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Routing Games

“centralized”

Total cost = 7× 2 + 7× 2 = 28
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Routing Games

“centralized”

Total cost = 7× 2 + 7× 2 = 28

[Roughgarden ′05]

cost = 7

cost = 7

“selfish”

cost = 4 + 1 + 4 = 9

Total cost = 9× 4 = 36
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Where we differ?

• Synchronicity:

congestion cost only if

players take an edge

simultaneously

• Dynamic strategies

cost = 2+

cost = 5+
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Where we differ?

• Synchronicity:

congestion cost only if

players take an edge

simultaneously

• Dynamic strategies

cost = 2 + 1 + 2 = 5, old cost = 7

cost = 5 + 2 = 7, old cost = 9
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Our model

Network Games with Synchronicity (SNG):

S = (V ,E , {coste}e∈E , s, t)

coste : N→ N, depends on no. of players

taking the edge simultaneously

s, t : source and target vertices
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Concepts
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• Configuration c = (s2, s2, s3, s3) ∈ C
• Strategy profile
P = (e1e2, e1e2, e3e4, e3e4)

• Outcome: sequence of configurations
induced by strategy profile

• Cost of a player: costi =
∑

e∈pathi
coste

Strategy classes
• Blind strategies : Players only observe

history length, σbl
i : N→ E .

• Local strategies : Players see vertex
sharing players along the history

• General strategies: σg
i : C+ → E .
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Price of Anarchy, Price of Stability... [Roughgarden ′05]

Nash Equilibrium (NE). A strategy profile (σ1, σ2, . . . σk) is a NE

if no player has an incentive to deviate from its current strategy.

 “selfish”

Social Optimal (SO). A strategy profile (σ1, σ2, . . . σk) is a SO if

cost =
∑
i

costi is minimum.

 “centralized”

Price of Anarchy (PoA) = Total cost of “worst” NE
Total cost of SO

Price of Stability (PoS) = Total cost of “best” NE
Total cost of SO
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Price of Anarchy, Price of Stability... [Roughgarden ′05]

Nash Equilibrium (NE). A strategy profile (σ1, σ2, . . . σk) is a NE

if no player has an incentive to deviate from its current strategy.

 “selfish”

Social Optimal (SO). A strategy profile (σ1, σ2, . . . σk) is a SO if

cost =
∑
i

costi is minimum.  “centralized”

Price of Anarchy (PoA) = Total cost of “worst” NE
Total cost of SO

Price of Stability (PoS) = Total cost of “best” NE
Total cost of SO

Questions:

◦ Is PoA/PoS always well-defined?

◦ How to compute these measures?
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Results



Existence and Computation of NE: Blind Strategies

Best-Response Problem (BR). Given a strategy profile P =

(π1, π2, . . . πk), can player i improve its cost by deviating? If so,

what is its optimal strategy?

Applying algorithm for BR iteratively yields a NE in the limit.

. How to solve BR problem?

. Does this iterative procedure converge?
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How to solve BR problem?

q1 q2

: e1e2

: e2
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How to solve BR problem?

q1 q2

: e1e2

: e2

: e2

e1, I e3, 0

e2, I
=⇒

2

22

1

2

1

1

0 00 0

Reduction is polynomial

Weighted shortest path problem for weighted graphs is in PTIME

BR problem for blind strategies is in PTIME

Remark. BR problem for general strategies is also in PTIME!!

7



Convergence of iterative procedure

Termination is guaranteed by potential function

Potential function Π : {Set of blind strategy profiles} → N

• decreases at each application of BR algorithm

• lower bounded by 0.

For blind strategies

Π(P) =

NP∑
j=1

∑
e∈E

load j
P,e∑

i=1

coste(i)

where NP is the maximum length of strategy “path”

and load is the number of players simultaneously using an edge

This shows existence of NE for blind strategies.

Remark. Termination for general strategies is unknown
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Existence and computation of NE: General Strategies

Claim

Blind strategy NE are general strategy NE.

That shows existence of general strategy NE.

Are there more?
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Existence and computation of NE: General Strategies

Claim

Blind strategy NE are general strategy NE.

That shows existence of general strategy NE.

Are there more?

cost = 14
cost = 8

Total cost = 14× 2 + 8 = 36
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Existence and computation of NE: General Strategies

Claim

Blind strategy NE are general strategy NE.

