Modeling knowledge, dynamics and probabilities

Tristan Charrier Bastien Maubert Sasha Rubin

July 4, 2019

Definition

Agent

Entity capable of reasoning about its environment and about the other agents (humans, robots, *etc.*).

Multi-agent system

A set of agents that interact with each other and are situated in a common environment.

High-order knowledge

Knowledge agents have about the knowledge of other agents.

Important for reasoning about strategies.

Dynamics

Actions modifying the state of the system.

- Announcements;
- Playing cards;
- Drawing cards...

Probabilities

Express best strategies instead of always winning strategies.

Dynamic Epistemic Logic (DEL)

- Models:
 - High-order knowledge ("Agent a knows that b knows that ...").
 - Dynamic actions.

But not probabilities...

Definition of Dynamic Epistemic Logic

- Epistemic logic
- Adding actions

Introducing probabilities in DEL

- Probabilistic epistemic logic
- Probabilistic dynamic epistemic logic

Definition of Dynamic Epistemic Logic

- Epistemic logic
- Adding actions

Introducing probabilities in DEL

3 Conclusion

Definition of Dynamic Epistemic Logic Epistemic logic Adding actions

Introducing probabilities in DEL

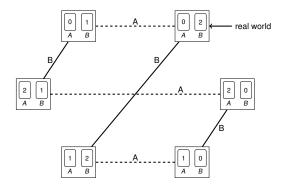
3 Conclusion

Syntax

$$\varphi ::= p | \varphi_1 \lor \varphi_2 | \neg \varphi | \qquad K_A \varphi$$

Propositional logic + A knows φ .

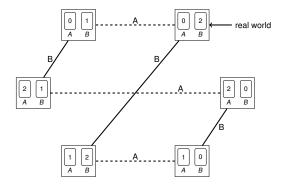
$1_A \land 2_B$

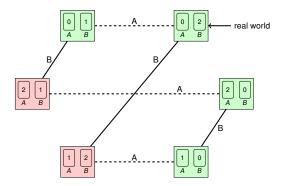

Agent A has card 1 and agent B has card 2.

$K_A \neg K_B \square_A$

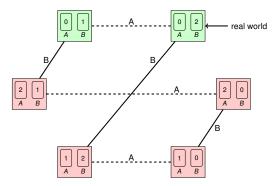
Agent A knows that agent B does not know that agent A has card 1.

Semantics: Kripke models M


Example of a 3-card game.


Kripke model

- Nodes: possible worlds.
- Edges: indistinguishability relations for each agent.

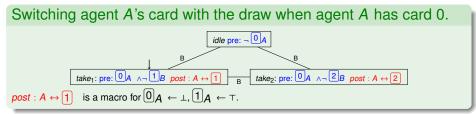

Semantics of φ : set of worlds, defined by induction on φ .

Set of worlds whose valuation satisfy β . Example: $\beta = 0_A \vee 0_B$

Set of worlds such that all *A*-successors satisfy φ . Example: $K_A(\bigcirc_A \lor \bigcirc_B)$.

Adding actions

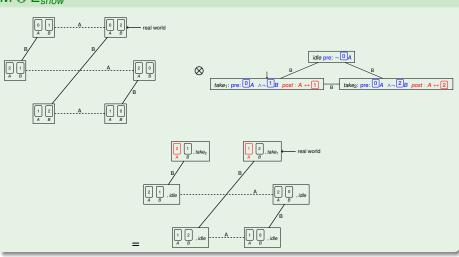
Introducing probabilities in DEL



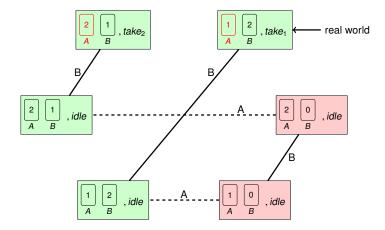
Dynamic epistemic logic

Syntax

Event model


- Nodes: possible events with:
 - a precondition: necessary condition to execute the action.
 - a postcondition: effect of the action.
- Edges: indistinguishability relations.

