have

θ∗I = %I−K , andν
′
j = (1 − %)µ∗

K .

Observe that this model is stable forλ < ν/2.

For instance, if we setν = 1.0 andλ = 0.18 < µ∗ ≈ 0.1892, we obtain that the mean number

of customers in the network is equal to 1 with an error less than 0.01, using less than 200 generated

states.

7.3 Bounding blocking probabilities in a three-node tandem

Let us consider the three-node open queuing network shown in Figure 6. Excepting node 1 which

has an infinite capacity, the two other nodes have a finite capacity of respective sizesH2 andH3.

Customers arrive at the first node according to a Poisson process with rateλ. All the services are

exponentially distributed and the service rates are respectivelyµ1, µ2 andµ3. We also assume that all

the nodes implement a FIFO service discipline, and that there is a blocking-after-service behavior in

the first and second nodes. This means that when the second node is saturated, the first one blocks its

server after the end of the current service and until the departure of the customer being serviced in the

second one. Then, if the latter is not saturated, simultaneously a customer leaves the second node to
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the third node and another customer passes from node 1 to node 2. On the other hand, if the last node

is saturated, the second node as the first one blocks its server after the end of the current service and

until the customer serviced in the third node leaves the system.

total capacity H3total capacity H2

λ µ1 µ2 µ3

Figure 6: A three-node open queuing network with blocking-after-service

Once a Markov process is build in the usual way, we partition the state space as before, definingCI

as the set of states corresponding toI customers in the tandem. As in the previous example, there is no

closed form solution [12] and the state space cardinality is infinite. Given the fact that queues 2 and 3

are bounded, it is easily verified that forI ≥ H2 +H3 +1, |CI | is constant. This allows us to simplify

the analysis by choosing anyK > H2 + H3 + 1 (note that if we had chosen someK ≤ H2 + H3 + 1,

we still could have done the same by collapsing inc all the aggregated statescI with I > H2 +H3 +1

and keeping statescK , . . . , cH2+H3+1). The stability condition associated with the Markov chain used

to bound the asymptotic measures is
∑∞

J=1 θ∗J < ∞. Given thatK > H2 + H3 + 1, for all I ≥ K,

µ∗
I = µ∗

K andλ+
I,I+1 = λ. So, letting% = λ/µ∗

K , we have

θ∗I =
(

λ

µ∗
K

)I−K

= %I−K , ν
′
j = (1 − %)µ∗

K .

To illustrate the technique, we bound the following measures: (i) the mean number of customers in

the first node (this leads to a case with%2 = ∞), and (ii) the blocking probabilities in the first and

second nodes (for these measures, we have%2 < ∞).

Let us consider the following parameter values:λ = 0.2, µ1 = 0.7, µ2 = 1.5, µ3 = 0.2, H2 = 18

andH3 = 10. After generating 3839 states, we obtain the value of the mean number of customers

in the first node with an absolute error less than10−10, that is, the difference between the computed

upper and lower bound is less than10−10. The mean number of customers in node 1 is0.4000000000.

In the same way, we show respectively in Figure 7 and in Figure 8 the asymptotic probability of

having servers 1 and 2 blocked. As above, given that we are interesting in performance measures

with an absolute error less than10−10, we only plot the average between both computed bounds. The

probability of blocking of node1 is plotted as a function of the service rate of the corresponding server,

µ2, with (H2,H3, λ, µ1, µ3) = (10, 8, 0.1224, 1.5, 0.5) and the probability of blocking of node2 as a

function ofµ3, with (H1,H2, λ, µ1, µ2) = (18, 10, 0.1224, 1.5, 0.7).
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Figure 7: Probability of blocking of node1 as a function ofµ2

1e-10

1e-09

1e-08

1e-07
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Blocking prob.
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Figure 8: Probability of blocking of node 2 as a function ofµ3

8 Conclusions

This paper proposes a new way of obtaining upper and lower bounds of asymptotic performability

measures, from finite or infinite Markov models. The asymptotic performability includes as particu-

lar cases the asymptotic availability in a dependability context, or standard asymptotic performance

measures such as mean number of customers, blocking probabilities, loss probabilities, etc. To be

applied, the method, as presented here, needs enough knowledge of the structure of the model in or-

der to be able to derive analytically or to evaluate numerically certain values which are necessary to

obtain the bounds. This is not always possible and current research aims to deal with this situation.