That shows existence of general strategy NE.

Are there more?

cost = 14
cost = 8

Total cost = 14× 2 + 8 = 36

. All blind NEs have total cost at least 37.
. PoS depends on strategy space.
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Characterization of NE : General Strategy

A play ρ is called well-fit if

∀i ∈ [k],∀n > 0,∀c ∈ Succρ(i , n)

costi (ρ≥n) ≤ vi,c + costi (ρn, c)

vi,c = cost that player-i can not avoid if the game starts from

confiuration c = min
σi

max
σ−i

costci ((σi , σ−i ))

costi (ρn, c) = cost that player-i pays for transitioning from configuration

ρn to c in one step

A play ρ ∈ C+ of a SNG S is the outcome of a Nash Equilibrium

if and only if it is a well-fit play.

Searching for NE might not be necessary: maybe we can directly deal

with outcomes to compute PoA, PoS?
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Computing vi ,c

. . .

. . .

. . . . .
.

...

...

...

vi,c

vi,c1

vi,c2

vi,cn

vi,c = min
cj [i ]

max
cj [−i ]

(vi,cj + costi (c , cj))

We can compute vi,c by a fixed-point algorithm by initializing suitably

over the configuration graph.
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Identifying outcomes of best NE

((s)i∈[k], (∞,∞, . . .∞))
• (min

c
vi,c +costi (ρn, c))−costi (ρ≥n) ≥

0 ∀n∀c ∈ succρ(i, n)∀i ∈ [k]
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vi,c +costi (ρn, c))−costi (ρ≥n) ≥
0 ∀n∀c ∈ succρ(i, n)∀i ∈ [k]

• There is an edge from (γ, (mi )i∈[k]) to

(γ′, (m′i )i∈[k]) if ∀i ∈ [k]

m′i = min(mi − costi (γ, γ
′), ctr iγ,γ′ )

where
ctr i
γ,γ′ = (min

γ′′
vi,γ′′ +

costi (γ, γ
′′))− costi (γ, γ

′)
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ē 1w 1
=

∑
i

co
st i

(ē 1
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3 )

ē
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5 )

ē
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ē 1w 1
=

∑
i

co
st i

(ē 1
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ē
3

w
3 = ∑

i cost
i (ē
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′)

• Total cost is the priority

• Tree size (T )
≤ |C| × (max. value mi can attend)k

• For Dijkstra-like algorithm:
O(|ET | + |VT | log |VT |)
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Identifying outcomes of best NE
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′), ctr iγ,γ′ )

where
ctr i
γ,γ′ = (min

γ′′
vi,γ′′ +

costi (γ, γ
′′))− costi (γ, γ

′)

• Total cost is the priority

• Tree size (T )
≤ |C| × (max. value mi can attend)k

• For Dijkstra-like algorithm:
O(|ET | + |VT | log |VT |)

• EXPTIME in number of players to
compute total cost of a best NE
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Outcomes for worst NE and SO

• Outcome of an SO can be identified by similar algorithm just by

omitting the checking for NE constraints at each node.

• Outcome of an worst NE can be identified by similar algorithm by

putting negative cost at each edge, then finding the shortest

weighted path.

This works because there is no negative cycle!

Can compute PoS and PoA now!
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Other Equilibria: Subgame Perfect Equilibria(SPE)

An NE profile P is an SPEab if for any initialized subgame of the

original game, P works as an NE profile.

aAvni, Henzinger, and Kupferman, “Dynamic Resource Allocation Games”.
bBrihaye et al., “The Complexity of Subgame Perfect Equilibria in Quantitative

Reachability Games”.
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original game, P works as an NE profile.

aAvni, Henzinger, and Kupferman, “Dynamic Resource Allocation Games”.
bBrihaye et al., “The Complexity of Subgame Perfect Equilibria in Quantitative

Reachability Games”.

. Better Equilibria: Avoids non-credible threats!
. In our settings, we are looking for results.
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Conclusion



Future Objectives

• Finding lower bound complexity result for finding PoS (resp. PoA).

• We plan to consider number of players as a parameter of the

instance, to study whether we can draw any relation between PoS

(resp. PoA), NE with this parameter.

• We can consider objectives other than reachability, like regularity.
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Thanks!
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