Large-scale visual recognition
Efficient matching

Florent Perronnin, XRCE
Hervé Jégou, INRIA

CVPR tutorial
June 16, 2012
Outline

- Preliminary

- Locality Sensitive Hashing: the two modes
 - Hashing
 - Embedding

- Searching with Product Quantization
Finding neighbors

- Nearest neighbor search is a critical step in object recognition
 - To compute the image descriptor itself
 E.g., assignment with k-means to a large vocabulary
 - To find the most similar images/patches in a database
 - For instance, the closest one w.r.t to Euclidean distance:

\[
\text{NN}(x) = \arg \min_{y \in Y} \| x - y \|^2
\]

- Problems:
 - costly operation of exact exhaustive search: $O(n^d)$
 - High-dimensional vectors: for exact search the best approach is the naïve exhaustive comparison
The cost of (efficient) exact matching

- But what about the actual timings? With an efficient implementation!

- Finding the 10-NN of 1000 distinct queries in 1 million vectors
 - Assuming 128-D Euclidean descriptors
 - i.e., 1 billion distances, computed on a 8-core machine

Poll: How much time?
The cost of (efficient) exact matching

- But what about the actual timings? With an efficient implementation!

- Finding the 10-NN of 1000 distinct queries in 1 million vectors
 - Assuming 128-D Euclidean descriptors
 - i.e., 1 billion distances, computed on a 8-core machine

 5.5 seconds

- Assigning 2000 SIFTs to a visual vocabulary of size \(k = 100,000 \)
 - 1.2 second

- Hamming distance: 1000 queries, 1M database vectors
 - Computing the 1 billion distances: 0.6 second
Need for approximate nearest neighbors

- 1 million images, 1000 descriptors per image
 - 1 billion distances per local descriptor
 - 10^{12} distances in total
 - 1 hour 30 minutes to perform the query for Euclidean vectors

- To improve the scalability:
 - We allow to find the nearest neighbors in probability only:
 Approximate nearest neighbor (ANN) search

- Three (contradictory) performance criteria for ANN schemes
 - search quality (retrieved vectors are actual nearest neighbors)
 - speed
 - memory usage
Outline

- Preliminary
- Locality Sensitive Hashing: the two modes
 - Hashing
 - Embedding
- Searching with Product Quantization
Locality Sensitive Hashing (LSH)

- Most known ANN technique [Charikar 98, Gionis 99, Datar 04,…]

- But “LSH” is associated with two distinct search algorithms
 - As an indexing technique involving several hash functions
 - As a binarization technique
Outline

- Preliminary
- Locality Sensitive Hashing: the two modes
 - Hashing
 - Embedding
- Searching with Product Quantization
LSH – partitioning technique

- General idea:
 - Define m hash functions in parallel
 - Each vector: associated with m distinct hash keys
 - Each hash key is associated with a hash table

- At query time:
 - Compute the hash keys associated with the query
 - For each hash function, retrieve all the database vectors assigned to the same key (for this hash function)
 - Compute the exact distance on this short-list
E2LSH: hash function for Euclidean vectors

1) Projection on $i=1…m$ random directions

$$h_i(x) = \left\lfloor \frac{a_i^\top x - b_i}{w} \right\rfloor$$

2) Construction of l hash functions: concatenate m indexes h_i per hash function

$$g_j(x) = (h_{\sigma_1(i)}(x), \ldots, h_{\sigma_m}(x))$$

3) For each g_j, compute two hash values universal hash functions: $u_1(.)$, $u_2(.)$

4) store the vector id in a hash table, as for an inverted file

[Datar 04]
E2LSH: hash function for Euclidean vectors

[Datar 04]

1) Projection on $i=1 \ldots m$ random directions
 \[h_i(x) = \left[\frac{a_i^T x - b_i}{w} \right] \]

2) Construction of l hash functions: concatenate m indexes h_i per hash function
 \[g_j(x) = (h_{\sigma_1(i)}(x), \ldots, h_{\sigma_m}(x)) \]

3) For each g_j, compute two hash values universal hash functions: $u_1(\cdot)$, $u_2(\cdot)$

4) store the vector id in a hash table, as for an inverted file
E2LSH: hash function for Euclidean vectors

