## **Classification among Hidden Markov Models**

S. Akshay - Hugo Bazille - Eric Fabre - Blaise Genest

18/06/2019



Makushita seminar



- 1 Introduction of the problem
- 2 Different classifications
- 3 Limit sure classifiability

### 4 Variants

### 5 Conclusion



# Introduction of the problem (1)

### Framework

- Stochastic systems,
- Partial information.
- $\Rightarrow$  Hidden Markov Models:





# Introduction of the problem (2)

### Classification

Given two systems  $A_1, A_2$  and an observation w, decide which one produced it.

Encompasses diagnosis, opacity...



# Introduction of the problem (2)

### Classification

Given two systems  $A_1, A_2$  and an observation w, decide which one produced it.

Encompasses diagnosis, opacity...

Can we classify...

- For sure?
- Almost sure?
- Limit sure?

We cannot?







Function 
$$f: \Sigma^* \to \{\perp, 1, 2\}$$

### What is a good classifier?

- Accurate?
- Reactive?
- No error?



## Sure classification

Informally: ability to distinguish after some time. Formally:  $\forall w \in \Sigma^{\infty}, \exists v, w = vv', v \in L_1, v \notin L_2.$ 



#### Theorem

Sure classification is decidable in PTIME, by deciding if  $L_1^{\infty} \cap L_2^{\infty} = \emptyset$ .

### Almost sure classification

Informally: ability to distinguish after some time with probability 1. Formally:  $P(w \in \Sigma^{\infty}, \exists v, w = vv', v \in L_1, v \notin L_2) = 1.$ 



#### Theorem

Almost sure classification is PSPACE-complete, by deciding if  $P(L_1^{\infty} \cap L_2^{\infty}) = 0.$ 



## Limit sure classifiability

Informally: classify with arbitrarily high precision. Formally: there is a classifier f that eventually answers correctly with probability  $> 1 - \varepsilon$  for all  $\varepsilon > 0$ .





# Main result on limit sure classifiability

Theorem

Limit sure classifiability is decidable in PTIME.



# Main result on limit sure classifiability

#### Theorem

Limit sure classifiability is decidable in PTIME.

We want arbitrarily high precision:

- Transient components "do not matter",
- We mainly study BSCCs.





# Study of BSCC

Two BSCCs are problematic if they:

- 1 Are co-reachable,
- **2** Have the same stochastic language.



# Study of BSCC

Two BSCCs are problematic if they:

- 1 Are co-reachable,
- 2 Have the same stochastic language.





# How to be smart? (1)

### Number of possible distributions: infinite!

Consider stationnary distributions  $\sigma_X$  on beliefs X.



For a belief X,  $\sigma_X$  is computable in PTIME.



#### Theorem

The following are equivalent:

- **1** One cannot classify between  $A_1, A_2$ ,
- **2** There exists an X in a BSCC of twin beliefs such that  $(A_1, \sigma_X^1) \equiv (A_2, \sigma_X^2)$ .



#### Theorem

The following are equivalent:

- **1** One cannot classify between  $A_1, A_2$ ,
- **2** There exists an X in a BSCC of twin beliefs such that  $(A_1, \sigma_X^1) \equiv (A_2, \sigma_X^2)$ .

One problem solved, but... still an exponential number of beliefs!



Have only a limited number of beliefs?

 $A = A_1 \times A_2$ , for a BSCC  $D_i$  of A and  $(y_1, y_2) \in D_i$ ,

• 
$$X_1 = \{x_1 \mid (x_1, y_2) \in D_i\},\$$

• 
$$X_2 = \{x_2 \mid (y_1, x_2) \in D_i\}.$$



Have only a limited number of beliefs?

- $A = A_1 \times A_2$ , for a BSCC  $D_i$  of A and  $(y_1, y_2) \in D_i$ ,
  - $X_1 = \{x_1 \mid (x_1, y_2) \in D_i\},\$

• 
$$X_2 = \{x_2 \mid (y_1, x_2) \in D_i\}.$$

#### Theorem

NSC: check equivalence for such  $X_1, X_2$ .

- Polynomial number of such beliefs,
- Each check with Linear Programming: PTIME!



## With tries?

User has a reset button:

- Can try again and again,
- Chooses the system randomly every time.



# With tries?

User has a reset button:

- Can try again and again,
- Chooses the system randomly every time.

Attack-classifiability

Decide if there exists a reset strategy such that:

- 1 It will finish with probability 1,
- 2 It is limit sure classifiable after the last reset.



# With tries?

User has a reset button:

- Can try again and again,
- Chooses the system randomly every time.

### Attack-classifiability

Decide if there exists a reset strategy such that:

- 1 It will finish with probability 1,
- 2 It is limit sure classifiable after the last reset.

### 1-arepsilon attacker-classifiability

With  $\varepsilon$  fixed, decide if there exists a reset strategy such that:

- **1** It will finish with probability 1,
- **2** Classification will be correct with probability  $1 \varepsilon$  after last reset.



### An example





Makushita seminar

## An example



- Not attack classifiable,
- $\forall \varepsilon$ ,  $1 \varepsilon$  attack classifiable.



### Results on these variants

#### Theorem

- Attack-classifiability is PSPACE-complete.
- $\blacksquare \ 1-\varepsilon$  attacker-classifiability is undecidable.



#### Theorem

- Attack-classifiability is PSPACE-complete.
- $\blacksquare \ 1-\varepsilon$  attacker-classifiability is undecidable.

Idea of proofs:

Attack-classifiability:

- Find subpart of the systems that are classifiable,
- Hardness: reduction from language inclusion for finite automata.
- $1-\varepsilon$  attacker-classifiability:
  - Reduction from 0 and 1 isolation problem for PFA.





#### Classifiabilities

- **1** Sure: a word in only one language.
- 2 Almost Sure: a word in only one language with probability 1.
- Imit Sure: probability of error decreases to 0.
- 4 Attack: Limit Sure with tries.
- 5  $1 \varepsilon$  Attack: decide with a fixed threshold of error with tries.

|       |       | Almost Sure |       |        |             |
|-------|-------|-------------|-------|--------|-------------|
| Cplxt | PTIME | PSPACE      | PTIME | PSPACE | undecidable |



Distance 1 problem: determine if

$$sup_{W \in \Sigma^{\infty}} |P_1(W) - P_2(W)| = 1$$

• AFF-diagnosability and  $\varepsilon$ -diagnosability.



Distance 1 problem: determine if

$$sup_{W \in \Sigma^{\infty}} |P_1(W) - P_2(W)| = 1$$

• AFF-diagnosability and  $\varepsilon$ -diagnosability.

Questions time!