In any case, there are many models similar to the type of infinite queuing networks used in this paper

to illustrate the method, with no known closed solution and where, to the best of our knowledge, any

other available bounding techniques do not apply.
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A Proof of Theorem 1

Let us consider the irreducible and aperiodic stochastic matrixP , obtained by uniformization ofA

with respect to the uniformization rateΛ ≥ supi |Aii|, that is, matrixP = I + A/Λ. We have

π = πP . Then, let us construct the matrixQ with the same size asP , such thatQi,j = 0 for all

i ∈ CK and j ∈ in(G), andQi,j = Pi,j in the other cases. Given that for alli, j ∈ S we have

Qi,j ≤ Pi,j , Q is a lower bound ofP , that is a sub-stochastic matrix. We should note thatQ is a strict

lower bound ofP becauseP is irreducible. Thus matrix(I − Q) is invertible [16, Chapter 1, p. 66].

Let us denote byP(M) the polyhedron given by the set of convex combinations of the normalized

rows of the square matrixM . Observe that ifP is a stochastic matrix and ifπ = πP , thenπ ∈ P(P ).

Consider

P((I − Q)−1) = {v ∈ R1×|S| | ∃β ∈ R1×|S|,β1T = 1,v = βΣ−1(I − Q)−1}, (40)
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whereΣ−1 = Diag((I − Q)−11T)−1 = Diag(σk) is the normalization matrix. We will denote by

z(1), . . . ,z(jSj) the vertices ofP((I − Q)−1).

Proof of Theorem 1 As for P , we consider the uniformization ofA(j), denoted byP (j). Because of

the irreducibility ofA, there exists an unique normalized vectorπ(j) (Lemma 1), such thatπ(j)A(j) =

0 andπ(j)P (j) = π(j).

From [1, theorem 8], it follows thatπ(j) belongs toP((I − Q)−1). We show thatπ(j) is equal to

thejth vertex ofP((I − Q)−1).

Lemma 8 Thejth vertex ofP((I − Q)−1) is π(j).

Proof. We prove first the existence of a stochastic matrix such that thejth vertex ofP((I − Q)−1),

denoted byz(j), is its stationary distribution. Then, we show that this stochastic matrix isP (j). To

start, let us introduce a new matrixΩ = Diag(1(I − Q)−1). By definition ofz(j), there exists a

normalized and positive vectorβ(j) such thatz(j) = β(j)Σ−1(I − Q)−1. Vectorβ(j) is defined by

β
(j)
i = 1 if i = j andβ

(j)
i = 0 in the other cases. Indeed(I − Q)−1 has full rank. That means that

each row of the matrix belongs to the base of the polyhedron. Let us consider the matrixC(j) equal to

1
c(j)

Ω−1νTβ(j)Σ−1, wherec(j) is a constant equal toβ(j)Σ−1(I − Q)−1Ω−1νT andν is a positive

and normalized row vector.

Then we have the following relations:

z(j)(Q + C(j)) = β(j)Σ−1(I − Q)−1(Q + C(j)) = z(j), (41)

and if we denotewT = (I − Q)−1Ω−1νT,

(Q + C(j))wT = (Q + C(j))(I − Q)−1Ω−1νT = wT. (42)

From [17, Theorem 5.4], matrix(Q+C(j))

%(Q+C(j))
is similar to a stochastic matrix. That means there

exists a matrixT such that (Q+C(j))

%(Q+C(j))
= T−1BT with B1T = 1T.

Using the same arguments as in the proof of theorem [1, 8], we haveQ + C(j) = P (j).

�

At this point, from lemma above we know thatπ(j) = z(j) ∈ P((I − Q)−1). To prove The-

orem 1, we only have to show thatπ belongs toP((I − Q)−1). As for π(j) (in the proof of [1,
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theorem 8]) and given thatπ(I − P ) = 0 and (P − Q) ≥ 0, there exists a normalized and pos-

itive vectorβ such thatπ = βΣ−1(I − Q)−1. It follows that π belongs toP((I − Q)−1) and

π =
∑

j∈S β(j)z(j). Moreover from the expression ofπ above, we have the following equality for

β: β = π(P − Q)Σ. Matrix (P − Q) is equal to a matrix whose columns are null excepted those

associated with the entry points inG. This means that the only non null elements ofβ areβi for

i ∈ in(G). Then from Lemma 8, it follows thatπ =
∑

j∈in(G) β(j)π(j). �

B Proof of Theorem 3

Let us first consider the exact aggregated Markov chain constructed fromX, by collapsing the subset

G into a single stateg, and each subsetCI for I ≥ K into a single statecI . We denote the aggregated

transition rate fromg to anycI , by λg,I , from anycI to cJ (for J > I) by λI,J , from cI to cI−1 by µI

(I > K) and fromcK to g by µK . Now consider a second Markov chain having the same topology

the first one, but such that the transition rates fromcI to cJ whenJ ≥ I, denoted byλ
′
I,J , are upper

bounds of the corresponding rates in the first aggregation, and lower bounds in case of transitions

from cI to cI−1 or from cK to g (the respective values are denoted byµ
′
I , I ≥ K).

