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Petri nets

Petri nets dynamics

Petri net:
R/‘G{ PN = (P, T,F, M)

F:PxTUTxP—N
My: P— 1IN

P1

Figure: Transition activation
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Petri nets

Petri Net as a process model
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Figure: Parallelization and
synchronization
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Petri nets

Places as vectors

P1

Logs give the n transitions

Places are vectors in IN127:
p = (po; pre(T); post(T))

Figure: Rational places

Mathieu Poirier Process discovery using Petri net synthesis



Petri nets

Places as vectors

Logs give the n transitions

Places are vectors in IN1T2":
p = (po; pre(T); post(T))

Figure: Set of places in their
space

Mathieu Poirier Process discovery using Petri net synthesis



Petri nets

Places as vectors

P1

Logs give the n transitions

Places are vectors in IN1 2"

4 @ 5 p = (po; pre(T); post(T))
P2

Figure: Rational places

Mathieu Poirier Process discovery using Petri net synthesis



Petri nets

Places as vectors

—

Places are vectors in IN127:
5 p = (po; pre(T); post(T))

2
1 1/2 Logs give the n transitions
@
\ P3
e

Figure: Rational places

Mathieu Poirier Process discovery using Petri net synthesis



Petri nets

Places are constraints

Q\é/ Each place p is a constraint

Figure: Petri net with 3
transitions
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Q\é/ Each place p is a constraint

Figure: Petri net with 3
transitions

Constraint from ps:
n3 <1+ n
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From logs to a Petri net

Specification

o Replay-fitness: Logs included

Figure: Replay-fitness,
generalization and
precision
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From logs to a Petri net

Specification

. o
o Replay-fitness: Logs included o
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@ Generalization: more than the ..
®
Logs ® ° °®

@ Precision: not too much
@ Size: as low as possible

Generalization: closure as Petri Net

language of the set of Logs Figure: Replay-fitness,

generalization and
precision
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From logs to a Petri net

From replay-fitness to cone of regions

Places are restrictions. Need to restrict them for replay-fitness
w-e€ L(PN) <= Vpc P, (p,v(w-e)) >0
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From replay-fitness to cone of regions

Places are restrictions. Need to restrict them for replay-fitness
w-e€ L(PN) <= Vpc P, (p,v(w-e)) >0

Figure: Cone of regions

Figure: Half-space

Extremal rays have a big role
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From logs to a Petri net

Precision thanks to places

Places are restrictions. They help for precision !
w-e¢ L(PN) <= dpe P,{(p,v(w-e)) <0
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From logs to a Petri net

Precision thanks to places

Places are restrictions. They help for precision !
w-e¢ L(PN) <= dpe P,{(p,v(w-e)) <0

Extremal rays are a complete
set of regions

Synthesized Petri Net
extracted from them

Figure: Separation problem
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New approach about size

Extremal rays haven't the lowest size
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New and future work

New approach about size

Extremal rays haven't the lowest size

2 * Hilbert basis should be better

Computed through
Elliot-McMahon algorithm

0 1 2 3 4 5 6 7

Figure: Hilbert basis of a 2D
cone
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Outlier detection

Presence of outliers redefine replay-fitness
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Figure: Soft replay-fitness allows

_ to identify outliers
Figure: Replay-fitness as strict

criterion
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On-going work
@ Check Hilbert Bases' properties

@ Address outlier detection
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Conclusion

Conclusion

On-going work
@ Check Hilbert Bases' properties
o Address outlier detection
Thanks!
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