
Enforcing Opacity in Modular Systems

Graeme Zinck, Laurie Ricker, Hervé Marchand, Loïc Hélouët
2 July 2019

Mount Allison University, New Brunswick, Canada
Inria Rennes-Bretagne Atlantique, Rennes, France



Motivation

Smart Lock

Smart Hub

Smart Speaker

1



Motivation

Smart Lock

Smart Hub

Smart Speaker

1



Motivation

Smart Lock

Smart Hub

Smart Speaker

1



Motivation

Smart Lock

Smart Hub

Smart Speaker

1



Table of contents

1. Model

2. Opacity

3. Verifying Opacity in Modular Systems

4. Enforcing Opacity in Modular Systems

2



Model



Model

1. System has multiple modules (automata)
2. Each module has its a set of secret states
3. Modules interact with shared events

3



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

4



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

4



Model

We construct the global system with the parallel composition

1. Synchronize on common events
2. Private events are interleaved

5



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′ 3, 2′

4, 2′

d

c

a

b
d

c b

(c) G1||G2

6



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′ 3, 2′

4, 2′

d

c

a

b
d

c b

(c) G1||G2

6



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′ 3, 2′

4, 2′

d

c

a

b
d

c b

(c) G1||G2

6



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′

3, 2′

4, 2′

d

c

a

b
d

c b

(c) G1||G2

6



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′ 3, 2′

4, 2′

d

c

a

b
d

c b

(c) G1||G2

6



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′ 3, 2′

4, 2′

d

c

a

b

d

c b

(c) G1||G2

6



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′ 3, 2′

4, 2′

d

c

a

b
d

c b

(c) G1||G2

6



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′ 3, 2′

4, 2′

d

c

a

b
d

c

b

(c) G1||G2

6



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′ 3, 2′

4, 2′

d

c

a

b
d

c b

(c) G1||G2

6



Attacker

• Modules are under partial observation
• Full knowledge of system architecture
• Has an observable alphabet

7



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

8



Model

1

2 3

4

a

b

b

c

c

(a) G1

1′

2′

3′

d

c

c

(b) G2

8



Opacity



Opacity

• Opacity models a form of security called information flow

• Attacker should not be able to distinguish a secret state from a
non-secret state

• How can we verify that the attacker cannot distinguish secret
states?

• Determinization: we treat events not in the attacker’s alphabet
as epsilon events and determinize the system

9



Opacity

• Opacity models a form of security called information flow
• Attacker should not be able to distinguish a secret state from a
non-secret state

• How can we verify that the attacker cannot distinguish secret
states?

• Determinization: we treat events not in the attacker’s alphabet
as epsilon events and determinize the system

9



Opacity

• Opacity models a form of security called information flow
• Attacker should not be able to distinguish a secret state from a
non-secret state

• How can we verify that the attacker cannot distinguish secret
states?

• Determinization: we treat events not in the attacker’s alphabet
as epsilon events and determinize the system

9



Opacity

• Opacity models a form of security called information flow
• Attacker should not be able to distinguish a secret state from a
non-secret state

• How can we verify that the attacker cannot distinguish secret
states?

• Determinization: we treat events not in the attacker’s alphabet
as epsilon events and determinize the system

9



Determinizing G1

1

2

ε

3
b

4

c

c b

(a) G1

{1, 2} b

{3, 4}

c

{3}

b

(b) DetΣa(G1)

10



Determinizing G1

1

2

ε

3
b

4

c

c b

(a) G1

{1, 2}

b

{3, 4}

c

{3}

b

(b) DetΣa(G1)

10



Determinizing G1

1

2

ε

3
b

4

c

c b

(a) G1

{1, 2} b

{3, 4}

c

{3}

b

(b) DetΣa(G1)

10



Determinizing G1

1

2

ε

3
b

4

c

c b

(a) G1

{1, 2} b

{3, 4}

c

{3}

b

(b) DetΣa(G1)

10



Determinizing G1

1

2

ε

3
b

4

c

c b

(a) G1

{1, 2} b

{3, 4}

c

{3}

b

(b) DetΣa(G1)

10



Determinizing G2

1′

2′

3′

d

c

c

(a) G2

{1′}

{2′}

{3′}

d

c

c

(b) DetΣa(G2)

11



Opacity

• A secret is opaque if there are no states that are a subset of the
set of secret states in the determinized automaton.