Effect of an event model E


Synchronous product with the current Kripke model M, noted $M \otimes E$.

$M \otimes E_{show}$

Semantics of $\langle E \rangle \varphi$

Set of worlds in $M \otimes E$ that satisfy φ . Example: $\langle E_{show} \rangle (K_B \bigcirc_A \lor K_B \bigcirc_A \lor K_B \bigcirc_A \rangle$

Definition of Dynamic Epistemic Logic

Introducing probabilities in DEL

- Probabilistic epistemic logic
- Probabilistic dynamic epistemic logic

3 Conclusion

Definition of Dynamic Epistemic Logic

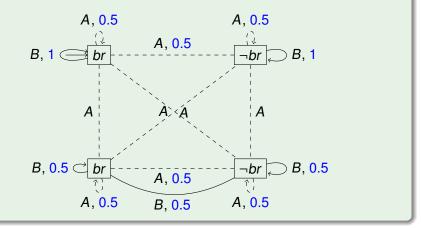
2

Introducing probabilities in DEL

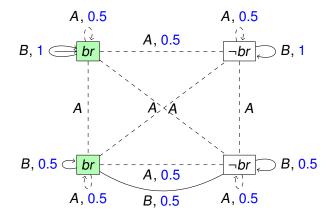
- Probabilistic epistemic logic
- Probabilistic dynamic epistemic logic

3 Conclusion

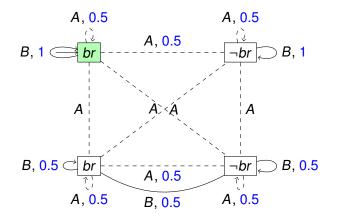
Syntax

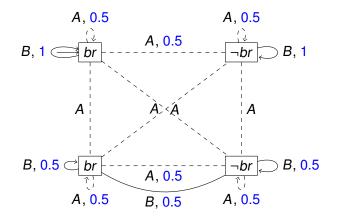

$\varphi ::= p \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid K_A \varphi$		$oldsymbol{P}_{\mathcal{A}}arphi \geq oldsymbol{q}$
Epistemic logic	+	Probability of φ is $\geq q$ for agent A.

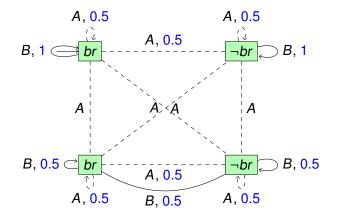
Example: $P_A(\neg K_B[1_A]) \ge \frac{1}{2}$


The probability for Agent A that that agent B does not know that agent A has card 1 is greater than $\frac{1}{2}$.

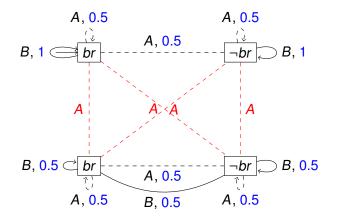
Example: broken coin


br: the coin is broken.


Example: model checking $\neg K_A(P_B br \ge 1)$. Set of worlds where *br* is true.


Example: model checking $\neg K_A(P_B br \ge 1)$. Set of worlds where $P_B br \ge 1$ is true.

Example: model checking $\neg K_A(P_Bbr \ge 1)$. Set of worlds where $K_A(P_Bbr \ge 1)$ is true.



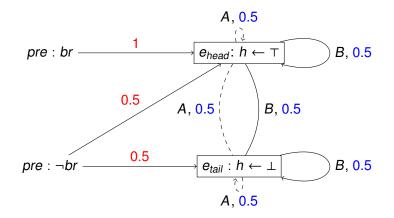
Example: model checking $\neg K_A(P_Bbr \ge 1)$. Set of worlds where $\neg K_A(P_Bbr \ge 1)$ is true.

Why distinguishing knowledge from probabilities?

Probabilities \subseteq Knowledge but not the other way around...