1) Projection on $i=1\ldots m$ random directions

$$h_i(x) = \left[\frac{a_i^\top x - b_i}{w} \right]$$

2) Construction of l hash functions:
concatenate m indexes h_i per hash function

$$g_j(x) = \left(h_{\sigma_1(i)}(x), \ldots, h_{\sigma_m}(x) \right)$$

3) For each g_j, compute two hash values
universal hash functions: $u_1(.)$, $u_2(.)$

4) store the vector id in a hash table, as
for an inverted file
Alternative hash functions

- Instead of using random projections
- Why not directly using a structured quantizer?
 - Vector quantizers: better compression performance than scalar ones

- Structured vector quantizer: Lattice quantizers [Andoni 06]
 - Hexagonal (d=2), E₈ (d=8), Leech (d=24)

- But still: lack of adaptation to the data
Alternative hash functions – Learned

- Any hash function can be used in LSH
 - Just need a set of functions $f_j : \mathbb{R}^d \rightarrow K$
 - Therefore, could be learned on sample examples

- In particular: k-means, Hierarchical k-means, KD-trees

Better data adaptation than with structured quantizers

From [Pauleve 10]
Alternative hash functions – Learned

- Significantly better than structured quantizers
- Example of search: quality for a **single** hash function

- BOV: k-means!
- HKM: loss compared with k-means [Nister 06]
Multi-probe LSH

- But multiple hash functions use a lot of memory
 - Per vector and per hash table: at least an id

- Multi-probe LSH [Lv 07]
 - Use less hash functions (possibly 1)
 - But probe several (closest) cells per hash function
 ⇒ save a lot of memory
 - Similar in spirit to Multiple-assignment with BOV
FLANN

- ANN package described in Muja’s VISAPP paper [Muja 09]
 - Multiple kd-tree or k-means tree
 - With auto-tuning under given constraints
 - Remark: self-tuned LSH proposed in [Dong 07]
 - Still high memory requirement for large vector sets

- Excellent package: high integration quality and interface!

See http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

FLANN - Fast Library for Approximate Nearest Neighbors

What is FLANN?
FLANN is a library for performing fast approximate nearest neighbor searches in high dimensional spaces. It contains a collection of algorithms we found to work best for nearest neighbor search and a system for automatically choosing the best algorithm and optimum parameters depending on the dataset.

FLANN is written in C++ and contains bindings for the following languages: C, MATLAB and Python.

News
- (20 December 2011) Version 1.7.0 is out bringing two new index types and several other improvements.
- You can find binary installers for FLANN on the Point Cloud Library@ project page. Thanks to the PCL developers!
- Mac OS X users can install flann through MacPorts (thanks to Mark Voll for maintaining the Portfile)
- New release introducing an easier way to use custom distances, kd-tree implementation optimized for low dimensionality search and experimental MPI support
- New release introducing new C++ templated API, thread-safe search, savetoof of indexes and more.
- The FLANN license was changed from LGPL to BSD
For this second ("re-ranking") stage, we need raw descriptors, i.e.,

- either huge amount of memory $\rightarrow 128$GB for 1 billion SIFTs
- either to perform disk accesses \rightarrow severely impacts efficiency
Issue for large scale: final verification

- Some techniques –like BOV– keep all vectors (no verification)

- Better: use very short codes for the filtering stage
 - Hamming Embedding [Jegou 08] or Product Quantization [Jegou 11]
Outline

- Preliminary

- Locality Sensitive Hashing: the two modes
 - Hashing
 - Embedding

- Searching with Product Quantization
LSH for binarization [Charikar’ 98, J.’08, Weiss’09, etc]

- Idea: design/learn a function mapping the original space into the compact Hamming space:

 \[e : \mathbb{R}^d \rightarrow \{0, 1\}^D \]
 \[x \rightarrow e(x) \]

- Objective: neighborhood in the Hamming space try to reflect original neighborhood
 \[\arg \min_i h(e(x), e(y_i)) \approx \arg \min_i d(x, y) \]

- Advantages: compact descriptor, fast comparison
LSH for binarization [Charikar’ 98, J.’08, Weiss’09, etc]

- Given B random projection direction a_i
- Compute a binary code from a vector x as

$$b_i(x) = \text{sign} \ a_i^T x$$

$$b(x) = (b_1(x), \ldots, b_B(x))$$

- Spectral Hashing: theoretical framework for finding hash functions
- In practice: PCA + binarization on the different axis (based on variance)
LSH: the two modes – approximate guidelines