• This implies a simple PSPACE-complete verification algorithm

12



Opacity

• A secret is opaque if there are no states that are a subset of the
set of secret states in the determinized automaton.

• This implies a simple PSPACE-complete verification algorithm

12



Opacity

Traditionally, we verify opacity in the global system as follows:

• Compose all modules
• Determinize the result
• Check if there are states that are a subset of the set of secret
states

13



Opacity

Traditionally, we verify opacity in the global system as follows:

• Compose all modules

• Determinize the result
• Check if there are states that are a subset of the set of secret
states

13



Opacity

Traditionally, we verify opacity in the global system as follows:

• Compose all modules
• Determinize the result

• Check if there are states that are a subset of the set of secret
states

13



Opacity

Traditionally, we verify opacity in the global system as follows:

• Compose all modules
• Determinize the result
• Check if there are states that are a subset of the set of secret
states

13



Opacity

What if we could check opacity locally, allowing us to avoid
constructing the full system?

14



Verifying Opacity in Modular
Systems



Verifying Opacity

• Can we verify opacity in a local module instead of verifying it
globally?

• Not necessarily...

but there is a sufficient condition which
enables us to verify locally

• We can assume the attacker observes the interface between
modules

• Assuming this allows us to check opacity of the local module’s
secret

• If opaque locally, it’s opaque for the composed system
• Otherwise, we need to check the global system

15



Verifying Opacity

• Can we verify opacity in a local module instead of verifying it
globally?

• Not necessarily...

but there is a sufficient condition which
enables us to verify locally

• We can assume the attacker observes the interface between
modules

• Assuming this allows us to check opacity of the local module’s
secret

• If opaque locally, it’s opaque for the composed system
• Otherwise, we need to check the global system

15



Verifying Opacity

• Can we verify opacity in a local module instead of verifying it
globally?

• Not necessarily... but there is a sufficient condition which
enables us to verify locally

• We can assume the attacker observes the interface between
modules

• Assuming this allows us to check opacity of the local module’s
secret

• If opaque locally, it’s opaque for the composed system
• Otherwise, we need to check the global system

15



Verifying Opacity

• Can we verify opacity in a local module instead of verifying it
globally?

• Not necessarily... but there is a sufficient condition which
enables us to verify locally

• We can assume the attacker observes the interface between
modules

• Assuming this allows us to check opacity of the local module’s
secret

• If opaque locally, it’s opaque for the composed system
• Otherwise, we need to check the global system

15



Verifying Opacity

G1

G2

||

c o w s

o h

16



Verifying Opacity

G1

G2

||

c o w s

o h

o

16



Verifying Opacity

G1

G2

||

c o w s

o h

c o w h s

16



Verifying Opacity

G1

G2

||

c o w s

o h

c o w h s

f o w x

16



Verifying Opacity

G1

G2

||

c o w s

o h

c o w h s

f o w x

f o w h x

16



Verifying Opacity

G1

G2

||

c o w s

o h

16



Verifying Opacity

G1

G2

||

c o w s

o h

o

16



Verifying Opacity

G1

G2

||

c o w s

o h

c o w h s

16



Verifying Opacity

G1

G2

||

c o w s

o h

c o w h s

f o o w x

16



Verifying Opacity

G1

G2

||

c o w s

o h

c o w h s

f o o w x

f o o w h x

16



Verifying Opacity

Opacity holds over composition when the attacker observes the
interface, and we can verify opacity locally instead of doing it for the
whole system.

• Check opacity of the local module’s secret
• If opaque locally, it’s opaque for the composed system
• Otherwise, iterate by composing the system with another module.
If no other modules remain, it is not opaque for the composed
system

17



Verifying Opacity

Opacity holds over composition when the attacker observes the
interface, and we can verify opacity locally instead of doing it for the
whole system.

