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Qubit: measure and state _

Measure of a qubit ¢: Bloch Sphere
pu(v) €{0,1}
a,B€C:|a?+ 82 =1
P(u(v) = 0) = |af?
Pu(v) = 1) = |8
State of ¥:
° [¢) = a|0) + B1)
= cos(6/2)|0) + /¢ sin(6/2)|1)
o 6 encodes the probability of
measuring 0 or 1
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o the phase ¢ allows to
encode more information
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Single qubit gates _

Operation on a single classic bit: Bloch Sphere
Qo Not(ﬂ)
Operations on a single qubit:

o Any operation on the bloch sphere:
Pauli gates in the (]0),|1)) basis

xee (3 3)(3) = (0)
vee (0 5)(5) = ()
sz (5 %) ()~ (%)

Basic Algorithm building blocks

o Rotations

o Symmetries
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Muliple qubits s

o The state of a system (or register) with k qubits can be seen as
s € C?k

o HOWEVER, amplitude of qubits cannot be measured:
the norm of s will remain unknown.

o Operations (or gates) on registers must be reversible:
U : C?% — C?k such that UU* = |
where U* is the Hermitian conjugate of U.

o Unitary maps are rotations and symmetries.

o Example: CNOT gate: C2 — C?2 Ulx)ly) = |x)|x & y)
1 000
0100
U= 0 001
0010

o Input register, Output register



Special states

Features of quantum states:
Superposition:
The Hadamard gate:

=)

applied to |0) or |1) provides a state
with equal probabilities of measuring 0 or 1.

Entanglement:

o When the control of a controlled-gate is in a superposition state,
measuring the control (or input) will force the output value.

o Input and output become correlated:
measure of either one will force the value of the other.

o BUT we can continue computations on the registers until measure.



Quantum Programming: Circuits _

Entanglement Example:
Creating a Bell State on IBM Q

time

o []
o
o [

{01} e o . o N . o o o

https://quantumexperience.ng.bluemix.net/qx/editor
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Deutsch's XOR _

Problem:
Given a function f : {0,1} — {0,1}, and provided a black-box performing

the unitary transformation U|x)|y) = [x)|y & f(x)),
determine whether f is constant or balanced.

Algorithm:

0,1} &——@ e e e ¢ ¢ o ¢ ——
f(0)® f(1)

Superposition: Hadamard Gate — one call to the black-box
Entanglement: Black box — measure on input register



Quantum Fourier Transform _

Classic Fourier Transform: (x;)j<n € CV — 1/\/N.(ZJ’-V:_01XJ~.e2”Uk/N)j<N
Quantum standard Notation: |j) — 1/\/N.):J.N:_01e2”"fk//\’|k>

1 0 o TN . ken
= (0 e27ri/2k> Oujnjm = D /27"
k=n

Algortihm:

L)

il
] ] 0+ a0
[jn-1) . e 0) + ezwf(uj",u'n)‘l)

2

Ljn) H 0) 4 e2mi(0uin)|1)

n gates

Complexity: let N =27, ©(n(n+1)/2+ n/2) = ©(n?) — FFT: ©(n2")



Limitations of QFT, and Phase Estimation _

o QFT presents substantial speedup
BUT amplitudes cannot be measured
= QFT cannot be used directly for performing FT.

o HOWEVER, we can use IQFT to perform Phase Estimation

o Given a controlled U/ black-box, and a known eigenstate |u), we look
for the phase ¢, of an eigenvalue e>7%u

o U 1/\/_22 el >—>1/\/_z2 S W)
=1/V2¢ Zf;ol 2miou|j) u)
o IQFT: 1/v/252 &2 ) |u) — |y)|u)

o Accuracy of estimation ;ﬁ\; depends on the value of t



Simon’s Period Finding Algorithm _

Problem:
Given a periodic function f of unknown period r: f(x +r) = f(x),
and provided a black-box which performs the unitary transformation

Ulx)|ly) = |x)|y @ f(x)), determine r

Algorithm:
i
o) “ g
n QFT!
|0>7 H 1 *n Xn E’\
|0) y y e f(x)
{0,1} #LQ—O—Q—O—O—Q—Q—O—GHH._._._‘_'

Complexity: O(L?) for 0 < r < 2L vs. NP in classical.
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Simon's Period Finding Algorithm _

Given a periodic function f of unknown period r: f(x +r) = f(x),
and provided a black-box which performs the unitary transformation
Ulx)y) = |x)|y @ f(x)), determine r

o initial state: |0)|0)

o create superposition on first register :

1/V2t5 27 x)|0)

©

apply back-box U:

1/\/?2)2::_01\x)|f(x)> ~ ]_/1 /r2t27;322f—1e27rilx/r|x>““r(/»

x=0

IQFT:

©

1/VrE 21/ nF(x)

measure first register: //r

©

©

continued fraction alg.: r (O(n?))
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Order SRENE _—

Let x and N be co-prime numbers such that N is L-bit,
and provided a black-box Uy, : |j)|k) = |j)|x'k mod N),
determine the least integer r > 0:x" =1 mod N

o initial state: |0)|1)

o create superposition on first register :

L/V2EE ) )

©

apply back-box Uy p:
1V Xk mod N) = 1/V/r2 el AT G e ) ug)

o IQFT: .
1/ Vb us)

measure first register: s/r

©

(+]

continued fraction alg.: r
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Generalization: Hidden subgroup Problem _

Generalization:

Input register, output register — create superposition on input register
— apply black-box — IQFT — measure first register

— apply continuous fraction algorithm.

Can be applied to the general problem:

Let G be a finitely generated group, K be a subgroup of G,

and X a finite set with a suitable binary operation ®.

A coset of K'in G is aset: Vg € G:gK :={g.k| ke K}.

Let f : G — X be a function which is constant on the cosets of K.
Provided a black-box U|g)|x) = |g)|x ® f(g)) for g € G and x € X,
find a generating set for K
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Generalization: Hidden subgroup Problem _

Hidden Subgroup problem:
Let G be a finitely generated group, K be a subgroup of G,
and X a finite set with a suitable binary operation &.
A coset of K 'in G is aset: Vg e G:gK :={g.k| k € K}.
Let f : G — X be a function which is constant on the cosets of K.
Provided a black-box U|g)|x) = |g)|x @ f(g)) for g € G and x € X,
find a generating set for K
Instances:
o Deutsch: G =7Z;; X ={0,1},
K = {0}(balanced) or K = {0, 1}(constant)
o Period finding: G = (Z,+), X is any finite set,
K ={0,r,2r,...} forsomer € G
o Order finding: G = (Z,+), X ={d |j € Z,,a" = 1},
K ={0,r,2r,...} forsome r € G
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Conclusions and Conjectures over Quantum Spe-

o Problems such that there is a known quantum algorithm to solve
them, performing qualitatively better than the classical one, are
reducible to The Hidden Subgroup Problem.

o This improvement is achieved by exploiting Superposition,
Entanglement, and Phase Estimation.

o We can implement and run such algorithms on IBM Q, but we are
still limited to 5 qubits for both input and output registers.

o Main Refernece:

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition.
Cambridge University Press, New York, NY, USA, 10th edition, 2011
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