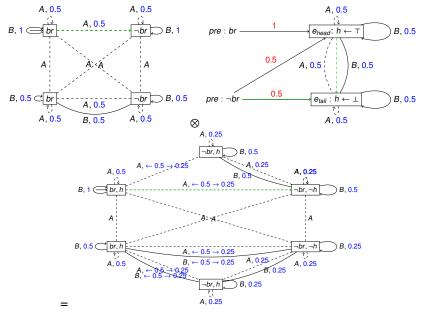
It does not make sense to assign probability to "B is a magician".

Definition of Dynamic Epistemic Logic

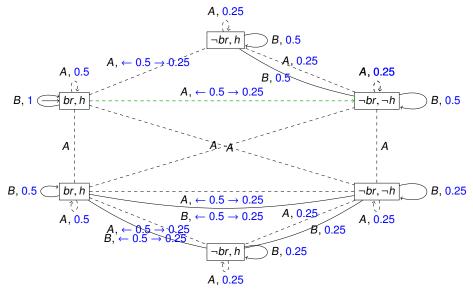


Introducing probabilities in DEL

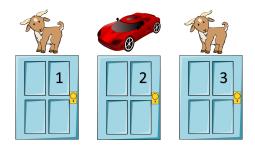
- Probabilistic epistemic logic
- Probabilistic dynamic epistemic logic


3 Conclusion

Example: flipping the coin



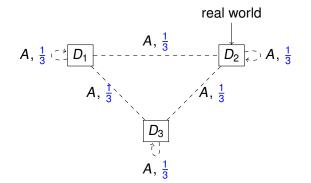
Objective probabilities Subjective probabilities


Application of a probabilistic action

Zoom on the product

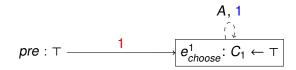
Another example: the Monty Hall problem

Definition

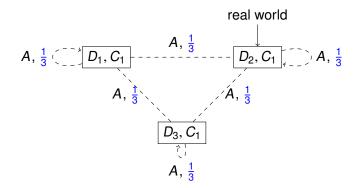

A candidate participates in a TV show where he can win a car. There are three doors in front of him. Behind one of there is the car, behind the other two a goat.

The candidate chooses a door and then the presenter opens a door with a goat behind. The candidate is able to change his choice at this point, what should he do?

What do you think?

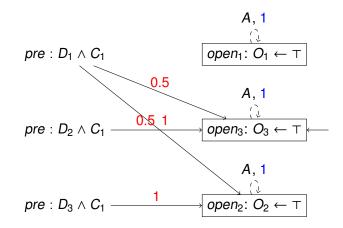

Modeling the Monty Hall problem: the initial Kripke model

Proposition D_i : the car is behind door *i*.

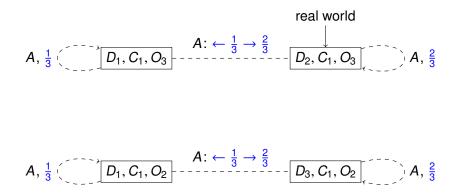


Modeling the Monty Hall problem: choosing door 1

Proposition C_i : the candidate chooses door *i*.



Modeling the Monty Hall problem: Kripke model after the choice



Modeling the Monty Hall problem: the presenter opens a door given that the candidate chose door 1.

Proposition O_i : the presenter opens door *i*.

Modeling the Monty Hall problem: after the presenter opened the door

Best move for the candidate

He should change his choice!

Definition of Dynamic Epistemic Logic

Introducing probabilities in DEL

Conclusion

Probabilistic Dynamic Epistemic Logic (PDEL)

Models:

- High-order knowledge (agent *a* knows that agent *b* knows...);
- Dynamics (flip a coin);
- Probabilities.

Complexity of model checking PDEL

Should be PSPACE-complete (same complexity as non probabilistic DEL).

Ongoing work

- Proof of complexity for model checking.
- Use for defining best strategies in bounded games.
- Symbolic methods.

Thank you for your attention! Questions?