• Check opacity of the local module’s secret
• If opaque locally, it’s opaque for the composed system
• Otherwise, iterate by composing the system with another module.
If no other modules remain, it is not opaque for the composed
system

17



Verifying Opacity

{1, 2}

{3, 4}

{3}

b

c

b

(a) DetΣa(G1)

{1′}

{2′}

{3′}

d

c

c

(b) DetΣa(G2)

({1, 2}, {1′})

({3, 4}, {2′})

({3}, {2′})

b, d

c

b

(c) Full system

18



Verifying Opacity

{1, 2}

{3, 4}

{3}

b

c

b

(a) DetΣa(G1)

{1′}

{2′}

{3′}

d

c

c

(b) DetΣa(G2)

({1, 2}, {1′})

({3, 4}, {2′})

({3}, {2′})

b, d

c

b

(c) Full system

18



Verifying Opacity

{1, 2}

{3, 4}

{3}

b

c

b

(a) DetΣa(G1)

{1′}

{2′}

{3′}

d

c

c

(b) DetΣa(G2)

({1, 2}, {1′})

({3, 4}, {2′})

({3}, {2′})

b, d

c

b

(c) Full system

18



Verifying Opacity

{1, 2}

{3, 4}

{3}

b

c

b

(a) DetΣa(G1)

{1′}

{2′}

{3′}

d

c

c

(b) DetΣa(G2)

({1, 2}, {1′})

({3, 4}, {2′})

({3}, {2′})

b, d

c

b

(c) Full system

18



Verifying Opacity

{1, 2}

{3, 4}

{3}

b

c

b

(a) DetΣa(G1)

{1′}

{2′}

{3′}

d

c

c

(b) DetΣa(G2)

({1, 2}, {1′})

({3, 4}, {2′})

({3}, {2′})

b, d

c

b

(c) Full system

18



Enforcing Opacity in Modular
Systems



Enforcing Opacity

• We can enforce opacity within each module separately to
enforce it for the global system

• Can observe some events
• Can control some events

19



Enforcing Opacity

• We can enforce opacity within each module separately to
enforce it for the global system

• Can observe some events

• Can control some events

19



Enforcing Opacity

• We can enforce opacity within each module separately to
enforce it for the global system

• Can observe some events
• Can control some events

19



Enforcing Opacity

1

2 3

4

c

c

a

b

b

(a) G1

1′

2′

3′

c

c

d

(b) G2

20



Enforcing Opacity

1

2 3

4

c

c

a

b

b

(a) G1

1′

2′

3′

c

c

d

(b) G2

20



Enforcing Opacity

1

2 3

4

a

b

b

c

c

(a) G1

{1, 2}

{3, 4}

{3}

c

b

b

(b) DetΣa(G1)

1, {1, 2}

2, {1, 2} 3, {3, 4}

4, {3, 4} 3, {3}

c

c

a

b

b

(c) Controller View

21



Enforcing Opacity

1

2 3

4

a

b

b

c

c

(a) G1

{1, 2}

{3, 4}

{3}

c

b

b

(b) DetΣa(G1)

1, {1, 2}

2, {1, 2} 3, {3, 4}

4, {3, 4} 3, {3}

c

c

a

b

b

(c) Controller View

21



Enforcing Opacity

1′

2′

3′

d

c

c

(a) G2

{1′}

{2′}

{3′}

d

c

c

(b) DetΣa(G2)

1′, {1′}

2′, {2′}

3′, {3′}

c

c

d

(c) Controller view

22



Enforcing Opacity

1′

2′

3′

d

c

c

(a) G2

{1′}

{2′}

{3′}

d

c

c

(b) DetΣa(G2)

1′, {1′}

2′, {2′}

3′, {3′}

c

c

d

(c) Controller view

22



Enforcing Opacity

Naive approach: enforce opacity locally without considering other
modules.

