Speed-up of Quantum Algorithms
 Unconventional Models of Computation (Alberto Leporati)

Adrián Puerto Aubel,
PhD Student of the $\mathrm{XXX}{ }^{\text {st }}$ cycle

March 14, 2018

Qubit: measure and state

Measure of a qubit ψ :

Bloch Sphere

- the phase ϕ allows to encode more information

Single qubit gates

Operation on a single classic bit:

Bloch Sphere

- Not (\neg)

Operations on a single qubit:

- Any operation on the bloch sphere:

Pauli gates in the $(|0\rangle,|1\rangle)$ basis

- X gate: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{\beta}{\alpha}$
- Y gate: $\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{-i \beta}{i \alpha}$
- Z gate: $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{\alpha}{-\beta}$

Basic Algorithm building blocks

- Rotations
- Symmetries

Single qubit gates

Operation on a single classic bit:

Bloch Sphere

- Not (\neg)

Operations on a single qubit:

- Any operation on the bloch sphere:

Pauli gates in the $(|0\rangle,|1\rangle)$ basis

- X gate: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{\beta}{\alpha}$
- Y gate: $\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{-i \beta}{i \alpha}$
- Z gate: $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{\alpha}{-\beta}$

Basic Algorithm building blocks

- Rotations
- Symmetries

Single qubit gates

Operation on a single classic bit:

Bloch Sphere

- Not (\neg)

Operations on a single qubit:

- Any operation on the bloch sphere:

Pauli gates in the $(|0\rangle,|1\rangle)$ basis

- X gate: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{\beta}{\alpha}$
- Y gate: $\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{-i \beta}{i \alpha}$
- Z gate: $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{\alpha}{-\beta}$

Basic Algorithm building blocks

- Rotations
- Symmetries

Single qubit gates

Operation on a single classic bit:

Bloch Sphere

- Not (\neg)

Operations on a single qubit:

- Any operation on the bloch sphere:

Pauli gates in the $(|0\rangle,|1\rangle)$ basis

- X gate: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{\beta}{\alpha}$
- Y gate: $\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{-i \beta}{i \alpha}$
- Z gate: $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right):\binom{\alpha}{\beta} \longrightarrow\binom{\alpha}{-\beta}$

Basic Algorithm building blocks

- Rotations
- Symmetries

Muliple qubits

- The state of a system (or register) with k qubits can be seen as $s \in \mathbb{C}^{2 k}$
- HOWEVER, amplitude of qubits cannot be measured: the norm of s will remain unknown.
- Operations (or gates) on registers must be reversible: $U: \mathbb{C}^{2 k} \rightarrow \mathbb{C}^{2 k}$ such that $U U^{*}=I$ where U^{*} is the Hermitian conjugate of U.
- Unitary maps are rotations and symmetries.
- Example: CNOT gate: $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$

$$
U|x\rangle|y\rangle=|x\rangle|x \oplus y\rangle
$$

$$
U=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

- Input register, Output register

Special states

Features of quantum states:
Superposition:
The Hadamard gate:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

applied to $|0\rangle$ or $|1\rangle$ provides a state with equal probabilities of measuring 0 or 1 .

Entanglement:

- When the control of a controlled-gate is in a superposition state, measuring the control (or input) will force the output value.
- Input and output become correlated: measure of either one will force the value of the other.
- BUT we can continue computations on the registers until measure.

Quantum Programming: Circuits

Entanglement Example:
 Creating a Bell State on IBM Q

Deutsch's XOR

Problem:

Given a function $f:\{0,1\} \rightarrow\{0,1\}$, and provided a black-box performing the unitary transformation $U|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle$,
determine whether f is constant or balanced.
Algorithm:

Superposition: Hadamard Gate \rightarrow one call to the black-box Entanglement: Black box \rightarrow measure on input register

Quantum Fourier Transform

Classic Fourier Transform: $\left(x_{j}\right)_{j<N} \in \mathbb{C}^{N} \rightarrow 1 / \sqrt{N} .\left(\sum_{j=0}^{N-1} x_{j} . e^{2 \pi i j k / N}\right)_{j<N}$ Quantum standard Notation: $|j\rangle \rightarrow 1 / \sqrt{N} \cdot \Sigma_{j=0}^{N-1} e^{2 \pi i j / / N}|k\rangle$

$$
R_{k}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{2 \pi i / 2^{k}}
\end{array}\right) \quad 0 . j_{n} \cdots j_{m}:=\sum_{k=n}^{m} j_{k} / 2^{k-n+1}
$$

Algortihm:

Complexity: let $N=2^{n}, \Theta(n(n+1) / 2+n / 2)=\Theta\left(n^{2}\right)$ - FFT: $\Theta\left(n 2^{n}\right)$

Limitations of QFT, and Phase Estimation

- QFT presents substantial speedup

BUT amplitudes cannot be measured
\Rightarrow QFT cannot be used directly for performing FT.

