Large-scale visual recognition
The bag-of-words representation

Florent Perronnin, XRCE
Hervé Jégou, INRIA

CVPR tutorial
June 16, 2012
Outline

Bag-of-words

Large or small vocabularies?

Extensions for instance-level retrieval
Direct matching: the complexity issue

Assume an image described by $m=1000$ descriptors (dimension $d=128$)
- $N\times m=1$ billion descriptors to index

Database representation in RAM: 128 GB with 1 byte per dimension

Search: $m^2 \times N \times d$ elementary operations
- i.e., $> 10^{14}$ ⇒ computationally not tractable
- The quadratic term m^2: severely impacts the efficiency
Bag-of-visual-words

- The BOV representation
 - First introduced for texture classification [Malik’99]

- “Video-Google paper” – Sivic and Zisserman, ICCV’2003
 - Mimick a text retrieval system for image/video retrieval
 - High retrieval efficiency and excellent recognition performance

- “Visual categorization with bag of keypoints” – Dance’04
 - Show its interest when used jointly with a (kernelized) SVM

- Key idea: n local descriptor describing the image \rightarrow 1 vector
 - sparse vectors \Rightarrow efficient comparison
 - inherits invariance of the local descriptors
Bag-of-visual words

- The goal: “put the images into words”, namely visual words
 - Input local descriptors are continuous
 - Need to define what a “visual word is”
 - Done by a quantizer q
 - $q: \mathbb{R}^d \rightarrow \omega$
 - $x \rightarrow c(x) \in \omega$
 - q is typically a k-means

- ω is called a “visual dictionary”, of size k
 - A local descriptor is assigned to its nearest neighbor
 - $q(x) = \arg \min \|x-w\|^2$
 - $w \in \omega$

- Quantization is lossy: we can not get back to the original descriptor
- But much more compact: typically 2-4 bytes(descriptor)
Video Google – image search

- Extract local descriptors
 - Detector
 - Describe the patch

- Quantize all descriptors
 - Subsequently compute the vector of frequencies
 - Weight by IDF (rare if more important)
 ⇒ TF-IDF vectors

- Search similar vectors

- Optionally: Re-ranking
Inverted file

- Set of lists
 - That stores the sparse vector components
 - Use to compute the cosine similarity (or any Lp-norm, see [Nister 06])

- Two implementations
 - Store one image id per descriptor
 - Can easily incorporate meta information per descriptor (geometry, bundled features, etc)
 - Store image id+nb of descriptors
 - Easily implemented with Matlab using sparse matrices/vectors

- Complexity: approximated by the number of visited items
Inverted file – Complexity

- Denote
 - $p_i = P(\text{assign a descriptor to word } i)$
 - $N = \text{number of image in database}$
 - $m = \text{average # of descriptors / image}$

 ⇒ The expected length of List i is given by: $N \times m \times p_i$

- The expected cost is: $N \times m^2 \sum_{i=1}^{k} p_i^2$

- Clusters of variable sizes negatively impacts this cost [Nister 06]
 - Imbalance factor: $k \sum p_i^2$
 - measures the divergence from (optimal) uniform distribution (=1)

- Strategies proposed to balance the clusters [Tavenard 11]
 - but has an effect on search quality
Inverted file – Complexity

- Complexity is **linear** in the number of images
 - but small constant, in order of m/k
 - E.g., $C=0.01$

- **Memory usage** of an inverted file
 - 1 million images ≈ 8 GB (depending on m)
 - Can be compressed [Jegou 09]
Inverted file – Boosting efficiency

- **Stop-words**
 - Method used in Text retrieval to discard uninformative words
 - In image search: remove the s most frequent ones [Sivic 03]
 - Impact on efficiency: assuming \(p_i \) in decreasing order

\[
\text{replace } N.m^2 \sum_{i=1}^{k} p_i^2 \text{ by } N.m^2 \sum_{i=s+1}^{k} p_i^2
\]

- But most frequent **visual** words are not that uninformative
Inverted file – Boosting efficiency

- Large vocabularies
 - Unlike in text, we decide the vocabulary size by choosing k
 - for search quality and/or efficiency
 - Querying complexity: linear in $1/k$
 - Efficiency boosted by using a very large dictionary [Nister 06]
Outline

Bag-of-words

Large or small vocabularies?

Extensions for instance-level retrieval
Large vocabularies: assignment cost

- Large vocabularies are preferred [Nister 06]: high retrieval efficiency
 - But increased assignment cost, e.g., for k-means: $C(k) = C_1 \times k + \frac{C_2}{k}$

- Structured quantizers: low quantization cost even for huge vocabularies
 - Grid lattice quantizer [Tuytelaars 07]
 - But poor performance in retrieval [Philbin 08]
 - And very unbalanced [Pauleve 10]:

![Graph showing cell population vs. k-means and lattice quantizers]
Large vocabularies with learned quantizer

- Hierarchical k-means [Nister 06]
 - K-means tree of height h
 - Branching factor b: $k = b^h$
 - Assignment Complexity:
 $$\mathcal{O}(d b h) = \mathcal{O}(d h k^{\frac{1}{h}})$$