<table>
<thead>
<tr>
<th>Partitioning technique</th>
<th>Binarization technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sublinear search</td>
<td>- Linear search</td>
</tr>
<tr>
<td>- Several hash indexes (integer)</td>
<td>- Produce a binary code per vector</td>
</tr>
<tr>
<td>- Large memory overhead</td>
<td>- Very compact</td>
</tr>
<tr>
<td></td>
<td>- bit-vectors, concatenated (no ids)</td>
</tr>
<tr>
<td></td>
<td>- Very fast comparison</td>
</tr>
<tr>
<td></td>
<td>- Hamming distance (popcnt SSE4)</td>
</tr>
<tr>
<td></td>
<td>- 1 billion comparisons/second</td>
</tr>
<tr>
<td>- Need original vectors for re-ranking</td>
<td>- Interesting</td>
</tr>
<tr>
<td></td>
<td>- For very high-dimensional vectors</td>
</tr>
<tr>
<td></td>
<td>- When memory is critical</td>
</tr>
<tr>
<td>- Interesting when (e.g., FLANN)</td>
<td>- Very good variants/software (FLANN)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>- Very good variants/software (FLANN)</td>
<td>- Simple to implement. Very active problems with many variants</td>
</tr>
</tbody>
</table>
Other topics on LSH

- More general metrics: Kernelized LSH [Kulis 09], RMMH [Joly 11], …

- Binary LSH (=searching binary vectors)
 - Like E2LSH but: random subset of bits instead of projections
 - In this CVPR: [Nourouzi 12]. **Exact** binary search variant!

- Optimized jointly with dimensionality reduction
 - PCA+random rotation or PCA+variance balancing [Jegou 10]
 - ITQ [Gong 11]

- Asymmetric distances
 - Idea: do **not** approximate the query – only the database is binarized
 - Proposed with sketches [Dong 08]
 - Significant improvement for any binarization technique [Gordo 11]
Hamming Embedding

- Introduced as an extension of BOV [Jegou 08]

- Combination of
 - A partitioning technique (k-means)
 - A binary code that refine the descriptor

Representation of a descriptor x
 - Vector-quantized to $q(x)$ as in standard BOV
 - **Short binary vector $b(x)$** for an additional localization in the Voronoi cell

- Two descriptors x and y match iif

$$f_{HE}(x, y) = \begin{cases}
(tf-idf(q(x)))^2 & \text{if } q(x) = q(y) \\
0 & \text{otherwise}
\end{cases}$$

Where $h(\ldots)$ denotes the Hamming distance
ANN evaluation of Hamming Embedding

compared to BOW: at least 10 times less points in the short-list for the same level of accuracy

Hamming Embedding provides a much better trade-off between recall and remove false positives
Matching points - 20k word vocabulary

201 matches

240 matches

Many matches with the non-corresponding image!
Matching points - 200k word vocabulary

69 matches

35 matches

Still many matches with the non-corresponding one
Matching points - 20k word vocabulary + HE

83 matches

8 matches

10x more matches with the corresponding image!
Outline

- Preliminary

- Locality Sensitive Hashing: the two modes
 - Hashing
 - Embedding

- Searching with Product Quantization
A typical source coding system

- Simple source coding system:
 - Decorrelation, e.g., PCA
 - Quantization
 - Entropy coding

- To a code $e(x)$ is associated a unique reconstruction value $q(x)$
 \Rightarrow i.e., the visual word

- Focus on quantization (lossy step)
Relationship between Reconstruction and Distance estimation

- Assume y quantized to $q_c(y)$

 x is a query vector

- If we estimate the distance by

 $$d(x, y) \approx d(x, q_c(y))$$

- Then we can show that:

 $$\mathbb{E}_Y [(d(x, y) - d(x, q_c(y)))^2] \leq \mathbb{E}_Y [(y - q_c(y))^2] = \text{MSE}$$

i.e., the error on the square distance is statistically bounded by the quantization error.
Searching with quantization [Jegou 11]

- Main idea: compressed representation of the database vectors
 - Each database vector y is represented by $q_c(y)$ where $q_c(.)$ is a **product quantizer**

$$d(x, y) \approx d(x, q_c(y))$$

- Search = distance approximation problem

- **The key**: Estimate the distances in the **compressed domain** such that
 - Quantization is fast enough
 - Quantization is precise, i.e., many different possible indexes (ex: 2^{64})