23



Enforcing Opacity

1, {1, 2}

2, {1, 2} 3, {3, 4}

4, {3, 4} 3, {3}

c

c

a

b

b

(a) C1

1′, {1′}

2′, {2′}

3′, {3′}

c

c

d

(b) C2

= ∅

24



Enforcing Opacity

1, {1, 2}

2, {1, 2} 3, {3, 4}

4, {3, 4} 3, {3}

c

c

a

b

b

(a) C1

1′, {1′}

2′, {2′}

3′, {3′}

c

c

d

(b) C2

= ∅

24



Enforcing Opacity

1, {1, 2}

2, {1, 2} 3, {3, 4}

4, {3, 4}

3, {3}

c

c

a

b

b

(a) C1

1′, {1′}

2′, {2′}

3′, {3′}

c

c

d

(b) C2

= ∅

24



Enforcing Opacity

1, {1, 2}

2, {1, 2} 3, {3, 4}

4, {3, 4}

3, {3}

c

c

a

b

b

(a) C1

1′, {1′}

2′, {2′}

3′, {3′}

c

c

d

(b) C2

= ∅

24



Enforcing Opacity

1, {1, 2}

2, {1, 2} 3, {3, 4}

4, {3, 4}

3, {3}

c

c

a

b

b

(a) C1

1′, {1′}

2′, {2′}

3′, {3′}

c

c

d

(b) C2

= ∅

24



Enforcing Opacity

1, {1, 2}

2, {1, 2} 3, {3, 4}

4, {3, 4}

3, {3}

c

c

a

b

b

(a) C1

1′, {1′}

2′, {2′}

3′, {3′}

c

c

d

(b) C2

= ∅

24



Enforcing Opacity

1, {1, 2}

2, {1, 2} 3, {3, 4}

4, {3, 4}

3, {3}

c

c

a

b

b

(a) C1

1′, {1′}

2′, {2′}

3′, {3′}

c

c

d

(b) C2 = ∅

24



Enforcing Opacity

Better approach:

• Verify if the secret is opaque as previously explained

1. If opaque, use a fully permissive controller
2. Otherwise, get the supremal controller of the composed system

We observed that S2 was opaque, so we can use the fully permissive
controller for G2.

25



Enforcing Opacity

Better approach:

• Verify if the secret is opaque as previously explained
1. If opaque, use a fully permissive controller
2. Otherwise, get the supremal controller of the composed system

We observed that S2 was opaque, so we can use the fully permissive
controller for G2.

25



Enforcing Opacity

Better approach:

• Verify if the secret is opaque as previously explained
1. If opaque, use a fully permissive controller
2. Otherwise, get the supremal controller of the composed system

We observed that S2 was opaque, so we can use the fully permissive
controller for G2.

25



Enforcing Opacity

1

2 3

4

c

c

a

b

(a) C1

1 c,d

(b) C2

26



Enforcing Opacity

If we assume the attacker knows construction of only the system,
there is an optimal controller if the controllable alphabet is a
subset of the observable alphabet.

If we assume the attacker knows the system and the controller, a
solution only exists when...

1. The controllable alphabet is a subset of the observable
alphabet; and

2. The observable and attacker alphabets are comparable:
2.1 The observable alphabet is a subset of the attacker’s alphabet
2.2 The attacker’s alphabet is a subset of the observable alphabet

27



Enforcing Opacity

If we assume the attacker knows construction of only the system,
there is an optimal controller if the controllable alphabet is a
subset of the observable alphabet.

If we assume the attacker knows the system and the controller, a
solution only exists when...

1. The controllable alphabet is a subset of the observable
alphabet; and

2. The observable and attacker alphabets are comparable:
2.1 The observable alphabet is a subset of the attacker’s alphabet
2.2 The attacker’s alphabet is a subset of the observable alphabet

27



Enforcing Opacity

If we assume the attacker knows construction of only the system,
there is an optimal controller if the controllable alphabet is a
subset of the observable alphabet.

If we assume the attacker knows the system and the controller, a
solution only exists when...

1. The controllable alphabet is a subset of the observable
alphabet; and

2. The observable and attacker alphabets are comparable:
2.1 The observable alphabet is a subset of the attacker’s alphabet
2.2 The attacker’s alphabet is a subset of the observable alphabet

27



Conclusion

• Optimizations for verifying opacity in modular systems

• New means of enforcing opacity in local modules of modular
systems

• Currently, not possible when attacker knows the controller’s
architecture

28



Conclusion

• Optimizations for verifying opacity in modular systems
• New means of enforcing opacity in local modules of modular
systems

• Currently, not possible when attacker knows the controller’s
architecture

28



Conclusion

• Optimizations for verifying opacity in modular systems
• New means of enforcing opacity in local modules of modular
systems

• Currently, not possible when attacker knows the controller’s
architecture

28



Conclusion

Questions?

29


	Model
	Opacity
	Verifying Opacity in Modular Systems
	Enforcing Opacity in Modular Systems