- Approximate k-means [Philbin 07]
 - Based on approximate nearest neighbor search
 - With parallel k-tree
 - See later in this tutorial

HKM with $b=3$

Nister & Stewenius

xerox
Bag-of-words: another interpretation

- « Visual words » are a view of mind
- \(\text{BOV} \approx \text{approximate k-NN search+voting} \)
 - Implicitly define the neighborhood \(N(x) \) of a vector \(x \) as
 \[
 N(x) = \{ y_i \in Y : c(y_i) = c(q) \}
 \]
- But, let assume:
 - 2 descriptors in query
 - 3 descriptors on database side
 \(\Rightarrow \) 6 votes for 2x3 descriptors
 \(= \) contribution to the cosine similarity
- Partial solution: pre-processing BOV with component-wise square rooting
Compromise on vocabulary size: $k=20000$
Compromise on vocabulary size: $k=200000$
Impact of the vocabulary size on accuracy

- The intrinsic matching scheme performed by BOV is weak
 - for a “small” visual dictionary: too many false matches
 - for a “large” visual dictionary: complexity, true matches are missed
 - \(k=1,000 \)
 - \(k=200,000 \)

- No good trade-off between “small” and “large”!
 - Intrinsic matching method of BOV is relatively poor in all cases

- Partially solved by multiple [Jegou 07] or soft assignment [Philbin 08]
 - Preferably on query side only [Jegou 09] (to save memory)
Compromise on vocabulary size: $k=20000$
But with a better matching method (HE)…
Compromise on vocabulary size: k=200000
Interest of the voting interpretation

- Easy extended to incorporate
 - A better matching method [Jegou 08]
 - Partial Geometrical information [Jegou 08, Zhao 10, …]
 - Neighborhood information [Wu 09]
 - … any method that requires to handle individual descriptors
Outline

Bag-of-words

Large or small vocabularies?

Extensions for instance-level retrieval
Geometrical verification

- Re-ranking based on full geometric verification [Philbin 07]
 - works very well but **very costly**
 - Applied to a short-list only (typically, 100 images)
 - for very large datasets, the number of distracting images is so high that relevant images are not even short-listed!

![Graph showing the rate of relevant images short-listed vs. dataset size for different short-list sizes: 20 images, 100 images, and 1000 images. The rate decreases as the dataset size increases.](image-url)
BOV search in 1M images – ranks

Query

BOV 2

BOV 5890

BOV 43064
Geometrical verification on a large scale

- Important activity on the topic
 - Weak geometry consistency [Jegou 08]
 - Geometrical Min-hash [Chum 09]
 - Bundling features [Wu 09]
 - Spatial inverted file [Lin 10]
 - ...

- In classification
 - Most of these methods does not correspond to a vector model
 - not useable for classification with SVM
 - Geometry in classification: spatial pyramid matching [Lazebnik 06]
Weak Geometry consistency

- WGC is a Hough transform
 - But do estimate a full geometrical transformation
 - Separately estimate scalar quantities: rotation angle and log-scale
 - Just it use to filter out the outliers

- Implementation
 - Store quantized dominant orientation and detector log-scale directly in the inverted file
 - Two small hough histograms to collect the votes (16–32 bins/image)

- Variation: Enhanced Weak Geometry consistency [Zhao 10]
 - a.k.a visual phrases [Zhang 11]
 - Deal with the translation only
Weak geometric consistency

Max = rotation angle between images
Large scale impact: BOV search in 1M images

Query

BOV 2
HE+WGC 1

BOV 5890
HE+WGC 4

BOV 43064
HE+WGC 5
Query expansion in visual search

- [Chum 07], “Total Recall”, ICCV 07

- Different variants. Basic (shared) idea
 - Process the list of results
 - If some images are good (verified by spatial verification), use them
 - To process some other augmented queries
Discriminative query expansion

- CVPR’12, [Arandjelovic 12]
- Learn a classifier on-the-fly

Artwork from Arandjelovic & Zisserman
Bag-of-words: concluding comments

- Practical solution: same ingredients as in text can be used
 - vector model → useable with strong classifiers, in particular SVM
 - query expansion [Chum’07]
 - Or handle statistical phenomenons, e.g., Burstiness [Jegou’09]

- With appropriate extension, state-of-the-art:
 - Hamming Embedding
 - Re-ranking with spatial verification
 - Query-expansion

- Limited to about **a few million images** on a server
 - Caveat: memory usage
 - See a demo at http://bigimbaz.inrialpes.fr
End
Algorithm 1: Transitive Query Expansion

```python
queue = [query]
results = {}
While Queue not void
    query2 = queue.pop()
    results2 = search (query2)
    for all images in results2
        image = results U {image}
        if high confidence in image (good spatial verification)
            queue.push(image)
return results
```

Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval
O. Chum, J. Philbin, J. Sivic, M. Isard, A. Zisserman, ICCV 07
Algorithm 2: Average Query Expansion

descriptors = descriptors_interest_points (query)
results = {}
While descriptors “unstable”
 results2 = query (descriptors)
 for image in results2
 results = results U {image}
 if image very reliable (spatial verification)
 dtran = transfo(descriptors_interest_points (image))
 add dtran to descriptors
 return results