- HOWEVER, we can use IQFT to perform Phase Estimation
- Given a controlled U^{j} black-box, and a known eigenstate $|u\rangle$, we look for the phase ϕ_{u} of an eigenvalue $e^{2 \pi i \phi_{u}}$
- $U^{j}: 1 / \sqrt{2^{t}} \sum_{j=0}^{2^{t}-1}|j\rangle|u\rangle \rightarrow 1 / \sqrt{2^{t} \sum_{j=0}^{2^{t}-1}|j\rangle U^{j}|u\rangle}$

$$
=1 / \sqrt{2^{t} \sum_{j=0}^{2^{t}-1} e^{2 \pi i j \phi_{u}}|j\rangle|u\rangle, ~}
$$

- IQFT: $1 / \sqrt{2^{t}} \sum_{j=0}^{2^{t}-1} e^{2 \pi i j \phi_{u}}|j\rangle|u\rangle \rightarrow\left|\widetilde{\phi_{u}}\right\rangle|u\rangle$
- Accuracy of estimation $\widetilde{\phi_{u}}$ depends on the value of t

Simon's Period Finding Algorithm

Problem:

Given a periodic function f of unknown period r : $f(x+r)=f(x)$, and provided a black-box which performs the unitary transformation $U|x\rangle|y\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle$, determine r Algorithm:

Complexity: $\mathcal{O}\left(L^{2}\right)$ for $0<r<2^{L}$ vs. NP in classical.

Simon's Period Finding Algorithm

Given a periodic function f of unknown period $r: f(x+r)=f(x)$, and provided a black-box which performs the unitary transformation $U|x\rangle|y\rangle \rightarrow|x\rangle|y \oplus f(x)\rangle$, determine r

- initial state: $|0\rangle|0\rangle$
- create superposition on first register :

$$
1 / \sqrt{2^{t}} \Sigma_{x=0}^{2^{t}-1}|x\rangle|0\rangle
$$

- apply back-box U :

$$
1 / \sqrt{2^{t}} \sum_{x=0}^{2^{t}-1}|x\rangle|f(x)\rangle \simeq 1 / \sqrt{r 2^{t}} \sum_{l=0}^{r-1} \sum_{x=0}^{2^{t}-1} e^{2 \pi i l x / r}|x\rangle|\tilde{f}(I)\rangle
$$

- IQFT:

$$
1 / \sqrt{r} \sum_{l=0}^{r-1}|\widetilde{/ / r}\rangle|\tilde{f}(x)\rangle
$$

- measure first register: $\widetilde{/ / r}$
- continued fraction alg.: $r\left(\mathcal{O}\left(n^{2}\right)\right)$

Order Finding

Let x and N be co-prime numbers such that N is L-bit, and provided a black-box $U_{x, n}:|j\rangle|k\rangle \rightarrow|j\rangle\left|x^{j} k \bmod N\right\rangle$, determine the least integer $r>0: x^{r}=1 \bmod N$

- initial state: $|0\rangle|1\rangle$
- create superposition on first register :

$$
1 / \sqrt{2^{t}} \sum_{j=0}^{2^{t}-1}|j\rangle|1\rangle
$$

- apply back-box $U_{x, n}$:

$$
1 / \sqrt{2^{t}} \sum_{j=0}^{2^{t}-1}|j\rangle\left|x^{j} k \bmod N\right\rangle \simeq 1 / \sqrt{r 2^{t}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^{t}-1} e^{2 \pi i s j / r}|j\rangle\left|u_{s}\right\rangle
$$

- IQFT:

$$
1 / \sqrt{r} \sum_{s=0}^{r-1}|\widetilde{s / r}\rangle\left|u_{s}\right\rangle
$$

- measure first register: $\widetilde{s / r}$
- continued fraction alg.: r

Generalization: Hidden subgroup Problem

Generalization:

Input register, output register \rightarrow create superposition on input register
\rightarrow apply black-box \rightarrow IQFT \rightarrow measure first register
\rightarrow apply continuous fraction algorithm.
Can be applied to the general problem:
Let G be a finitely generated group, K be a subgroup of G, and X a finite set with a suitable binary operation \oplus. A coset of K in G is a set: $\forall g \in G: g K:=\{g . k \mid k \in K\}$. Let $f: G \rightarrow X$ be a function which is constant on the cosets of K. Provided a black-box $U|g\rangle|x\rangle=|g\rangle|x \oplus f(g)\rangle$ for $g \in G$ and $x \in X$, find a generating set for K

Generalization: Hidden subgroup Problem

Hidden Subgroup problem:
Let G be a finitely generated group, K be a subgroup of G, and X a finite set with a suitable binary operation \oplus.
A coset of K in G is a set: $\forall g \in G: g K:=\{g . k \mid k \in K\}$.
Let $f: G \rightarrow X$ be a function which is constant on the cosets of K.
Provided a black-box $U|g\rangle|x\rangle=|g\rangle|x \oplus f(g)\rangle$ for $g \in G$ and $x \in X$, find a generating set for K
Instances:

- Deutsch: $G=\mathbb{Z}_{2} ; X=\{0,1\}$, $K=\{0\}$ (balanced) or $K=\{0,1\}$ (constant)
- Period finding: $G=(\mathbb{Z},+), X$ is any finite set, $K=\{0, r, 2 r, \ldots\}$ for some $r \in G$
- Order finding: $G=(\mathbb{Z},+), X=\left\{a^{j} \mid j \in \mathbb{Z}_{r}, a^{r}=1\right\}$, $K=\{0, r, 2 r, \ldots\}$ for some $r \in G$

Conclusions and Conjectures over Quantum Speedup

- Problems such that there is a known quantum algorithm to solve them, performing qualitatively better than the classical one, are reducible to The Hidden Subgroup Problem.
- This improvement is achieved by exploiting Superposition, Entanglement, and Phase Estimation.
- We can implement and run such algorithms on IBM Q, but we are still limited to 5 qubits for both input and output registers.
- Main Refernece:

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition, 2011