Let us denote byv (respectively byv′) the stationary distribution of the first chain (respectively

of the second). Then we have:

Lemma 9 v
′
g ≤ vg.

Proof. Suppose thatv
′
g > vg. From the equilibrium equations, we can write that:

vcK
=

(
∑

J≥K λg,J)vg

µK
,

v
′
cK

=
(
∑

J≥K λ
′
g,J)v

′
g

µ
′
K

.

By definition, we know thatλg,J ≤ λ
′
g,J andµK ≤ µ

′
K . Thus it follows:

v
′
cK

> vcK
.

Recursively, if we write for eachI > K the equilibrium equations, similar results are obtained. That

is:

∀I > K, v
′
cI

> vcI
.
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Then given thatv is a stationary distribution, we have:

v
′
g +

∑
I≥K

v
′
cI

> 1

This means the first assumption is false. �

In the same way, let us consider the two exact aggregated Markov chains constructed, as above,

from X(j)agg and fromY (j), by collapsing the subsetG in a single stateg. Given that there is a single

point to enter inG from Ḡ, the aggregated rate fromcK to g in former chain (respectively in the latter

chain), is equal to the transition rate fromck to j in X(j)agg (respectively inY (j)). The transition rates

from g to anycI in the two new chains are given by the following expressions:

λg,I =
∑
i∈G

π̂
(j)agg
G,i A

(j)agg
i,cI

,

λ
′
g,I =

∑
i∈G

ŷ
(j)
G,iA

(j)agg
i,cI

.

By construction ofX(j)agg andY (j), the restriction of their respective infinitesimal generators to the

subsetG are identical. From Theorem 2, we have the equality between the two conditional vectors

π̂
(j)agg
G , ŷ(j)

G . That means that

λg,I = λ
′
g,I .

Moreover the transition rates between the other aggregated states are the same as inX(j)agg and

Y (j). Let us denote byπ(j)agg
g (respectively byy(j)

g ), the stationary probability of being in stateg

for the exact aggregated matrix obtained fromX(j)agg (respectively fromY (j)). Thus, the conditions

required to apply Lemma 9 are verified. It follows:

π(j)agg
g ≥ y(j)

g .

The fact thatπ(j)agg
g = π(j)agg(G) andy

(j)
g = y(j)(G) (same results as (7)), ends the proof.

C The existence of(I − Q)−1

To apply Theorem 1 in the infinite state space case, we assume first that the process is uniformizable.

Next, observe thatX(j) is also uniformizable and ergodic (recall thatG is always finite). It only
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remains to show that matrix(I − Q) is invertible. To do this, let us first recall the block structure of

Q:

Q =

 PG PGḠ

0 PḠ

 .

One way to obtain the existence of inverse of(I −Q) is to consider each block separately. Given that

the only infinite blocks inQ arePGḠ andPḠ, we just have to show thatI − PḠ is invertible. This

can be done by means of standard results as presented in [18]. SincePḠ is a sub-stochastic matrix,

the sumI + PḠ + P 2
Ḡ

+ · · · is finite and sub-stochastic. Using [18, 6.4.5], iffT denotes the vector

defined by

fi = lim
n→∞

∑
j∈Ḡ

(Pn
Ḡ)i,j ,

we have thatfT is the maximal solution of the linear systemxT = PḠxT, with 0 ≤ xi ≤ 1, and

eitherfi = 0 for all i, or supi∈Ḡ fi = 1. SinceX is irreducible and have only positive recurrent states,

the system of linear equations above, have a unique solution verifyingfi = 0 for all i [18, 5.3.29].

This means that the matrixPḠ verifies:

lim
n→∞Pn

Ḡ1T = 0T.

Given that all the elements ofPḠ are positive, it follows that

lim
n→∞Pn

Ḡ = 0,

which is a sufficient condition for the convergence of the series.
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