Optimal test case generation using game theory Making tests robustly exploit and explore

> Léo Henry supervisors: Nicolas Markey Thierry Jéron

Univ. Rennes, INRIA & CNRS Rennes (France)

Black-box conformance timed testing

Black-box conformance timed testing

Black-box conformance timed testing

Conformance testing

Timed testing

At the edge of many domains

A model for timed systems: TAIO

A model for timed systems: TAIO

A model for timed systems: TAIO

Formal Methods

First challenges

Partial observability¹ Consequence of the black-box assumption.

¹Bertrand, Jéron, Stainer, and Krichen, "Off-line test selection with test purposes for non-deterministic timed automata", 2012, *Logical Methods in Computer Science*.

First challenges

¹Bertrand, Jéron, Stainer, and Krichen, "Off-line test selection with test purposes for non-deterministic timed automata", 2012, *Logical Methods in Computer Science*.

First challenges

non-deterministic timed automata", 2012, Logical Methods in Computer Science.

²Henry, Jéron, and Markey, "Control Strategies for Off-Line Testing of Timed Systems", 2018, SPIN.

We rely on the *fairness* of the implementation.

²Henry, Jéron, and Markey, "Control Strategies for Off-Line Testing of Timed Systems", 2018, SPIN.

We rely on the *fairness* of the implementation. We can construct a strategy that is *winning*

²Henry, Jéron, and Markey, "Control Strategies for Off-Line Testing of Timed Systems", 2018, SPIN.

We rely on the *fairness* of the implementation. We can construct a strategy that is *winning*,

and create test cases that are, $\forall \mathcal{I} \in \mathcal{I}(\mathcal{S}), \ \forall (\mathcal{G}, f) \in \mathcal{TC}(\mathcal{S})$:

- sound: \mathcal{I} fails $(\mathcal{G}, f) \Rightarrow \neg(\mathcal{I} \text{ tioco } \mathcal{S});$
- Up to the determinization approximations:
 - ▶ strict: \neg (Behaviour($\mathcal{G}, f, \mathcal{I}$) tioco \mathcal{S}) $\Rightarrow \mathcal{I}$ fails (\mathcal{G}, f);
 - exhaustive: $\neg(\mathcal{I} \text{ tioco } \mathcal{S}) \Rightarrow \exists (\mathcal{G}, f) \in \mathcal{TC}(\mathcal{S}), \mathcal{I} \text{ fails } (\mathcal{G}, f);$
 - precise: there is no approximation in the acceptance condition.

²Henry, Jéron, and Markey, "Control Strategies for Off-Line Testing of Timed Systems", 2018, SPIN.

Reality strikes back

Robustness What precision do we require in the measure of time?

Reality strikes back

Robustness What precision do we require in the measure of time?

Reality strikes back

Robustness What precision do we require in the measure of time?

Implementation freedom We only want to enforce " $\mathcal I$ conforms $\mathcal S$ "

Reality strikes back

Robustness What precision do we require in the measure of time?

Implementation freedom We only want to enforce " ${\mathcal I}$ conforms ${\mathcal S}$ "

Reinforcement learning

Learning from the implementation

Reinforcement learning

Learning from the implementation

10/ 12

Reinforcement learning

Learning from the implementation

Current and ongoing work What did I do all this time?

What is done:

A paper on difficult games for tests... and a journal version;

A bibliographic study on learning and reinforcement learning;

³Bouyer, Jaziri, and Markey, "Efficient Timed Diagnosis Using Automata with Timed Domains", 2018, *RV 2018*.

Current and ongoing work What did I do all this time?

What is done:

A paper on difficult games for tests... and a journal version;

A bibliographic study on learning and reinforcement learning;

What is ongoing:

A journal version of [BJM18] on determinization of TAs for diagnosis;

The generalization to games with inconclusive states.

 $^{^{3}}$ Bouyer, Jaziri, and Markey, "Efficient Timed Diagnosis Using Automata with Timed Domains", 2018, $\it RV$ 2018.

 Formal test generation is a the edge between reality and models.

Reality

- Formal test generation is a the edge between reality and models.
- Information from both the model and the real world *should* be exploited.

Reality

- Formal test generation is a the edge between reality and models.
- Information from both the model and the real world *should* be exploited.
- Models robustness is greatly required.

Reality

- Formal test generation is a the edge between reality and models.
- Information from both the model and the real world *should* be exploited.
- Models robustness is greatly required.

Models

Game Theory

Formal Methods

Reinforcement Learning