- Regular k-means is not appropriate: not for $k=2^{64}$ centroids
Product Quantizer

- Vector split into m subvectors: \(y \rightarrow [y_1 | \cdots | y_m] \)
- Subvectors are quantized separately
- Example: \(y = 16\)-dim vector split in 8 subvectors of dimension 16

\[y_1: \text{2 components} \]

\[q_1(y_1) \quad q_2(y_2) \quad q_3(y_3) \quad q_4(y_4) \quad q_5(y_5) \quad q_6(y_6) \quad q_7(y_7) \quad q_8(y_8) \]

\[\Rightarrow 24\text{-bit quantization index} \]

- In practice: 8 bits/subquantizer (256 centroids),
 - SIFT: \(m=4\text{-}16 \)
 - VLAD/Fisher: 4-128 bytes per indexed vector
Asymmetric distance computation (ADC)

- Compute the square distance approximation in the compressed domain

\[d(x, y)^2 \approx \sum_{i=1}^{m} d(x_i, q_i(y_i))^2 \]

- To compute distance between query \(x \) and many codes
 - compute \(d(x_i, c_{i,j})^2 \) for each subvector \(x_i \) and all possible centroids
 - stored in look-up tables
 - fixed cost for quantization
 - for each database code: sum the elementary square distances

- Each 8x8=64-bits code requires only \(m=8 \) additions per distance
- IVFADC: combination with an inverted file to avoid exhaustive search
Combination with an inverted file system

ALGORITHM

1. Coarse k-means hash function
 - Select k’ closest centroids c_i and corresponding cells

2. Compute the residual vector $x - c_i$ of the query vector

3. Encode the residual vector by PQ

4. Apply the PQ search method. Distance is approximated by $d(x,y) = d(x-c_i, q(y-c_i))$

Example timing: 3.5 ms per vector for a search in 2 billion vectors
Performance evaluation

- Comparison with other memory efficient approximate neighbor search techniques, i.e., binarization techniques
 - Spectral Hashing [Weiss 09] – exhaustive search
 - Hamming Embedding [Jegou 08] – non exhaustive search

- Performance measured by searching 1M vector (recall@R, varying R)

Searching in 1M SIFT descriptors

![Graph showing performance curves for different methods in 1M SIFT descriptors.]

Searching in 1M GIST descriptors

![Graph showing performance curves for different methods in 1M GIST descriptors.]

Legend:
- ADC
- IVFADC
- HE
- Spectral Hashing
Variants

- Adapted codebook for residual vectors [Uchida 11]
 - Learn the product quantizer separately in the different cells

- Re-ranking with source coding [Jegou 11]
 - Exploit the explicit reconstruction of PQ
 - Refine the database vector by a short code

\[\hat{y} = q_c(y) + q_r(r(y)) \]

- In this CVPR:
 - The “multiple inverted index” [Babenko 12]
 - Replace the coarse k-means by a product quantizer
 - + priority selection of cells
 - Then apply PQ distance estimation
Product Quantization: some applications

- PQ search was first proposed for searching local descriptors [J’09-11], i.e., to replace bag-of-words or Hamming Embedding

- [J’10]: Encoding a global image representation (Vlad/Fisher)

- [Gammeter et al’10]: Fast geometrical re-ranking with local descriptors

- [Perronnin et al.’11]: Large scale classification (Imagenet)
 - Combined with Stochastic Gradient Descent SVM
 - Decompression on-the-fly when feeding the classifier
 - Won the ILSVRC competition in 2011

- [Vedaldi and Zisserman’12] – CVPR
 - Learning in the PQ-compressed domain
 - Typically *10 acceleration with no loss
Conclusion

Nearest neighbor search is a key component of image indexing systems

Product quantization-based approach offers
- Competitive search accuracy
- Compact footprint: few bytes per indexed vector

Tested on 220 million video frames, 100 million still images
 extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

Tested on audio, text descriptors, etc

Toy Matlab package available on my web page

10 million images indexed on my laptop:
 21 bytes per indexed image
The estimator \(d(X,q(Y))^2 \) of \(d(X,Y)^2 \) is biased:

- The bias can be removed by quantization error terms
- But does not improve the NN search quality